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RESUME: Cette thése étudie les formes modulaires de Hilbert de poids arbitaire avec coeffi-
cients sur un corps fini de caractéristique p. En particulier, on calcule ’action des opérateurs de
Hecke, y compris aux places divisant p ot ils ont été construit par Emerton, Reduzzi and Xiao,
sur les g-développement géometriques attachés a ces formes. Comme application nous montrons
que la représentation galoisienne attachée & une forme propre cuspidale de Hilbert mod p, qui a
poids parallel 1 en une place p divisant p, est non-ramifiée en p.

ABSTRACT: This thesis studies Hilbert modular forms of arbitrary weight with coefficients
over a finite field of characteristic p. In particular, we compute the action on geometric g-
expansions attached to these forms of Hecke operators, including at places dividing p as con-
structed by Emerton, Reduzzi and Xiao. As an application, we prove that the Galois represen-
tation attached to a Hilbert cuspidal eigenform mod p, which has parallel weight 1 at a place p
dividing p, is unramified at p.
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Introduction

This thesis is divided in two parts: in Part I, we study Galois representations of the absolute
Galois group Gg with coefficients modulo p-powers which are unramified at p, whereas in Part II
we study Hilbert modular forms of partial weight, posing particular attention to partial weight
one Hilbert modular forms modulo p.

In Part I, we put ouserselves in the context of Serre’s modularity conjecture for weight 1 forms
modulo prime powers. Serre’s modularity conjecture, now a theorem of Khare and Wintenberger
[KWO09], states that a continuous irreducible odd Galois representation p : Gg — GLa(F,) is
modular, i.e. it arises as the reduction modulo p of the Galois representation attached to a Katz
modular eigenform. In particular, Edixhoven’s formulation of the weight in Serre’s conjecture
states that those representations that are unramified at p correspond to Katz modular forms of
weight 1 with coefficients over F,,. This was proven by Gross([Gro90]) in the p-distinguished case,
by Coleman and Voloch ([CV92]) for p > 3 using companion forms. Wiese ([Wiel4|) showed the
unramifiedness at p of the representation attached to weight 1 forms without any assumptions on
the prime, i.e allowing p to be 2. In Part I, we prove one side of Serre’s modularity correspondence
for weight 1 forms modulo prime powers.

Theorem A (Theorem 1.1.1). Let p > 3 et m > 1. Let O be the ring of integers in a finite
extension K of Qp, w be a uniformizer of O and O/w = k. Let p : Gg — GL2(O/@w™O) be a
continuous representation and p : Gg — GLa(k) its residual representation. Suppose that p and
p are such that:

e p is odd and irreducible;

the determinant det p is the Teichmiiller lift of det p;

for all primes £, either p(Is) = p(I;) or dim(p!¢) = dim(p'¢)!;

e p is unramified at p.

Then p is modular of weight 1, i.e. there exist a modular curve X depending on p and a normalized
eigenform f € My(X,0/w™O)? such that p is equivalent to py.

This result is an application of the R = T theorem of Calegari and Geraghty ([CG18, Theorem
1.3]). Calegari and Specter [CS19] show the other side of the Serre’s modularity correspondence,
in the sense that they show that Galois representations arising from modular forms of weight 1
with coefficients modulo w™ are unramified at p.

Here by dim(p’) we mean the rank as an O-module. See Hypothesis 1 for precise conditions.
2For a precise definition of M1 (X, 0/w™0O) see Definitions 1.3.1 or 1.4.2.



2 Introduction

The heart of this thesis is Part II, where we study Hilbert modular forms of arbitrary weight.
In the literature, most authors work with parallel weight Hilbert modular forms, whereas here
we want to work in arbitrary weight. We now proceed to present the setup of Part II.

Let F be a totally real field of degree d > 1 and p be a rational prime. Denote by O the
ring of integers of a finite extension of @, by @ a uniformizer in O and let F := O/wO. Let ¥
denote the set of p-adic embeddings of F' and we will suppose that Frac(O) containts 7(F') for all
7 € X. The weights of our forms will be indexed by this set. In particular, we decompose this set
as follows: X = Hp\p Yy, where X, is the subset of embeddings inducing the place p. Moreover,

we fix an ordering of ¥, = {Tp(?]) :j=1,...,fpand i =1,...ep} (see Notation for more details)
and uniformizers wy of Opyp. Finally, let n denote an ideal of O prime to p, which will be our
level.

Since we want to allow p to ramify in F', we will work with the Pappas-Rapoport model of
the Hilbert modular scheme over Spec(Q), which we will denote Y (see Definition 2.1.1), as
constructed by Pappas and Rapoport in [PR05] and made explicit by Sasaki in [Sas19|. This
scheme classifies d-dimensional abelian schemes 7 : A — Spec(O) endowed with a prime-to-p
polarization, a n-level structure, and a filtration of the sheaf W*Q}Lx / Spec(O)’ which depends on
the choice of ordering of 3. The filtration is what allows us to work with primes p that ramify in
F, and we will describe it here over the universal abelian variety 7 : A — Y. One has a natural
direct sum decomposition

fo
— 1
WAy = 7r*QA/Y - @ @WA/Y,IJ,J“

plp 5=1

Then for each p and j € {1,... f,}, we are given a filtration of the sheaf w4y, ;:

_ 70 (1) (ep) _
0=Fpj CFps C---C R =Wy
by Op-stable Oy-subbundles, such that each subquotient is a locally free Oy-module of rank one,
which is annihilated by the action of w,. Using this filtration and following Emerton, Reduzzi
and Xiao ([ERX17a]), we are able to define line bundles
o @) 1)
Wrd = FoilFog
as successive quotients of the filtration. As said before, we are interested in working with arbitrary

weights, and in order to do so, one has to twist the sheaves w, by trivial line bundles coming
from the de Rham cohomology:

57 = (/\%F®0Y H(]iR(A/Y)) ®OF®Oy,T®1 OY .

