Doctoral thesis (Dissertations and theses)
Hilbert modular forms modulo p of partial weight one and unramifiedness of Galois representations
DE MARIA, Mariagiulia
2020
 

Files


Full Text
DeMaria_thesis_orbilu.pdf
Author postprint (2.04 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Hilbert Modular Forms; Partial Weight One; Langlands Program
Abstract :
[en] This thesis studies Hilbert modular forms of arbitrary weight with coefficients over a finite field of characteristic p. In particular, we compute the action on geometric q- expansions attached to these forms of Hecke operators, including at places dividing p as constructed by Emerton, Reduzzi and Xiao. As an application, we prove that the Galois representation attached to a Hilbert cuspidal eigenform mod p, which has parallel weight 1 at a place P dividing p, is unramified at P.
Disciplines :
Mathematics
Author, co-author :
DE MARIA, Mariagiulia ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Language :
English
Title :
Hilbert modular forms modulo p of partial weight one and unramifiedness of Galois representations
Defense date :
14 September 2020
Number of pages :
106
Institution :
Unilu - University of Luxembourg, Luxembourg
Degree :
DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN MATHÉMATIQUES
Promotor :
WIESE, Gabor  
Dimitrov, Mladen
President :
Debes, Pierre
Jury member :
PERUCCA, Antonella  
Xiao, Liang
Diamond, Fred
Available on ORBilu :
since 27 January 2021

Statistics


Number of views
210 (19 by Unilu)
Number of downloads
179 (17 by Unilu)

Bibliography


Similar publications



Sorry the service is unavailable at the moment. Please try again later.
Contact ORBilu