[en] This chapter reviews the behavioral and neuroimaging scientific literature on the cognitive consequences of playing various genres of video games. The available research highlights that not all video games have similar cognitive impact; action video games as defined by first- and third-person shooter games have been associated with greater cognitive enhancement, especially when it comes to top-down attention, than puzzle or life-simulation games. This state of affairs suggests specific game mechanics need to be embodied in a video game for it to enhance cognition. These hypothesized game mechanics are reviewed; yet, the authors note that the advent of more complex, hybrid, video games poses new research challenges and call for a more systematic assessment of how specific video game mechanics relate to cognitive enhancement.
Disciplines :
Neurosciences & comportement
Auteur, co-auteur :
CARDOSO-LEITE, Pedro ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
ANSARINIA, Morteza ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
SCHMÜCK, Emmanuel ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
Bavelier, Daphne
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Training Cognition with Video Games
Date de publication/diffusion :
2021
Titre de l'ouvrage principal :
The Oxford Handbook of Developmental Cognitive Neuroscience
Adachi, P. J. C. and Willoughby, T. (2013). More than just fun and games: The longitudinal relationships between strategic video games, self-reported problem solving skills, and academic grades. Journal of Youth and Adolescence, 42(7), 1041-1052. doi:10.1007/s10964-013-9913-9.
Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., . . . and Gazzaley, A. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97-101. doi:10.1038/nature12486.
Antzaka, A., Lallier, M., Meyer, S., Diard, J., Carreiras, M., and Valdois, S. (2017). Enhancing reading performance through action video games: The role of visual attention span. Scientific Reports, 7(1), 14563. doi:10.1038/s41598-017-15119-9.
Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., and Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: A meta-analysis. Psychonomic Bulletin and Review, 22(2), 366-377. doi:10.3758/s13423-014-0699-x.
Ball, K., Owsley, C., Sloane, M. E., Roenker, D. L., and Bruni, J. R. (1993). Visual attention problems as a predictor of vehicle crashes in older drivers. Investigative Ophthalmology and Visual Science, 34(11), 3110-3123.
Baniqued, P. L., Kranz, M. B., Voss, M. W., Lee, H., Cosman, J. D., Severson, J., and Kramer, A. F. (2014). Cognitive training with casual video games: Points to consider. Frontiers in Psychology, 4, 1010. doi:10.3389/fpsyg.2013.01010.
Baniqued, P. L., Lee, H., Voss, M. W., Basak, C., Cosman, J. D., DeSouza, S., . . . and Kramer, A. F. (2013). Selling points: What cognitive abilities are tapped by casual video games? Acta Psychologica, 142(1), 74-86. doi:10.1016/j.actpsy.2012.11.009.
Basak, C., Boot, W. R., Voss, M. W., and Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765-777. doi:10.1037/a0013494.
Bavelier, D. and Green, C. S. (2019). Enhancing attentional control: Lessons from action video games. Neuron, 104(1), 147-163.
Bavelier, D., Green, C. S., and Dye, M. W. (2010). Children, wired: For better and for worse. Neuron, 67(5), 692-701. doi:10.1016/j.neuron.2010.08.035.
Bavelier, D., Green, C. S., Pouget, A., and Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neuroscience, 35(1), 391-416. doi:10.1146/annurev-neuro-060909-152832.
Bavelier, D., Savulescu, J., Fried, L. P., Friedmann, T., Lathan, C. E., Schürle, S., and Beard, J. R. (2019). Rethinking human enhancement as collective welfarism. Nature Human Behaviour, 3(3), 204. doi:10.1038/s41562-019-0545-2.
Bavelier, D., and Green, C. S. (2016). Brain Tune-Up from Action Video Game Play. Scientific American, 315(1), 26-31. doi:10.1038/scientificamerican0716-26.
Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., and Bavelier, D. (2018). Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychological Bulletin, 144(1), 77-110. doi:10.1037/bul0000130.
Belchior, P., Marsiske, M., Sisco, S., Yam, A., and Mann, W. (2012). Older adults' engagement with a video game training program. Activities, Adaptation and Aging, 36(4), 269-279. doi:10.1080/01924788.2012.702307.
Belchior, P., Marsiske, M., Sisco, S. M., Yam, A., Bavelier, D., Ball, K., and Mann, W. C. (2013). Video game training to improve selective visual attention in older adults. Computers in Human Behavior, 29(4), 1318-1324.