These line bundles are trivial over Y, but they carry a non-trivial action of the unit group E :=
(9;7+/((9§7n)2 (see section 2.2.2). In fact, since we are interested in the Galois representations
attached to Hilbert modular forms, we will have to work with the Shimura variety associated
to Res(g GLg . The group E acts on the points of Y (see Section 2.1.3) and if the level n
is sufficiently divisible (see Hypothesis 4), then the group E acts properly and discontinously
giving rise to an étale finite type scheme Sh := Y/E (see [RX17, Proposition 2.4]). Using the
theory of descent, one can then descend the bundles w, and 5, to line bundles w, and &, over Sh.
We have now all the ingredients to construct the sheaf of Hilbert modular forms for any O-algebra
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R. Let (k,¢) € Z* x Z*, and we assume that k, ¢ € Z* are such that u**2¢ := []__y, 7(u)k 26
is 1in R, for all u € (’)En. Then we define the line bundle

ke _ ®kr s
WR = ® (WT,R ®shp 57,3)
TEX

and we will call Hilbert modular forms elements of
My, o(n; R) := H%(Shg, wh").

The assumption that u is 1 in R is necessary to ensure that we are not only working with
zero global sections. Because of this condition, when working in characteristic 0, one is obliged
to work with paritious weights, i.e. weights k,¢ € Z> such that k, + 2¢, =w € Z for all 7 € X.
However, when working over I, one can work with non-paritious weights via descent, as done by
Diamond and Sasaki in [DS17] in the unramified case under the assumption that u¥¥2¢ = 1. A
concrete example of such modulo p forms can be found in the generalized partial Hasse invariants
constructed by Reduzzi and Xiao in [RX17].

k424

We will now illustrate simplified versions of the main results of this thesis and the methods
here used. Our first interest was to compute the geometric g-expansions attached to Hilbert
modular forms. In the literature, authors often work with adelic g-expansions, which are a more
compact type of g-expansion that in the case of parallel weight forms contain all the information
relative to the eigenvalues of the forms. However, when working with arbitrary weights, the adelic
coefficients are not well defined (see discussion in Section 3.3.2), and therefore one is obliged to
work with geometric g-expansions. In sections 2.3 and 2.4 we detail how these g-expansions are
constructed starting from the cusps and Tate objects. We recall here the key steps that we take
in order to construct the module of g-expansions.

Let € be a fixed set of representatives of the narrow class group CIJ}? and we assume without
loss of generality that elements ¢ € € are coprime with p. For every ¢ € €, one can construct
various cusps attached to ¢ (see Definition 2.3.1). However we will focus on the standard cusp at
infinity, here denoted by oco(c). As described by Dimitrov in [Dim04], fixing a smooth admissible
cone decomposition of ¢ gives rise to a Tate object Tate, o, defined over a scheme S, depending
on the cone decomposition (see discussion before Proposition 2.3.3). In particular, one can
trivialize the sheaves WTate, o, /Sc and HéR(TatecvoF /S¢), giving rise to a canonical identification:

. 0 _
W%ftec,oF /S e (c®0)f ®o (07" ®0) ®p O, ,

where by (¢ ® O)F @0 (07! ® O) we mean the folloging free O-module of rank 1:
(c®0)F o (@2 0) =R (c®0) g (0! ©0)2,
TEX

where (¢® O); denotes the copy of O in (¢® O) identified via the embedding 7. This description
is inspired by the works of Diamond and Sasaki in [DS17]. The coefficients of our geometric
g-expansions will live in the O-module (¢ ® O)* ®p (07! ® 0)¢, whereas the symbols ¢ will live
in Og,. In Section 2.4, we show the following.

Theorem B (Proposition 2.4.1). Let ¢ € €. Then the module of g-expansions for Hilbert modular
forms of weight (k,¢) at the infinity cusp co(c) is

M'ééf(ﬁ):{ > adt

gecU{0}

ag € (c ® O)k ®Ko (ca_1 ® O)Z;agg = 5_€a5 for all e € O;HF} .
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This description of the module of g-expansion is a generalization of the description given by
Dimitrov in [Dim04]. Moreover, our description aligns with the one of Diamond and Sasaki in
[DS17], where they assume that p is unramified in F' and therefore use a different model for
the Hilbert modular variety. The main ingredients of the proof are the canonical identification
described above, and the action of the units (9; o over the cusps, given by Dimitrov in [Dim04].
We finish Chapter 2 by describing how changing cusps affects the canonical identifications and
the module of ¢ expansions.

