[en] In the seminal paper of Bank and Weiser [Math. Comp., 44 (1985), pp.283-301] a new a posteriori estimator was introduced. This estimator requires the solution of a local Neumann problem on every cell of the finite element mesh. Despite the promise of Bank-Weiser type estimators, namely locality, computational efficiency, and asymptotic sharpness, they have seen little use in practical computational problems. The focus of this contribution is to describe a novel implementation of hierarchical estimators of the Bank-Weiser type in a modern high-level finite element software with automatic code generation capabilities. We show how to use the estimator to drive (goal-oriented) adaptive mesh refinement and to mixed approximations of the nearly-incompressible elasticity problems. We provide comparisons with various other used estimators. An open-source implementation based on the FEniCS Project finite element software is provided as supplementary material.
Research center :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Mathematics Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
BULLE, Raphaël ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
HALE, Jack ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Lozinski, Alexei
BORDAS, Stéphane ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Chouly, Franz
External co-authors :
yes
Language :
English
Title :
Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project
Publication date :
01 February 2023
Journal title :
Computers and Mathematics with Applications
ISSN :
0898-1221
eISSN :
1873-7668
Publisher :
Elsevier, Oxford, United Kingdom
Volume :
131
Pages :
103-123
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Computational Sciences
European Projects :
H2020 - 811099 - DRIVEN - Increasing the scientific excellence and innovation capacity in Data-Driven Simulation of the University of Luxembourg
Funders :
ASSIST UL IRP I-Site BFC project NAANoD EIPHI Graduate School ANR-17-EURE-0002 CE - Commission Européenne [BE]
Ainsworth, M., The influence and selection of subspaces for a posteriori error estimators. Numer. Math. 73 (1996), 399–418, 10.1007/s002110050198.
Ainsworth, M., Oden, J.T., A posteriori error estimators for the Stokes and Oseen equations. SIAM J. Numer. Anal. 34 (1997), 228–245, 10.1137/S0036142994264092.
Ainsworth, M., Oden, J.T., A Posteriori Error Estimation in Finite Element Analysis., 2011.
Alliez, P., Jamin, C., Rineau, L., Tayeb, S., Tournois, J., Yvinec, M., 3D mesh generation. CGAL User and Reference Manual, CGAL Editorial Board, 5.1 ed., 2020 https://doc.cgal.org/5.1/Manual/packages.html#PkgMesh3.
Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N., The FEniCS project version 1.5. Arch. Numer. Softw., 3, 2015, 10.11588/ANS.2015.100.20553.
Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N., Unified form language: a domain-specific language for weak formulations of partial differential equations. ACM Trans. Math. Softw. 40 (2014), 1–37, 10.1145/2566630.
Amestoy, P.R., Duff, I.S., L'Excellent, J.-Y., Koster, J., A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001), 15–41, 10.1137/S0895479899358194.
Amestoy, P.R., Guermouche, A., L'Excellent, J.-Y., Pralet, S., Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32 (2006), 136–156, 10.1016/j.parco.2005.07.004.
Anciaux-Sedrakian, A., Grigori, L., Jorti, Z., Papež, J., Yousef, S., Adaptive solution of linear systems of equations based on a posteriori error estimators. Numer. Algorithms 84 (2020), 331–364, 10.1007/s11075-019-00757-z.
Arioli, M., Liesen, J., Miçdlar, A., Strakoš, Z., Interplay between discretization and algebraic computation in adaptive numerical solution of elliptic PDE problems. GAMM-Mitt. 36 (2013), 102–129, 10.1002/gamm.201310006 https://onlinelibrary.wiley.com/doi/10.1002/gamm.201310006.
Arndt, D., Bangerth, W., Blais, B., Fehling, M., Gassmöller, R., Heister, T., Heltai, L., Köcher, U., Kronbichler, M., Maier, M., Munch, P., Pelteret, J.-P., Proell, S., Simon, K., Turcksin, B., Wells, D., Zhang, J., The deal.II library, version 9.3. J. Comput. Math. 29 (2021), 171–186, 10.1515/jnma-2021-0081 https://dealii.org/deal93-preprint.pdf.
Aurada, M., Feischl, M., Kemetmüller, J., Page, M., Praetorius, D., Each H 1/2 –stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in R d. ESAIM: Math. Model. Numer. Anal. 47 (2013), 1207–1235, 10.1051/m2an/2013069 http://www.esaim-m2an.org/10.1051/m2an/2013069.
Babuska, I., Vogelius, M., Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44 (1984), 75–102, 10.1007/BF01389757.