Belchior, P., Yam, A., Thomas, K. R., Bavelier, D., Ball, K. K., Mann, W. C., and Marsiske, M. (2019). Computer and videogame interventions for older adults' cognitive and everyday functioning. Games for Health Journal, 8(2), 129-143. doi:10.1089/g4h.2017.0092.
Bird, C. M. and Burgess, N. (2008). The hippocampus and memory: Insights from spatial processing. Nature Reviews Neuroscience, 9(3), 182-194. doi:10.1038/nrn2335.
Bodson, L. (2017). Regards sur les activités quotidiennes des jeunes résidents. Luxembourg: Institut national de la statistique et des études économiques (STATEC).
Boot, W. R., Simons, D. J., Stothart, C., and Stutts, C. (2013). The pervasive problem with placebos in psychology: Why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8(4), 445-454. http://pps.sagepub.com/cont ent/8/4/445.short.
Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., and Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387-398. doi:10.1016/j.actpsy.2008.09.005.
Bull, R., Espy, K. A., and Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205-228. doi:10.1080/87565640801982312.
Buschkuehl, M., Jaeggi, S. M., and Jonides, J. (2012). Neuronal effects following working memory training. Developmental Cognitive Neuroscience, 2, S167-S179. doi:10.1016/j.dcn.2011.10.001.
Cardoso-Leite, P., Joessel, A., and Bavelier, D. (2020). Games for enhancing cognitive abilities. In J. Plass, R. E. Mayer, and B. D. Homer (Eds.), Handbook of Game-based Learning. Cambridge, MA: MIT Press. https://mitpress.mit.edu/books/handbook-game-based-learning.
Cardoso-Leite, P., Kludt, R., Vignola, G., Ma, W. J., Green, C. S., and Bavelier, D. (2016). Technology consumption and cognitive control: Contrasting action video game experience with media multitasking. Attention, Perception, and Psychophysics, 78(1), 218-241. http://link.springer.com/article/10.3758/s13414-015-0988-0.
Cherney, I. D. (2008). Mom, let me play more computer games: They improve my mental rotation skills. Sex Roles, 59(11-12), 776-786. doi:10.1007/s11199-008-9498-z.
Chesham, A., Wyss, P., Müri, R. M., Mosimann, U. P., and Nef, T. (2017). What older people like to play: Genre preferences and acceptance of casual games. JMIR Serious Games, 5(2), e8. doi:10.2196/games.7025.
Chopin, A., Bediou, B., and Bavelier, D. (2019). Altering perception: The case of action video gaming. Current Opinion in Psychology, 29, 168-173. doi:10.1016/j.copsyc.2019.03.004.
Chuang, T.-Y. and Chen, W.-F. (2007a). Effect of computer-based video games on children: an experimental study. 2007 First IEEE International Workshop on Digital Game and Intelligent Toy Enhanced Learning (DIGITEL'07), Jhongli City, Taiwan, 114-118. doi:10.1109/DIGITEL.2007.24.
Chuang, T.-Y. and Chen, W.-F. (2007b). Effect of digital games on children's cognitive achievement. Journal of Multimedia, 2(5).
Corbetta, M. and Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215. doi:10.1038/nrn755.
Dale, G. and Green, C. S. (2017). Associations between avid action and real-time strategy game play and cognitive performance: A pilot study. Journal of Cognitive Enhancement, 1(3), 295-317. doi:10.1007/s41465-017-0021-8.
Dale, G. and Shawn Green, C. (2017). The changing face of video games and video gamers: Future directions in the scientific study of video game play and cognitive performance. Journal of Cognitive Enhancement, 1(3), 280-294. doi:10.1007/s41465-017-0015-6.
Dale, G., Joessel, A., Bavelier, D., and Green, C. S. (2020). A new look at the cognitive neuroscience of video game play. Annals of the New York Academy of Sciences, 1464(1), 192-203.
De Lisi, R. and Wolford, J. L. (2002). Improving children's mental rotation accuracy with computer game playing. The Journal of Genetic Psychology, 163(3), 272-282. doi:10.1080/00221320209598683.
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. doi:10.1146/annurev-psych-113011-143750.
Diamond, A., Barnett, W. S., Thomas, J., and Munro, S. (2007). Preschool program improves cognitive control. Science (New York, N.Y.), 318(5855), 1387-1388. doi:10.1126/science.1151148.