The goal of Chapter 3 is to describe the action on geometric g-expansions of the Hecke
operator at a prime p dividing p as defined by Emerton, Reduzzi and Xiao in [ERX17a]. The
lack of a good T}, operator was due to the fact that the projection maps from Shr(p), the Shimura
variery with extra level at p, to Shy are not finite flat. To overcome this issue, Emerton, Reduzzi
and Xiao use the dualizing trace map to construct a properly normalized Hecke operator TpO 3. We
therefore go through this construction with particular attention at what happens at the cusps and
translate it to the g-expansions for Hilbert modular forms with coefficients over R, := O/w™O.
We point out a couple of technical details that are needed to achieve our goal. First of all,
we will have to work with normalized diamond operators S;’. As explained in Section 3.1, the
normalization is essential to have invertible diamond operators at primes p dividing p. Secondly,
the construction of the Hecke operator 7} is done only for weights k € Z* such that for every

plp:

Th.j

ok iy =k oforallj=1,... fyandi=1,...,ep — 1
PJ

° pk:Tu) > kT(ep) forall j =1,... fp.

p.J pi—1

These weights are said to live in the minimal cone, denoted C™", defined by Diamond and
Kassaei in [DK17] and [DK20]. Assuming that the weight & belongs to the minimal cone is
essential in the construction of 7y by Emerton, Reduzzi and Xiao (see Proposition [ERX17a,
Proposition 3.11]). Using the description of the geometric g-expansion of Theorem B, we show
the following.

Theorem C (Theorem 3.3.4). Let (k,{) € Z¥ x Z* such that k € C™™ and [, o5, 7(u)F 24 is
1in R, for allu € O}X,,n. Let f € HO(ShRm,wZ’i) and let f = (ft)c€€7 where f, = dec+u{o} agq®
be its geometric q-expansions at the cusp co(c). For a place p of F above p, let o, B € Fy be such
that ¢p = o’ and cp~! = B¢, for ¢, ¢/, ¢" € €. Then for € € ¢y

ag((Ty f)e) = Nm(p) " | [ m(@p) ™" | & ag-1e(fe)

TED)

+ | I 7@ | B ag-1e((Sp £)er),

M

with ag-1¢ =0 if o1& ¢ . We recall that we denote by o the element ] s 7(c)*r.

31t was pointed out to us by Fred Diamond that there is a gap in their argument. see [DKS20, Footnote
15]
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The novelty of the above description of the action of Ty on geometric g-expansion lies in the
fact that it is given in its full generality, without restricting to an easier case. Emerton, Reduzzi
and Xiao do give briefly a descprition of the action of T;; for p inert (see [ERX17a, Remark 3.14])
using the description of Katz for Hilbert modular forms, i.e. by evaluating the form f at the Tate
object Tate. 0, without constructing the module of g-expansion, as here is done in Theorem
B. In the proof of Theorem C, we describe how the maps in the Hecke correspondence change
the cusps, and translate this change onto the modules of g-expansions, as described in Theorem
B. We would like to point out that such a concrete description of the action of the Ty operator
on g-expansions is essential if one desires to work with arbitrary weight Hilbert modular forms.
We therefore hope that our computations and methods will be useful to authors that wish to
work with geometric g-expansions. We end Chapter 3 by conjugating our formula to known cases
and by discussing the adelic g-expansions, with a particular attention for the parallel weight case.

In Chapter 4, we present a direct application of our computations on geometric g-expansions
in the context of the Langlands correspondence. Under the Langlands correspondence, Hilbert
modular eigenforms of parallel weight one correspond to two dimensional totally odd Artin
representations. In particular, the local-global compatibility ensures that these representations
are unramified at all places outside the level n. Dimitrov and Wiese in [DW20] proved that
parallel weight 1 Hilbert modular forms modulo p give rise to Galois representations that are also
unramified at p. This was also proven independently by Emerton, Reduzzi and Xiao for p inert
in [ERX17a]. It is predicted by the local-global compatibility in the Langlands correspondence
that Hilbert modular forms of level prime to p and partial weight 1 at places corresponding to
a given prime p dividing p should still give rise to Galois representation which are unramified
at p. In characteristic 0, this refined version of the local-global compatibility is due to Saito
([Sai09]) and Skinner ([Ski09]) for weights at least 2 (see also results Hida in [Hid89a| and Wiles
in [Wil88]). In Chapter 4, we prove the analogous for Hilbert modular forms of partial weight
1 modulo p, which is not covered by the characteristic 0 case, since these forms do not lift in
characteristic 0 in general. In particular, we prove the following.

Theorem D (Theorem 4.0.2). Let p be a place above p. Let f be a Hilbert modular cuspidal
eigenform of paritious weight over a finite extension of I, such that the weight above p is 1. Then
the Galois representation attached to f is unramified at p.

This result is consistent with [DS17, Conjecture 7.3.2] of Diamond and Sasaki. We will now
explain the ingredients of the proof. In Chapter 4, we will only work with paritious weights, since
we need to lift Hilbert modular forms over F to Hilbert modular forms over O for sufficently big
weights. Then for (k,f) € Z¥ x Z* a paritious weight, i.e. such that k, + 2¢, = w, we denote
the sheaf of differentials of paritious weight (k,w) by

wh) = ) (wf)kT ®Ogtor 5§(W*k7)/2) :
TED

and in particular we denote by My, (n; R) := HO( Shpg, wg’w)) the R-module of Hilbert modular
forms, and by S, (n; R) the submodule of cuspidal forms.

In order to lift to characteristic 0, we will use an exceptional sheaf of paritious weights,
denoted (ex, 0) such that the weight ex belongs to the minimal cone (see Section 4.1.1). The sheaf
w(®x0) is inspired by the one used by Reduzzi and Xiao in [RX17]. In particular, for an integer r
sufficiently big, we will able to lift cuspidal forms of paritious weight (k+r ex, w) to characteristic
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0 (see Lemma 4.1.6). Moreover, we will make use of the partial Hasse invariants defined by
Reduzzi and Xiao in [RX17] to construct a Hilbert modular form hex € M,_1)exo(n;F) (see
Lemma 4.2.2), which will allow us to bring forms to liftable weight. The final ingredient will be
a Frobenius operator at p, constructed using the Hecke operator 7, and the product of partial
Hasse invariants hex. The proof then follows from the doubling method as applied by Dimitrov
and Wiese in [DW20], which relies on the explicit description of the action of 7] on geometric
g-expansions as described in Theorem C. We end the Chapter by discussing a possible future
application of these results to show the unramifiedness of the pseudo-representations attached
to Hecke algebra of paritious weights (k,w) such that k. =1 for all 7 € X,,.