Babuška, I., Rheinboldt, W.C., A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Biomed. Eng. 12 (1978), 1597–1615, 10.1002/nme.1620121010.
Bank, R.E., PLTMG: A Software Package for Solving Elliptic Partial Differential Equations: Users' Guide 8.0. Jan. 1998, Society for Industrial and Applied Mathematics, 10.1137/1.9780898719635.
Bank, R.E., Weiser, A., Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985), 283–301, 10.1090/S0025-5718-1985-0777265-X.
Bank, R.E., Xu, J., Zheng, B., Superconvergent derivative recovery for Lagrange triangular elements of degree p on unstructured grids. SIAM J. Numer. Anal. 45 (2007), 2032–2046, 10.1137/060675174.
Bartels, S., Carstensen, C., Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: higher order FEM. Math. Comput. 71 (2002), 971–994, 10.1090/S0025-5718-02-01412-6.
Bartels, S., Carstensen, C., Dolzmann, G., Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math. 99 (2004), 1–24, 10.1007/s00211-004-0548-3.
Bastian, P., Blatt, M., Dedner, A., Dreier, N.-A., Engwer, C., Fritze, R., Gräser, C., Grüninger, C., Kempf, D., Klöfkorn, R., Ohlberger, M., Sander, O., The Dune framework: basic concepts and recent developments. Comput. Math. Appl. 81 (2021), 75–112, 10.1016/j.camwa.2020.06.007 https://www.sciencedirect.com/science/article/pii/S089812212030256X. (Accessed 1 June 2022)
Becker, R., Estecahandy, E., Trujillo, D., Weighted marking for goal-oriented adaptive finite element methods. SIAM J. Numer. Anal. 49 (2011), 2451–2469, 10.1137/100794298.
Becker, R., Rannacher, R., An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10 (2001), 1–102, 10.1017/s0962492901000010.
Beirão da Veiga, L., Chinosi, C., Lovadina, C., Stenberg, R., A-priori and a-posteriori error analysis for a family of Reissner–Mindlin plate elements. BIT Numer. Math. 48 (2008), 189–213, 10.1007/s10543-008-0175-y.
Bespalov, A., Praetorius, D., Rocchi, L., Ruggeri, M., Goal-oriented error estimation and adaptivity for elliptic PDEs with parametric or uncertain inputs. Comput. Methods Appl. Mech. Eng. 345 (2019), 951–982, 10.1016/j.cma.2018.10.041.
Bespalov, A., Rocchi, L., Silvester, D., T-IFISS: a toolbox for adaptive FEM computation. Comput. Math. Appl., 2020, 10.1016/j.camwa.2020.03.005.
Bulle, R., Chouly, F., Hale, J.S., Lozinski, A., Removing the saturation assumption in Bank–Weiser error estimator analysis in dimension three. Appl. Math. Lett., 107, 2020, 106429, 10.1016/j.aml.2020.106429.
Bulle, R., Hale, J.S., An implementation of the Bank-Weiser error estimator in the FEniCS Project finite element software. https://doi.org/10.6084/m9.figshare.10732421.v1, 2020.
Burstedde, C., Wilcox, L.C., Ghattas, O., p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33 (2011), 1103–1133, 10.1137/100791634.
Cai, Z., He, C., Zhang, S., Improved ZZ a posteriori error estimators for diffusion problems: conforming linear elements. Comput. Methods Appl. Mech. Eng. 313 (2017), 433–449, 10.1016/j.cma.2016.10.006.
Cai, Z., Zhang, S., Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47 (2009), 2132–2156, 10.1137/080717407.
Carstensen, C., Bartels, S., Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: low order conforming, nonconforming, and mixed FEM. Math. Comput. 71 (2002), 945–969, 10.1090/S0025-5718-02-01402-3.
Carstensen, C., Feischl, M., Page, M., Praetorius, D., Axioms of adaptivity. Comput. Math. Appl. 67 (2014), 1195–1253, 10.1016/j.camwa.2013.12.003.
Carstensen, C., Gedicke, J., Robust residual-based a posteriori Arnold–Winther mixed finite element analysis in elasticity. Comput. Methods Appl. Mech. Eng. 300 (2016), 245–264, 10.1016/j.cma.2015.10.001.
Carstensen, C., Merdon, C., Estimator competition for Poisson problems. J. Comput. Math., 28, 2010, 10.4208/jcm.2009.10-m1010.