Dye, M. W., Green, C. S., and Bavelier, D. (2009). Increasing speed of processing with action video games. Current Directions in Psychological Science, 18(6), 321-326. doi:10.1111/j.1467-8721.2009.01660.x.
Eichenbaum, H. (2017). The role of the hippocampus in navigation is memory. Journal of Neurophysiology, 117(4), 1785-1796. doi:10.1152/jn.00005.2017.
Engelhard, I. M., van Uijen, S. L., and van den Hout, M. A. (2010). The impact of taxing working memory on negative and positive memories. European Journal of Psychotraumatology, 1(1), 5623. doi:10.3402/ejpt.v1i0.5623.
Fikkers, K. M., Piotrowski, J. T., and Valkenburg, P. M. (2019). Child's play? Assessing the bidirectional longitudinal relationship between gaming and intelligence in early childhood. Journal of Communication, 69(2), 124-143. doi:10.1093/joc/jqz003.
Finnigan, S., O'Connell, R. G., Cummins, T. D. R., Broughton, M., and Robertson, I. H. (2011). ERP measures indicate both attention and working memory encoding decrements in aging: Age effects on attention and memory encoding ERPs. Psychophysiology, 48(5), 601-611. doi:10.1111/j.1469-8986.2010.01128.x.
Föcker, J., Mortazavi, M., Khoe, W., Hillyard, S. A., and Bavelier, D. (2018). Neural correlates of enhanced visual attentional control in action video game players: An event-related potential study. Journal of Cognitive Neuroscience, 31(3), 377-389. doi:10.1162/jocn_a_01230.
Föcker, J., Mortazavi, M., Khoe, W., Hillyard, S. A., and Bavelier, D. (2019). Neural correlates of enhanced visual attentional control in action video game players: An event-related potential study. Journal of Cognitive Neuroscience, 31(3), 377-389. doi:10.1162/jocn_a_01230.
Fox, J. (2006). Teacher's corner: Structural equation modeling with the SEM package in R. Structural Equation Modeling, 13(3), 465-486. http://www.tandfonline.com/doi/abs/10.1207/s15328007sem1303_7.
Franceschini, S., Bertoni, S., Ronconi, L., Molteni, M., Gori, S., and Facoetti, A. (2015). "Shall we play a game?": Improving reading through action video games in developmental dyslexia. Current Developmental Disorders Reports, 2(4), 318-329. doi:10.1007/s40474-015-0064-4.
Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., and Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology, 23(6), 462-466. doi:10.1016/j.cub.2013.01.044.
Franceschini, S., Trevisan, P., Ronconi, L., Bertoni, S., Colmar, S., Double, K., . . . and Gori, S. (2017). Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia. Scientific Reports, 7(1). doi:10.1038/s41598-017-05826-8.
Gathercole, S. E., Pickering, S. J., Knight, C., and Stegmann, Z. (2004). Working memory skills and educational attainment: Evidence from national curriculum assessments at 7 and 14 years of age. Applied Cognitive Psychology, 18(1), 1-16. doi:10.1002/acp.934.
Geary, D. C., Berch, D. B., and Mann Koepke, K. (2019). Introduction: Cognitive foundations for improving mathematical learning. In D. C. Geary, D. B. Berch, and K. Mann Koepke (Eds.), Cognitive Foundations for Improving Mathematical Learning (Vol. 5, pp. 1-36). Cambridge, MA: Academic Press. doi:10.1016/B978-0-12-815952-1.00001-3.
Gentile, D. A., Bailey, K., Bavelier, D., Brockmyer, J. F., Cash, H., Coyne, S. M., . . . and Young, K. (2017). Internet gaming disorder in children and adolescents. Pediatrics, 140(Supplement 2), S81-S85. doi:10.1542/peds.2016-1758H.
Glass, B. D., Maddox, W. T., and Love, B. C. (2013). Real-time strategy game training: Emergence of a cognitive flexibility trait. PLoS ONE, 8(8), e70350. doi:10.1371/journal. pone.0070350.
Goldin, A. P., Hermida, M. J., Shalom, D. E., Elias Costa, M., Lopez-Rosenfeld, M., Segretin, M. S., . . . and Sigman, M. (2014). Far transfer to language and math of a short software-based gaming intervention. Proceedings of the National Academy of Sciences, 111(17), 6443-6448. doi:10.1073/pnas.1320217111.