Part 1

Modular forms of weight one and Galois
representations modulo prime powers






Chapter 1

Modular forms of weight one and Galois
representations modulo prime powers

1.1 Introduction

Let p > 3 be a prime number and O the valuation ring in a finite extension K of Q,. Let @ be
a uniformizer and k = O/w the residue field. The question we want to answer is the following:
given a representation

p: GQ — GLQ(O/me) R

when is this representation modular of weight 17

This question is part of the much larger picture of Serre’s modularity conjectures for weight
1 forms. Edixhoven’s formulation of the weight in Serre’s conjecture ([Edi92|) states that a
continuous irreducible odd Galois representation p : Gg — GLo(F,) that is unramified at p
corresponds to a Katz modular forms of weight 1 with coefficients over Fp. Nowadays this is
entirely known. This was proven by Gross([Gro90|) in the p-distinguished case and by Coleman
and Voloch (|[CV92]) for p > 3 using companion forms. Wiese (|[Wiel4|) showed the unramified-
ness at p of the representation attached to weight 1 forms without any assumptions on the prime,
i.e allowing p to be 2. A sketch of the proof for the converse for p = 2 can be found in [Per|. A
proof of the modularity of an irreducible continuous odd Galois representation with coefficients
over F, was given by Khare and Wintenberger [KW09].

The first step in answering the above question is to define the space of modular forms that will
correspond to p. In order to do so, one has to consider a modular curve X over Spec(O), which
depends on the representation p and construct Katz modular forms of weight 1 with coefficients
modulo @™O. We will here denote this space M;(X,O0/w™0O) (For a precise definition see
Definition 1.3.1 or Definition 1.4.2). It is important to remark that this construction depends
on the ramification of the residual representation p : Gg — GLg(k). In particular, one has to be
careful with the set T'(p) of so called vexing primes, which are defined at the beginning of section
1.2. Let us assume the following.

Hypothesis 1. Assume that the given continuous Galois representation p : Gg — GL2(O/w™O)
and its residual representation p : Gg — GLa(k) satisfy the following:

e p is odd and irreducible;

e the determinant det p is the Teichmiiller lift of det p;
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e for all primes ¢ such that p is unramified and for all primes ¢ € T'(p), p(I) = p(1y);

e for all ramification primes ¢ that are not vexing and for which p|g, is reducible, pis a
rank 1 direct summand of p as an O-module;

e p is unramified at p.

The second step in answering this question is to say what it means for such representations
to be modular of weight 1. Given a normalized eigenform f € M;(X,O/w™QO), Carayol |Car94|
shows that one can construct a Galois representation py : Gg — GL2(O/w™0O), which is in par-
ticular unramified for primes away from p and from the level of f. Saying that the representation
p is modular of weight 1 means that there exists a normalized eigenform f € M1 (X, O/w™O)
such that the traces of p; and p on almost all Frobenius elements coincide. In this sense we will
also say that p and py are equivalent.

The goal of this chapter is to show the following:

Theorem 1.1.1. Let p > 3. Let O be the ring of integers in a finite extension K of Q,, w be
a uniformizer of O and O/w = k. Let p: Gg — GL2(O/w™O) be a continuous representation
and p : Gg — GLa(k) its residual representation of conductor N. Suppose that p and p satisfy
Hypothesis 1. Then p is modular of weight 1, i.e. there exist a modular curve X depending on p
and a normalized eigenform f € M(X,0/w™QO) such that p is equivalent to py.

We should point out that the main hypothesis is that p is not a ramification prime for p
and consequently for p. Moreover, by the results of [KW09], we do not have to assume that the
residual representation is modular. Finally, this result is an application of the R = T theorem of
Calegari and Geraghty in their article Modular Lifting beyond the Taylor-Wiles Methods, [CG18].

The converse of this problem is the following: given a modular form of weight 1 with co-
efficients over O/w™Q, is the attached Galois representation unramified at p? This question
is answered by Calegari and Specter [CS19], who show that Galois representations arising from
modular forms of weight 1 are unramified at p.

1.2 Minimal Deformations

Let p : Gg — GL2(O/w™O) be a Galois representation and p : Gg — GLa(k) its residual
representation, S(p) the set of primes at which p is ramified. Following Diamond (see [Dia97,
Section 2]), one defines the set of vexing primes T'(p) as the subset of S(p) of primes ¢ such that
= —1 mod p, p|g, is irreducible and pj;, is reducible. As in [CG18], let us suppose that the
residual representation p of p : Gg — GL2(O/w™O) satisfies the following conditions:

1. p is continuous, odd and absolutely irreducible;
2. p ¢ S(p);
3. If £ € S(p) and pyg, is reducible, then p't #(0).

Remark 1.2.1. Remark that condition 3. is always satisfied by a twist of p by a character unram-
ified outside of S(p). Moreover, for these primes the rank of p’¢ is necessarily 1 and therefore £
appears with a power ¢! in the conductor of p.
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Let us recall the definition of minimal deformation given in [CG18]. Let Co be the cate-
gory of complete Noetherian local O-algebras with residue field & with continuous O-algebra
homomorphisms. We will consider deformations of p with coefficient rings in Co.

