[en] A data-driven, probabilistic, computational framework will be developed that provides a deformable solid with the sense of 'touch', so that it can detect the shape and mechanical behaviour of its environment. The framework will rely on three modules: a mechanical model to simulate the contact between the deformable solid and its environment, a machine learning module to rapidly emulate the mechanical simulations, and a probabilistic framework to identify the shape and mechanical behaviour of the solid’s environment.
Disciplines :
Science des matériaux & ingénierie
Auteur, co-auteur :
HURTADO CATHALIFAUD, Diego Rene ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A data-driven computational framework to provide deformable solids with the sense of touch
Date de publication/diffusion :
21 mai 2021
Nombre de pages :
A1
Nom de la manifestation :
DTU DRIVEN Colloquium
Organisateur de la manifestation :
Andreas Zilian
Lieu de la manifestation :
Esch-sur-Alzette, Luxembourg
Date de la manifestation :
21-05-2021
Manifestation à portée :
International
Focus Area :
Computational Sciences
Projet FnR :
FNR12252781 - Data-driven Computational Modelling And Applications, 2017 (01/09/2018-28/02/2025) - Andreas Zilian