Gong, D., He, H., Liu, D., Ma, W., Dong, L., Luo, C., and Yao, D. (2015). Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing. Scientific Reports, 5(1), 9763. doi:10.1038/srep09763.
Gong, D., He, H., Ma, W., Liu, D., Huang, M., Dong, L., . . . and Yao, D. (2016). Functional integration between salience and central executive networks: A role for action video game experience. Neural Plasticity, 2016. http://www.hindawi.com/journals/np/2016/9803165/abs/.
Gong, D., Ma, W., Gong, J., He, H., Dong, L., Zhang, D., . . . and Yao, D. (2017). Action Video Game Experience Related to Altered Large-Scale White Matter Networks. Neural Plasticity, 2017, 1-7. doi:10.1155/2017/7543686.
Gong, D., Yao, Y., Gan, X., Peng, Y., Ma, W., and Yao, D. (2019). A reduction in video gaming time produced a decrease in brain activity. Frontiers in Human Neuroscience, 13, 134. doi:10.3389/fnhum.2019.00134.
Gorbet, D. J. and Sergio, L. E. (2018). Move faster, think later: Women who play action video games have quicker visually guided responses with later onset visuomotor-related brain activity. PLoS ONE, 13(1), e0189110. doi:10.1371/journal.pone.0189110.
Green, C. S. and Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534-537. doi:10.1038/nature01647.
Güllich, A. (2018). Sport-specific and non-specific practice of strong and weak responders in junior and senior elite athletics-a matched-pairs analysis. Journal of Sports Sciences, 36(19), 2256-2264. doi:10.1080/02640414.2018.1449089.
Holmes, E. A., James, E. L., Coode-Bate, T., and Deeprose, C. (2009). Can playing the computer game "Tetris" reduce the build-up of flashbacks for trauma? A proposal from cognitive science. PLOS ONE, 4(1), e4153. doi:10.1371/journal.pone.0004153.
Howard-Jones, P. A. and Jay, T. (2016). Reward, learning and games. Current Opinion in Behavioral Sciences, 10, 65-72. doi:10.1016/j.cobeha.2016.04.015.
Jaeggi, S. M., Buschkuehl, M., Jonides, J., and Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829-6833.
Karimpur, H. and Hamburger, K. (2015). The future of action video games in psychological research and application. Frontiers in Psychology, 6, 1747. doi:10.3389/fpsyg.2015.01747.
Katz, B., Shah, P., and Meyer, D. E. (2018). How to play 20 questions with nature and lose: Reflections on 100 years of brain-training research. Proceedings of the National Academy of Sciences, 115(40), 9897-9904. doi:10.1073/pnas.1617102114.
Király, O., Tóth, D., Urbán, R., Demetrovics, Z., and Maraz, A. (2017). Intense video gaming is not essentially problematic. Psychology of Addictive Behaviors, 31(7), 807-817. doi:10.1037/adb0000316.
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., . . . Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266-268. doi:10.1038/30498.
Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577.
Kovess-Masfety, V., Keyes, K., Hamilton, A., Hanson, G., Bitfoi, A., Golitz, D., . . . Pez, O. (2016). Is time spent playing video games associated with mental health, cognitive and social skills in young children? Social Psychiatry and Psychiatric Epidemiology, 51(3), 349-357. doi:10.1007/s00127-016-1179-6.
Krishnan, L., Kang, A., Sperling, G., and Srinivasan, R. (2013). Neural strategies for selective attention distinguish fast-action video game players. Brain Topography, 26(1), 83-97. doi:10.1007/s10548-012-0232-3.
Kühn, S. and Gallinat, J. (2014). Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Molecular Psychiatry, 19(7), 842-847. doi:10.1038/mp.2013.100.
Kühn, S., Gleich, T., Lorenz, R. C., Lindenberger, U., and Gallinat, J. (2014a). Playing Super Mario induces structural brain plasticity: Gray matter changes resulting from training with a commercial video game. Molecular Psychiatry, 19(2), 265-271. doi:10.1038/mp.2013.120.
Kühn, S., Lorenz, R., Banaschewski, T., Barker, G. J., Büchel, C., Conrod, P. J., . . . IMAGEN Consortium. (2014b). Positive association of video game playing with left frontal cortical thickness in adolescents. PloS One, 9(3), e91506. doi:10.1371/journal.pone.0091506.