Definition 1.2.2. Let R be an object of Co. A deformation p : Gg — GLa(R) of p is called
minimal if it satisfies the following conditions:

(a) the determinant det p is the Teichmiiller lift of det p;
(b) for £ ¢ S(p), pig, is unramified;
(c) for € € T(p), p(Ie) = p(Ir);

(d) if £ € S(p) \ T(p) and p|g, is reducible, then p' is a rank one direct summand of p as an
R-module.

Remark 1.2.3. Remark that condition (b) implies that p is unramified at p. Moreover, condition
(d) tells us that the representation p as a lift of p not only maintains the same ramification
primes, but also the same inertia invariants at those primes.

This defines a deformation problem which is representable! by a complete Noetherian local
O-algebra, denoted R™™ and called the universal minimal deformation ring.

One can easily check that, in the setting of Theorem 1.1.1, Hypothesis 1 implies that p :
Gg — GL2(O/@™Q0) is a minimal deformation of its residual representation p.

We will now distinguish two cases:

(Case I) : The representation p has no vexing primes;
(Case IT) : The representation p can have vexing primes.

We will see that the second case requires an automorphic approach, passing by the local
Langlands correspondence.

1.3 Case I: No Vexing Primes

Throughout this section we will make the following assumption:
Hypothesis 2. The set of vexing primes T'(p) =0 .

Following [CG18], most definitions in this section are given for a general modular curve
satisfying a moduli problem. In the presence of vexing prime the considered modular curve will
be a quotient of the standard modular curve X;(N) for the modular group I'; (V) to include the
restrictions arising from these vexing primes. Moreover, one will have to change also the sheaf of
definition of modular forms, but this can be done so that in the case where Hypothesis 2 holds,
one still gets the same definitions as in this section.

1This follows from Theorem 2.41 of [DDT97].
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1.3.1 Modular Curves

Let N be an integer, N > 5 such that (NV,p) = 1. This will later be the conductor of our

representation p. Following [CG18, Section 3.3|, fix H to be the p-part of (Z/N7Z)* and we set

X to be the quotient of the modular curve X3 (V) over Spec(Q) by the action of H. By eventually

adding extra level-structure, we can assume that X is the moduli space of generalized elliptic

curves with I'r (N)-level structure, where Ty (N) := {(2})€ Io(N) such that dmod N € H}.
Let 7 : £ - X denote the universal generahzed elhptlc curve and set

W= Mg /X

where wg/x is the relative dualizing sheaf Recall that the Kodaira-Spencer map (see [Kat77],
A1.3.17) extends to an isomorphism w? ~ Qﬁ( /O( 00), where oo is the reduced divisor supported on

the cusps. Let A be an O-module and £ a coherent sheaf on X, then we denote by? L4 := L&p A.

Definition 1.3.1. Let A be an O-module. We will call modular forms of weight 1 with coefficients
in A elements of HY(X,w4). We will denote this module M1 (X, A).

In Section 3.2.2. of [CG18], Calegari and Geraghty consider wg o, which can be identified
with the direct limit h_n>n W /em- Here we will pass through the sheaf wg /o to get information on

Wo/m- In particular, one has that HO(X, WO Jem) HO(X, wr/0)[@™], where this last module
denotes the kernel of the morphism of sheaves ‘multiplication by @™

1.3.2 The Hecke Algebras

In [CG18], Calegari and Geraghty define Hecke operators Ty for ¢ prime such that (¢, Np) = 1
and diamond operators (a) for a an integer with (a, N) = 1 on the cohomology H'(X, £,), for
i =0,1 and A any O-module (one generally takes £ to be the sheaf w™ or w™(—o0), for some
n > 1). To do so, one considers the universal Hecke algebra, TV, which is the commutative
polynomial algebra over O[(Z/NZ)*] with indeterminates T for ¢ prime such that (¢, Np) = 1.
If a € (Z/NZ)*, we denote by (a) the corresponding element in T". Then one defines an
action of T" on HY(X,L4). Let Ty C Endp HO(X, wg/0) be generated by the prime-to-pN
Hecke operators and the prime-to-IN diamond operators. Let my be a maximal non-Eisenstein
ideal of the Hecke algebra Ty. This ideal gives rise 3 to a maximal ideal m of T"™V and one can
assume, extending O if necessary, that T"/m ~ k. The following is a particular case of part
(2) of Lemma 3.7 in [CG18].

Proposition 1.3.2. For: = 0,1, there is an isomorphism

H (X, w(—00) k/0)m — H'(X,wk/0)m

1.3.3 Homology and Verdier Duality

We recall that given a profinite O-module or a discrete torsion O-module M, one defines the
Pontryagin dual by
MY := Homp (M, K/O) .

20n open sets, L4 = L ®o A corresponds to the sheaf tensor product over Ox, of £ and ﬁ, the
sheafification of A pulled back on X,.
3see discussion before Lemma 3.7 in [CG18|
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Moreover, for these modules one has that (MV)Y ~ M. Now, following [CG18], one defines
homology groups of modular forms as follows.

Definition 1.3.3. Let X be a modular curve and L be a vector bundle on X, one sets for i = 0, 1
Hi(X, L) == H (X, (Q' © L) k/0) "
where £* is the dual bundle and Q' ~ w®?(—c0).4

In this section, we are interested in the case where X is the modular curve defined in the previ-
ous section and £ is just w. The Hecke algebra Ty C Endp H*(X, wk/0) = Endo (M (X, K/0)),
defined above, acts also on Hy(X,w). In fact, by the above definition

Ho (X, w) = Homo (HO (X, (2 ® W) k0), K/O) :

and, by looking at the sheaf Q! ® w*, using Kodaira-Spencer and the fact that w is an invertible
sheaf, one gets

M @ w* ~w?(—o0) @w™?

