Hilbert Modular Forms; Partial Weight One; Langlands Program
Résumé :
[en] This thesis studies Hilbert modular forms of arbitrary weight with coefficients over a finite field of characteristic p. In particular, we compute the action on geometric q- expansions attached to these forms of Hecke operators, including at places dividing p as constructed by Emerton, Reduzzi and Xiao. As an application, we prove that the Galois representation attached to a Hilbert cuspidal eigenform mod p, which has parallel weight 1 at a place P dividing p, is unramified at P.
Disciplines :
Mathématiques
Auteur, co-auteur :
DE MARIA, Mariagiulia ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Langue du document :
Anglais
Titre :
Hilbert modular forms modulo p of partial weight one and unramifiedness of Galois representations
Date de soutenance :
14 septembre 2020
Nombre de pages :
106
Institution :
Unilu - University of Luxembourg, Luxembourg
Intitulé du diplôme :
DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN MATHÉMATIQUES