Kühn, S., Romanowski, A., Schilling, C., Lorenz, R., Mörsen, C., Seiferth, N., . . . Gallinat, J. (2011). The neural basis of video gaming. Translational Psychiatry, 1, e53. doi:10.1038/tp.2011.53.
Lefebvre, C. D., Marchand, Y., Eskes, G. A., and Connolly, J. F. (2005). Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task. Clinical Neurophysiology, 116(7), 1665-1680. doi:10.1016/j.clinph.2005.03.015.
Lewis, J., Trinh, P., and Kirsh, D. (2011). A corpus analysis of strategy video game play in Starcraft: Brood War. In Proceedings of the 33rd Annual Meeting of the Cognitive Science Society, Austin, TX: Cognitive Science Society.
Li, L., Chen, R., and Chen, J. (2016). Playing action video games improves visuomotor control. Psychological Science, 27(8), 1092-1108. doi:10.1177/0956797616650300.
Libertus, M. E., Liu, A., Pikul, O., Jacques, T., Cardoso-Leite, P., Halberda, J., and Bavelier, D. (2017). The impact of action video game training on mathematical abilities in adults. AERA Open, 3(4), 233285841774085. doi:10.1177/2332858417740857.
Lisman, J., Buzsáki, G., Eichenbaum, H., Nadel, L., Ranganath, C., and Redish, A. D. (2017). Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nature Neuroscience, 20(11), 1434-1447. doi:10.1038/nn.4661.
Lorenz, R. C., Gleich, T., Gallinat, J., and Kühn, S. (2015). Video game training and the reward system. Frontiers in Human Neuroscience, 9, 40. doi:10.3389/fnhum.2015.00040.
Luniewska, M., Chyl, K., Debska, A., Kacprzak, A., Plewko, J., Szczerbinski, M., . . . Jednoróg, K. (2018). Neither action nor phonological video games make dyslexic children read better. Scientific Reports, 8(1), 549. doi:10.1038/s41598-017-18878-7.
Melby-Lervåg, M. and Hulme, C. (2013). Is working memory training effective? A metaanalytic review. Developmental Psychology, 49(2), 270-291. doi:10.1037/a0028228.
Menon, V. (2015). Salience Network. In A. W. Toga (Ed.), Brain Mapping (pp. 597-611). Cambridge, MA: Academic Press. doi:10.1016/B978-0-12-397025-1.00052-X.
Miendlarzewska, E. A., Bavelier, D., and Schwartz, S. (2016). Influence of reward motivation on human declarative memory. Neuroscience and Biobehavioral Reviews, 61, 156-176. doi:10.1016/j.neubiorev.2015.11.015.
Mishra, J., Zinni, M., Bavelier, D., and Hillyard, S. A. (2011). Neural basis of superior performance of action videogame players in an attention-demanding task. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(3), 992-998. doi:10.1523/JNEUROSCI.4834-10.2011.
Moreau, D. (2013). Differentiating two-from three-dimensional mental rotation training effects. Quarterly Journal of Experimental Psychology (2006), 66(7), 1399-1413. doi:10.1080/17470218.2012.744761.
Nau, M., Julian, J. B., and Doeller, C. F. (2018). How the brain's navigation system shapes our visual experience. Trends in Cognitive Sciences, 22(9), 810-825. doi:10.1016/j.tics.2018.06.008.
Nava, E., Föcker, J., and Gori, M. (2019). Children can optimally integrate multisensory information after a short action-like mini game training. Developmental Science, e12840. doi:10.1111/desc.12840.
Oei, A. C. and Patterson, M. D. (2013). Enhancing cognition with video games: A multiple game training study. PLoS ONE, 8(3), e58546. doi:10.1371/journal.pone.0058546.
Oei, A. C. and Patterson, M. D. (2014). Playing a puzzle video game with changing requirements improves executive functions. Computers in Human Behavior, 37, 216-228. doi:10.1016/j.chb.2014.04.046.
Okagaki, L. and Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Journal of Applied Developmental Psychology, 15(1), 33-58. doi:10.1016/0193-3973(94)90005-1.
Ophir, E., Nass, C., and Wagner, A. D. (2009). Cognitive control in media multitaskers. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15583-15587. doi:10.1073/pnas.0903620106.
Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., . Ballard, C. G. (2010). Putting brain training to the test. Nature, 465(7299), 775-778. doi:10.1038/nature09042.