~w(—00)=w® Ly,

where Lo denotes the invertible sheaf associated to the divisor co. When tensoring with K/O,
one gets that (w ® Egol)K/@ = wg/o ® L:L. Therefore one has

Homo (HO(X,w(—oo)K/O),K/O) = Hy(X,w) .

By Proposition 1.3.2, when we localize at the maximal ideal my, one has that the homology
Ho(X,w)m, is the actual dual of the cohomology HO(X, WEK/0)my, S0 one still has an action of
Tpm, on Ho(X,w)m,. Finally, by a theorem of [CG18], which will be recalled in the next section,
the Hecke algebra Ty, acts freely on Ho(X, w)m,-

Verdier duality (|[Har66, Chapter III|, Corollary 11.2(f)) establishes an isomorphism
D:H;(X,L£) = HT(X, L),

which is not Hecke-equivariant when L is either w®" or w®"(—oc0). In fact, one gets the following
relations involving the so called transposed Hecke operators T} := (€)' o Tj:

e for primes ¢ such that (¢{,pN) =1, DoTy =T, 0 D;
e for integers (a, N) =1, Do (a) = (a)~! o D.

Let us suppose that O contains a primitive N-th root of unity &, we have the extra operator W
for which the transposed Hecke operators are conjugated by We to the ‘usual’ Hecke operators,
therefore the Hecke algebras generated by these operators are the isomorphic.

4this is induced by the Kodaira-Spencer map.
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1.3.4 Results of Calegari and Geraghty in [CG18]

Let X be the modular curve of level I'y(N) for N = N(p) the Artin conductor of p defined
above, T the Hecke algebra on HO(X, wK/@) generated by the prime-to-pN operators. As in
[CG18], let my be the maximal ideal® corresponding to p. This ideal is generated by w, by
Ty, — tr(p(Froby)) for primes (¢,pN) = 1, and by (a) — det(p(Froby,)) for integers (a, N) = 1.

Theorem 1.3.4 (Theorem 3.11 of [CG18] for the set Q = (1%). There exists a minimal deforma-
tion
po : Gg — GLo(Ty m,)

of p unramified outside N and determined by the fact that for all primes ¢ such that (¢, Np) =1,
tr(pg(Froby)) = Ty.

The minimal deformation py induces a surjective Co-morphism
Y R™n _, Tgmy -
Using their patching method, Calegari and Geraghty show the following:

Theorem 1.3.5 (Theorem 3.26 in [CG18].). The map ¢ : R™" — Ty, obtained by the universal
property of R™™ is an isomorphism. Moreover, Ty m, acts freely on Ho(X, w)m,-

From its proof (see discussion at the end of Section 3.8 of [CG18]), they deduce the following:
Fact 1.3.6. Ho(X,w)m, has rank 1 as a Ty, -module.

1.3.5 Proof of Theorem 1.1.1

The goal of this section is to prove Theorem 1.1.1 under Hypothesis 2. First we present a
commutative algebra lemma that will be used to prove a g-expansion principle for these forms.

Lemma 1.3.7. Let M be a discrete torsion O-module. Then
MY Jm™ ~ (M[™]) .
Proof. 1t suffices to show that if N is a profinite O-module, then one has that
NY[@™] = (N/=™)",
because then if we take N to be MV, using the above equation one gets that
Mlw™] = NY[w"™] = (N/@™)" = (M [@™)"
and dualizing again will give the result. Let us now prove that NV[w™] ~ (N/w™)". By
definition:
NY[@w™] = Homp (N, K/O)[=™]
={f: N — K/O such that @™ - f =0}
={f: N — K/O such that f(w™z)=0forallz € N} .

SThis exists thanks to the works in [KW09], [Gro90] and [CV92].

5The reader will notice the absence of the twist by 1, where n? = m(det(ﬁ» and (det(p)) is the

Teichmiiller lift of det(p). Going through the proof, one sees that n? is unramified outside @ and of
p-power order, therefore for Q = (3, this twist is trivial.
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Any such f is trivial on @™N and therefore factors through the quotient N/w™N, defining an
O-morphism f : N/@™N — K/O, i.e. an element of (N/@™)". The converse is obvious, so
that the last term in the equality is (N/@™)V. O

Now, we take X in Theorem 1.1.1 to be the modular curve X defined above (see Section
1.3.1), and £, = Ox. We can then consider Ty, the Hecke algebra acting on HY(X, WK/O)my =
M1 (X, K/O)n, generated by prime-to-p Hecke operators.

Lemma 1.3.8. We have an analogue of the q-expansion principle, i.e. a T m, -equivariant’
perfect pairing
T@,m@/wm X HO(X, w@/wm@)m@ — O/wm(’) .

Proof. By Fact 1.3.6, we know that Tpn, and Ho(X,w)m, = (H(X, wK/O)mm)v (this equality
is by definition and by Proposition 1.3.2) are isomorphic as O-modules. By Pontryagin duality,
we get a Ty, -equivariant perfect pairing of O-modules:

Tpm, X H(X, wg/0)my — K/O .