Concha INRIA Project-Team. Complex flow simulation codes based on high-order and adaptive methods. https://raweb.inria.fr/rapportsactivite/RA2010/concha/concha.pdf. (Accessed 17 December 2020)
Duprez, M., Bordas, S.P.A., Bucki, M., Bui, H.P., Chouly, F., Lleras, V., Lobos, C., Lozinski, A., Rohan, P.-Y., Tomar, S., Quantifying discretization errors for soft tissue simulation in computer assisted surgery: a preliminary study. Appl. Math. Model. 77 (2020), 709–723, 10.1016/j.apm.2019.07.055.
Dörfler, W., A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996), 1106–1124, 10.1137/0733054.
Dörfler, W., Nochetto, R.H., Small data oscillation implies the saturation assumption. Numer. Math. 91 (2002), 1–12, 10.1007/s002110100321.
Elman, H.C., Ramage, A., Silvester, D.J., IFISS: a computational laboratory for investigating incompressible flow problems. SIAM Rev. 56 (2014), 261–273, 10.1137/120891393.
Falgout, R.D., Yang, U.M., Hypre: a library of high performance preconditioners. Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J., (eds.) Comput. Science — ICCS 2002 Lecture Notes in Computer Science, vol. 2331, Apr 2002, Springer, Berlin Heidelberg, 632–641, 10.1007/3-540-47789-6_66.
Funken, S., Praetorius, D., Wissgott, P., Efficient implementation of adaptive P1-FEM in Matlab. Comput. Methods Appl. Math. 11 (2011), 460–490, 10.2478/cmam-2011-0026.
Gibson, T.H., Mitchell, L., Ham, D.A., Cotter, C.J., Slate: extending Firedrake's domain-specific abstraction to hybridized solvers for geoscience and beyond. Geosci. Model Dev. Discuss., 2019, 1–40, 10.5194/gmd-2019-86.
Giles, M.B., Süli, E., Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numer. 11 (2002), 145–236, 10.1017/S096249290200003X.
Grisvard, P., Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24, 1985, Pitman (Advanced Publishing Program), Boston, MA.
Guennebaud, G., Jacob, B., et al. Eigen v3. http://eigen.tuxfamily.org, 2010. (Accessed 6 November 2020)
Habera, M., Hale, J.S., Richardson, C., Ring, J., Rognes, M., Sime, N., Wells, G.N., FEniCSX: a sustainable future for the FEniCS Project. https://doi.org/10.6084/m9.figshare.11866101.v1, 2020 https://figshare.com/articles/presentation/FEniCSX_A_sustainable_future_for_the_FEniCS_Project/11866101.
Hale, J.S., Brunetti, M., Bordas, S.P., Maurini, C., Simple and extensible plate and shell finite element models through automatic code generation tools. Comput. Struct. 209 (2018), 163–181, 10.1016/j.compstruc.2018.08.001.
Houston, P., Senior, B., Süli, E., Sobolev regularity estimation for hp-adaptive finite element methods. Numer. Math. Adv. Appl., 2003, Springer Milan, Milano, 631–656, 10.1007/978-88-470-2089-4_58.
Houston, P., Sime, N., Automatic symbolic computation for discontinuous Galerkin finite element methods. SIAM J. Sci. Comput. 40 (2018), C327–C357, 10.1137/17M1129751.
Kelly, D.W., De, J.P., Gago, S.R., Zienkiewicz, O.C., Babuska, I., A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis. Int. J. Numer. Methods Biomed. Eng. 19 (1983), 1593–1619, 10.1002/nme.1620191103 https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620191103. (Accessed 1 June 2022)
Khan, A., Powell, C.E., Silvester, D.J., Robust a posteriori error estimators for mixed approximation of nearly incompressible elasticity. Int. J. Numer. Methods Biomed. Eng. 119 (2019), 18–37, 10.1002/nme.6040.
Kirby, R.C., Algorithm 839: FIAT, a new paradigm for computing finite element basis functions. ACM Trans. Math. Softw. 30 (2004), 502–516, 10.1145/1039813.1039820.
Kirby, R.C., Logg, A., A compiler for variational forms. ACM Trans. Math. Softw. 32 (2006), 417–444, 10.1145/1163641.1163644.
Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F., libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22 (2006), 237–254, 10.1007/s00366-006-0049-3.
Liao, Q., Silvester, D., A simple yet effective a posteriori estimator for classical mixed approximation of Stokes equations. Appl. Numer. Math. 62 (2012), 1242–1256, 10.1016/j.apnum.2010.05.003.
Logg, A., Wells, G.N., DOLFIN: automated finite element computing. ACM Trans. Math. Softw. 37 (2010), 1–28, 10.1145/1731022.1731030.