Palaus, M., Marron, E. M., Viejo-Sobera, R., and Redolar-Ripoll, D. (2017). Neural basis of video gaming: A systematic review. Frontiers in Human Neuroscience, 11, 248. doi:10.3389/fnhum.2017.00248.
Pavan, A., Hobaek, M., Blurton, S. P., Contillo, A., Ghin, F., and Greenlee, M. W. (2019). Visual short-term memory for coherent motion in video game players: Evidence from a memorymasking paradigm. Scientific Reports, 9(1), 6027. doi:10.1038/s41598-019-42593-0.
Petersen, S. E. and Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35(1), 73-89. doi:10.1146/annurev-neuro-062111-150525.
Pilegard, C. and Mayer, R. E. (2018). Game over for Tetris as a platform for cognitive skill training. Contemporary Educational Psychology, 54, 29-41. doi:10.1016/j.cedpsych.2018.04.003.
Powers, K. L. and Brooks, P. J. (2014). Evaluating the specificity of effects of video game training. In F. C. Blumberg (Ed.), Learning by Playing (pp. 302-330). Oxford: Oxford University Press. doi:10.1093/acprof:osobl/9780199896646.003.0021.
Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., and Alfieri, L. (2013). Effects of video-game play on information processing: A meta-analytic investigation. Psychonomic Bulletin and Review, 20(6), 1055-1079. doi:10.3758/s13423-013-0418-z.
Pujol, J., Fenoll, R., Forns, J., Harrison, B. J., Martinez-Vilavella, G., Macià, D., . . . Sunyer, J. (2016). Video gaming in school children: How much is enough? Annals of Neurology, 80(3), 424-433. doi:10.1002/ana.24745.
Rideout, V. J., and Robb, M. B. (2019). The Common Sense Census: Media Use by Tweens and Teens. Retrieved from Common Sense Media website: https://www.commonsensemedia. org/sites/default/files/uploads/research/census_researchreport.pdf.
Rideout, V. (2016). Measuring time spent with media: The common sense census of media use by US 8-to 18-year-olds. Journal of Children and Media, 10(1), 138-144. doi:10.1080/17482798.2016.1129808.
Sala, G., Tatlidil, K. S., and Gobet, F. (2018). Video game training does not enhance cognitive ability: A comprehensive meta-analytic investigation. Psychological Bulletin, 144(2), 111-139. doi:10.1037/bul0000139.
Seok, S. and DaCosta, B. (2019). Video Games as a Literacy Tool: A Comparison of Players' and Nonplayers' Grades, Reading Test Scores, and Self-Perceived Digital Reading Ability. In K. Graziano (Ed.), Proceedings of Society for Information Technology & Teacher Education International Conference (pp. 777-781). Las Vegas, NV: Association for the Advancement of Computing in Education. https://www.learntechlib.org/primary/p/207731/.
Sims, V. K. and Mayer, R. E. (2002). Domain specificity of spatial expertise: The case of video game players. Applied Cognitive Psychology, 16(1), 97-115. doi:10.1002/acp.759.
Siniatchkin, M. (2017). Anodal tDCS over the left DLPFC improved working memory and reduces symptoms in children with ADHD. Brain Stimulation, 10(2), 517. doi:10.1016/j.brs.2017.01.509.
Skorka-Brown, J., Andrade, J., Whalley, B., and May, J. (2015). Playing Tetris decreases drug and other cravings in real world settings. Addictive Behaviors, 51, 165-170. doi:10.1016/j.addbeh.2015.07.020.
Sparrow, B., Liu, J., and Wegner, D. M. (2011). Google effects on memory: Cognitive consequences of having information at our fingertips. Science, 333(6043), 776-778. doi:10.1126/science.1207745.
Spence, I. and Feng, J. (2010). Video games and spatial cognition. Review of General Psychology, 14(2), 92-104. doi:10.1037/a0019491.
Stafford, T. and Dewar, M. (2014). Tracing the trajectory of skill learning with a very large sample of online game players. Psychological Science, 25(2), 511-518. doi:10.1177/0956797613511466.
Stanhope, J. L., Owens, C., and Elliott, L. J. (2015). Stress reduction: Casual gaming versus guided relaxation. Human Factors and Applied Psychology Student Conference HFAP Conference. In Proceedings of the Human Factors and Applied Psychology Student Conference HFAP Conference. Daytona Beach, FL. http://commons.erau.edu/hfaphttp://commons. erau.edu/hfap/hfap-2015/papers/9.