We want to show that we can get a perfect pairing
1
Tpmy /@™ X H (X, wi)0)my[@"] — K/Olw™] = —n0/0=0/z"0.
Since T, =~ (H°(X, wK/O)mQ)V, one has to show that we get an isomorphism

Vi, m m\ Vv
(HO(XawK/O)m@) /w = (HO(X)WK/O)m@[w D )
which is true by Lemma 1.3.7 for M = HO(X, WK/O)m@- Now one easily sees that
(M[="™])" = Homo (M[z"], K/O[="™])
and one can conclude using the fact that H°(X, wy/0)[@™] = HY(X,wo /mmo) - O

Remark 1.3.9. By the previous Lemma, a morphism of O-modules
Tpm, /@™ — O/™O

corresponds to a simultaneous normalized Hecke eigenvector in HO(X, we Jm ), thus to a normal-
ized eigenform.

Now we can present a proof of Theorem 1.1.1 under Hypothesis 2. Let R™™ be the minimal
universal deformation ring for p. Then applying the universal property to p, one gets a morphism
in Co

Rmin — O/wmo ]
By composing with the inverse of the isomorphism of Theorem 1.3.5, we get a Co-morphism

T@7m® — O/wm(’) s

which is determined by T, — tr(p(Froby)), by Theorem 1.3.4. One can factor this homomorphism
through the quotient Ty, /@™ and by the previous lemma, this morphism defines a normalized
eigenform f in HO(X, Wo/mmo)my of weight 1 with coefficients in O/@™O.

By the universal property of the universal deformation ring, the eigenform f corresponds to
a minimal deformation py of p with the above conditions on images of Frobenius elements. By
Chebotarev’s theorem the set of Frobenii of unramified primes is dense in Gq, therefore p ~ py.

"The pairing is Ty, m,-equivariant if it is such that (T'T", f) = (T,T'f) for all T,T" € Ty, and
fe HO(X, wO/me)m@-
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1.4 Case II: Vexing Primes

As Calegari and Geraghty explain, the problem that arises when the set of vexing primes is not
empty is that to realize p by a modular form, one has to cut out a smaller space of modular forms
using the local Langlands correspondence. This approach is due to Diamond (see[Dia97])%.

1.4.1 Modular Curves

Let S(p) and T'(p) be respectively the set of ramification primes and the set of vexing primes for p,
as above. For each prime £ € 5(p), let ¢, denote the Artin exponent of p|g,, i.e. N(p) =[], (.
Note that ¢y is even for ¢ € T'(p). We define local subgroups Uy, Vy C GL2a(Zy) as follows.

o If /€ T(ﬁ), let Uy = GLQ(Z[) and

Vp = ker (GLQ(ZE) 5 GLy (Z/e%“z)> .
o If £ € S(p)\T(p) then set
U=V, = {g € GLa(Zy) : g = (3 4{) mod(éce)} .

o If £ ¢ S(p), then set Uy = Vp = GLa(Zy).

Now set

Uv=][v and v=][v.
l l

Let us point out that these groups depend not only on N, but really on the behaviour of the
ramification primes of p. Let x be either U or V. We let X, denote respectively the smooth
projective modular curve over Spec(Q) which is the moduli space of generalized elliptic curve
with level x structure.? Let 7 : £ — X, be the universal generalized elliptic curve and set

w = W*Wg/X* ,

where we/x, is the relative dualizing sheaf. Let oo denote the reduced divisor supported on
cusps. If M is an O-module and L is a sheaf of O-modules, we denote Lj;; the sheaf £ ®o M
on X,. There is a natural action of G = U/V = [[sep(y) CL(Z/t/?Z) on Xy, which gives
an isomophism Xy /G = Xy (see Section IV of [DR73].). Let o, be the representation of
GLg(Z/t°¢/?Z) with image in an O-module W,, as in Section 5 of [CDT99]. Then o = (a0)eer(p)
is a representation of G on a finite free O-module W,,. Let f denote the natural map Xy — Xy,
Calegari and Geraghty in Section 3.9.1 define vector bundles on Xy

Lo = (f(Ox, ®0 W,)? and L3 := (f.(Ox, (—o0) ®0 W,))7

where G acts diagonally in both cases.

8We thank Fred Diamond for pointing out to us a mistake in our approach in an earlier version.
91f needed, one adds auxiliary level structure to obtained a representable moduli problem as explained
in [CG18, Remark 3.10].
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Lemma 1.4.1 (Lemma 3.27 of [CG18].). The sheaves Ly and L™ defined above are locally free
of finite rank on Xy .

We will now consider the following modular forms.

Definition 1.4.2. Given an O-module A, we call modular forms of weight 1 and level N = N (p)
with coefficients in A elements of HO( Xy, (w® L,)4). We will denote this module by M (X, A)

Remark 1.4.3. We remark that under Hypothesis 2, the curve Xy is just the curve X = Xy (N)
defined at the beginning of section 1.3.1 and the vector bundle £, is just the trivial sheaf Ox.
Therefore the above definition and Definition 1.3.1 of modular forms of weight 1 with coefficients
in an O-module A agree.

