Article (Périodiques scientifiques)
Generalising from conventional pipelines using deep learning in high‑throughput screening workfows
GARCIA SANTA CRUZ, Beatriz; Sölter, Jan; GOMEZ GIRO, Gemma et al.
2022In Scientific Reports
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Generalising_sr_publish.pdf
Postprint Éditeur (4.59 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
complex disease; high-throughput screening; image analysis; deep learning approaches; microscopy-image analysis
Résumé :
[en] The study of complex diseases relies on large amounts of data to build models toward precision medicine. Such data acquisition is feasible in the context of high-throughput screening, in which the quality of the results relies on the accuracy of the image analysis. Although state-of-the-art solutions for image segmentation employ deep learning approaches, the high cost of manually generating ground truth labels for model training hampers the day-to-day application in experimental laboratories. Alternatively, traditional computer vision-based solutions do not need expensive labels for their implementation. Our work combines both approaches by training a deep learning network using weak training labels automatically generated with conventional computer vision methods. Our network surpasses the conventional segmentation quality by generalising beyond noisy labels, providing a 25% increase of mean intersection over union, and simultaneously reducing the development and inference times. Our solution was embedded into an easy-to-use graphical user interface that allows researchers to assess the predictions and correct potential inaccuracies with minimal human input. To demonstrate the feasibility of training a deep learning solution on a large dataset of noisy labels automatically generated by a conventional pipeline, we compared our solution against the common approach of training a model from a small manually curated dataset by several experts. Our work suggests that humans perform better in context interpretation, such as error assessment, while computers outperform in pixel-by-pixel fne segmentation. Such pipelines are illustrated with a case study on image segmentation for autophagy events. This work aims for better translation of new technologies to real-world settings in microscopy-image analysis.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
GARCIA SANTA CRUZ, Beatriz ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Sölter, Jan
GOMEZ GIRO, Gemma ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
SARAIVA, Claudia ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
SABATÉ SOLER, Sonia ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Modamio Chamarro, Jenifer
BARMPA, Kyriaki ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
SCHWAMBORN, Jens Christian ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
HERTEL, Frank ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
JARAZO, Javier ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
HUSCH, Andreas  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Interventional Neuroscience
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Generalising from conventional pipelines using deep learning in high‑throughput screening workfows
Date de publication/diffusion :
06 juillet 2022
Titre du périodique :
Scientific Reports
eISSN :
2045-2322
Maison d'édition :
Nature Publishing Group, London, Royaume-Uni
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Disponible sur ORBilu :
depuis le 12 décembre 2021

Statistiques


Nombre de vues
514 (dont 26 Unilu)
Nombre de téléchargements
116 (dont 5 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
2
OpenCitations
 
0
citations OpenAlex
 
4
citations WoS
 
3

Bibliographie


Publications similaires



Contacter ORBilu