Mitchell, W.F., A collection of 2D elliptic problems for testing adaptive grid refinement algorithms. Appl. Math. Comput. 220 (2013), 350–364, 10.1016/j.amc.2013.05.068.
Mitchell, W.F., A collection of 2D elliptic problems for testing adaptive grid refinement algorithms. Appl. Math. Comput. 220 (2013), 350–364, 10.1016/j.amc.2013.05.068.
Mommer, M.S., Stevenson, R., A goal-oriented adaptive finite element method with convergence rates. SIAM J. Numer. Anal. 47 (2009), 861–886, 10.1137/060675666.
Nochetto, R.H., Removing the saturation assumption in a posteriori error analysis. Ist. Lomb. Accad. Sci. Lett. Rend. A 127 (1993), 67–82 (1994).
Nochetto, R.H., Siebert, K.G., Veeser, A., Theory of adaptive finite element methods: an introduction. DeVore, R., Kunoth, A., (eds.) Multiscale, Nonlinear Adapt. Approx., Berlin, Heidelberg, 2009, Springer, Berlin, Heidelberg, 409–542, 10.1007/978-3-642-03413-8_12.
Papež, J., Strakoš, Z., Vohralík, M., Estimating and localizing the algebraic and total numerical errors using flux reconstructions. Numer. Math. 138 (2018), 681–721, 10.1007/s00211-017-0915-5 http://link.springer.com/10.1007/s00211-017-0915-5.
Pfeiler, C.-M., Praetorius, D., Dörfler marking with minimal cardinality is a linear complexity problem. arXiv:1907.13078 [cs, math], 2019 http://arxiv.org/abs/1907.13078.
Plaza, A., Carey, G., Local refinement of simplicial grids based on the skeleton. Appl. Numer. Math. 32 (2000), 195–218, 10.1016/S0168-9274(99)00022-7.
Prud'homme, C., Chabannes, V., Doyeux, V., Ismail, M., Samake, A., Pena, G., Feel++: a computational framework for Galerkin methods and advanced numerical methods. ESAIM Proc. 38 (2012), 429–455, 10.1051/proc/201238024.
Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A.T.T., Bercea, G.-T., Markall, G.R., Kelly, P.H.J., Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. 43 (2017), 1–27, 10.1145/2998441.
Renard, Y., Poulios, K., GetFEM: automated FE modeling of multiphysics problems based on a generic weak form language. ACM Trans. Math. Softw., 47(1), 2021 Article 4, 31 pages https://doi.org/10.1145/3412849.
Rodríguez, R., Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differ. Equ. 10 (1994), 625–635, 10.1002/num.1690100509.
Rognes, M.E., Logg, A., Automated goal-oriented error control I: stationary variational problems. SIAM J. Sci. Comput. 35 (2013), C173–C193, 10.1137/10081962X.
Rupin, F., Saied, A., Dalmas, D., Peyrin, F., Haupert, S., Barthel, E., Boivin, G., Laugier, P., Experimental determination of Young modulus and Poisson ratio in cortical bone tissue using high resolution scanning acoustic microscopy and nanoindentation. J. Acoust. Soc. Am., 123, 2008, 3785, 10.1121/1.2935440.
Scott, L.R., Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990), 483–493, 10.1090/S0025-5718-1990-1011446-7.
van der Walt, S., Colbert, S.C., Varoquaux, G., The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13 (2011), 22–30, 10.1109/MCSE.2011.37.
Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F., Management of an academic HPC cluster: the UL experience. 2014 International Conference on High Performance Computing & Simulation (HPCS), Bologna, Italy, July 2014, IEEE, 959–967, 10.1109/HPCSim.2014.6903792.
Verfürth, R., A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994), 67–83, 10.1016/0377-0427(94)90290-9.
Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Contributors. SciPy 1.0–fundamental algorithms for scientific computing in Python. Nat. Methods 17 (2020), 261–272, 10.1038/s41592-019-0686-2.
Zhang, Z., Yan, N., Recovery type a posteriori error estimates in finite element methods. J. Appl. Math. Comput. 8 (2001), 235–251, 10.1007/BF02941963.
Zienkiewicz, O.C., Zhu, J.Z., A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24 (1987), 337–357, 10.1002/nme.1620240206.
Zienkiewicz, O.C., Zhu, J.Z., The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Eng. 101 (1992), 207–224, 10.1016/0045-7825(92)90023-D.
Ølgaard, K.B., Logg, A., Wells, G.N., Automated code generation for discontinuous Galerkin methods. SIAM J. Sci. Comput. 31 (2009), 849–864, 10.1137/070710032.