Strenziok, M., Parasuraman, R., Clarke, E., Cisler, D. S., Thompson, J. C., and Greenwood, P. M. (2014). Neurocognitive enhancement in older adults: Comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. NeuroImage, 85, 1027-1039. doi:10.1016/j.neuroimage.2013.07.069.
Sungur, H. and Boduroglu, A. (2012). Action video game players form more detailed representation of objects. Acta Psychologica, 139(2), 327-334. doi:10.1016/j.actpsy.2011.12.002.
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., and Kawashima, R. (2011). Working memory training using mental calculation impacts regional gray matter of the frontal and parietal regions. PLoS ONE, 6(8), e23175. doi:10.1371/journal.pone.0023175.
Terlecki, M. S., Newcombe, N. S., and Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology, 22(7), 996-1013. doi:10.1002/acp.1420.
Thorndike, E. L. and Woodworth, R. S. (1901). Influence of improvement in one mental function upon the efficiency of other mental functions. Psychol Rev, 8, 247-261.
Toril, P., Reales, J. M., and Ballesteros, S. (2014). Video game training enhances cognition of older adults: A meta-analytic study. Psychology and Aging, 29(3), 706-716. doi:10.1037/a0037507.
Uncapher, M. R. and Wagner, A. D. (2018). Minds and brains of media multitaskers: Current findings and future directions. Proceedings of the National Academy of Sciences, 115(40), 9889-9896. doi:10.1073/pnas.1611612115.
Waller, G., Willemse, I., Genner, S., Suter, L., and Süss, D. (2016). JAMES-Jeunes, activités, médias-enquête Suisse. Zurich: Haute école des sciences appliquées de Zurich.
Wang, P., Liu, H.-H., Zhu, X.-T., Meng, T., Li, H.-J., and Zuo, X.-N. (2016). Action video game training for healthy adults: A meta-analytic study. Frontiers in Psychology, 7. doi:10.3389/fpsyg.2016.00907.
Wang, R., Li, M., Zhao, M., Yu, D., Hu, Y., Wiers, C. E., . . . Yuan, K. (2018). Internet gaming disorder: Deficits in functional and structural connectivity in the ventral tegmental area-Accumbens pathway. Brain Imaging and Behavior, 13(4), 1172-1181. doi:10.1007/s11682-018-9929-6.
West, G. L., Drisdelle, B. L., Konishi, K., Jackson, J., Jolicoeur, P., and Bohbot, V. D. (2015). Habitual action video game playing is associated with caudate nucleus-dependent navigational strategies. Proceedings. Biological Sciences, 282(1808), 20142952. doi:10.1098/rspb.2014.2952.
West, G. L., Konishi, K., Diarra, M., Benady-Chorney, J., Drisdelle, B. L., Dahmani, L., . . . Bohbot, V. D. (2018). Impact of video games on plasticity of the hippocampus. Molecular Psychiatry, 23(7), 1566-1574. doi:10.1038/mp.2017.155.
Whitbourne, S. K., Ellenberg, S., and Akimoto, K. (2013). Reasons for playing casual video games and perceived benefits among adults 18 to 80 years old. Cyberpsychology, Behavior, and Social Networking, 16(12), 892-897. doi:10.1089/cyber.2012.0705.
Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., . . . Glahn, D. C. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 1135-1146. doi:10.1016/j.neuroimage.2009.12.028.
Wiradhany, W. and Nieuwenstein, M. R. (2017). Cognitive control in media multitaskers: Two replication studies and a meta-Analysis. Attention, Perception, and Psychophysics, 79(8), 2620-2641. doi:10.3758/s13414-017-1408-4.
Wu, S. and Spence, I. (2013). Playing shooter and driving videogames improves top-down guidance in visual search. Attention, Perception, and Psychophysics, 75(4), 673-686. doi:10.3758/s13414-013-0440-2.
Wu, S., Cheng, C. K., Feng, J., D'Angelo, L., Alain, C., and Spence, I. (2012). Playing a firstperson shooter video game induces neuroplastic change. Journal of Cognitive Neuroscience, 24(6), 1286-1293. doi:10.1162/jocn_a_00192.
Zhang, Y., Du, G., Yang, Y., Qin, W., Li, X., and Zhang, Q. (2015). Higher integrity of the motor and visual pathways in long-term video game players. Frontiers in Human Neuroscience, 9, 695. doi:10.3389/fnhum.2015.00098.