1.4.2 Hecke Algebras and Homology
In [CG18|, Calegari and Geraghty construct Hecke operators T for primes ¢ ¢ S(p) U {p} and

diamond operators (a) for integers a coprime to elements of S(p) acting on the spaces of modular
forms My (Xy, K/O) = H(Xy, (w ® Lo) k/0)-

Let 0* := Homp(W,, O) be the dual representation of o and let £} be the dual bundle.
Then Calegari and Geraghty'® show that there is an injection L.+ <+ L% that restricts to an
isomorphism

L3925 £F (—00) .
Consider now the homology Ho(Xp,w ® L,). Using Kodaira-Spencer, one has that
Q%(U/O ®LE~w(—00) ® L ~w? @ L9
Now, using the same reasoning as in section 1.3.3, one has

Ho(Xy,w® L,) = (H(Xy, (w® ﬁilib)K/o))v -

Let Ty denote the ring of Hecke operators acting on My (Xy, K/O) = H( Xy, (w ® Ls)k/0)
generated by Hecke operators away from S(p) U {p}; and my the non-Eisenstein ideal generated
by w, Ty — tr(p(Froby)) for primes outside S(p) U {p}, (a) — det(p(Froby,)) for integers a coprime
to elements in S(p). Then one has an isomorphism (See proof of Theorem 3.30 in [CG18].)

H(Xy, (w® [:fob)K/O))m@ = (H'(Xy, (we® ﬁg)K/o))mw 7

which allows us to endow Ho(Xy,w ® £,) with a Hecke action of T n, -

In the proof of Theorem 3.30 of [CG18|, Calegari and Geraghty show that there exists a
minimal deformation of p
po: Gg — GLa(Tpmy)
which is in particular unramified at all primes ¢ ¢ S(p)U{p} and at these primes tr(pg(Froby)) =
Ty. From this, they deduce:

Theorem 1.4.4 (Theorem 3.30 of [CG18]). The surjective map ¢ : R™™ — Ty, is an isomor-
phism in Co. Moreover Tp,m, acts freely on Ho(Xy,w® Lg)my. In particular, Ho(Xy,w ® L )m,
is a Tp m,-module of rank 1, when Ho(Xy,wx ® Lo )m, is not zero.

Following the steps of Section 1.3.5 and using the above result, one gets a proof of Theorem
1.1.1, without Hypothesis 2.

OLemma 3.28 of [CG18].
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Introduction

In this introduction, we briefly summarize what is done in the various Chapters of Part II of this
thesis.

In Chapter 2, we recall the various models for the Hilbert moduli variety and we discuss
the construction of the Shimura variety associated to the group Res(g GL2 . We will consider
Hilbert modular forms a la Wiles living on an automorphic line bundle on the Shimura variety.
This is done in order to have a good Hecke theory, in the sense of the attached Galois represen-
tations. We then proceed to recall how to construct the cusps of the Hilbert modular variety, the
associated Tate objects and how to trivialize the sheaf of Hilbert modular forms at the cusps.
We will finish this chapter by giving an explicit construction of geometric g-expansions and by
showing how changing cusps changes the g-expansion.

In Chapter 3, we compute the action on geometric ¢ expansions of the normalized 7T}, operator
defined by Emerton, Reduzzi and Xiao in [ERX17a]. We first recall how to properly normalize
diamond operators, and we then proceed to recall the construction of 7,. Following this con-
struction, we will be able to compute its action on geometric g-expansion on Hilbert modular
forms modulo w™.

Finally, in Chapter 4, we will prove that a partial weight one Hilbert modular form, with
parallel weight one for the places above a prime p, has associated modulo w Galois representation
that is unramified at p. In order to prove this theorem, we will use generalized partial Hasse
invariants as defined by Reduzzi and Xiao in [RX17] and an exceptional sheaf adapted from their
work. We will then apply the strategy of Dimitrov and Wiese in [DW20] to prove our theorem.
We will make use of the computations of Chapter 3.
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Notation

Let F' be a totally real field of degree d > 2, with ring of integers Op and different d = dp/q.
For any x € F, we will denote Nm(z) := Nmp/g(z), and for any fractional ideal I of F', we will
also denote by Nm(7) the ideal norm. Let p be a rational prime and take n an integral ideal of
Op coprime with p. This will be the level of our Hilbert modular forms. Let (’)1?7n denote the
set of totally positive units u € (9;7 4 such that ¥ =1 mod n. We will need the group of units
B = 0F /(0F,)

We fix € = {c1,...,¢,+} a set of representatives of the elements of the narrow class group
Cl}. Without loss of generality we can suppose ¢ € € to be coprime with p. We will denote with
c+=c¢N Ff the cone of totally positive elements.

Let Q denote the algebraic closure of Q in C. We fix an algebraic closure Q,, of Q,, together
with an embedding Q — @p. Let ¥ denote the set of embeddings F — Q, which is also identified
with the set of embeddings of F' into @p and C.

Let K be a finite extension of Q, such that 7(F) C K for all 7 € ¥. Let O denote its ring of
integers of uniformizer w and residue field F = O/w. We will also identify 3 with the following
sets {7 : F = K} and {7 : Op < O}. For p € F and k = (k;), € Z*, we set ¥ := [], o5 7(10)*".
The weights of our Hilbert modular forms will be elements (k, () € 7Z* x Z*. In particular, we
will denote by t € Z* the weight vector which has 1 in all entries.

Let p a prime in O above p, let e, denote its absolute ramification index and f, its residue
degree. We will denote ¥, the subset of 3 consisting of all p-adic embeddings of F' inducing the
p-adic place p. Let Fr denote the arithmetic Frobenius on E, and let us label the embeddings
of Fy = Op/p — F as {7, : j € Z/f,Z} so that Fror, ; = 7y ;41 for all j € Z/f,Z. For each
Jj€{1,..., fp}, there are exactly e, elements in ¥, that induce the embedding W (Op/p) — O,
which we will denote {Té}j), e ,Tp(?’)}. For every p in O, we fix a uniformizer w, for the ring of
integers O, of the completion F},. When necessary, we will extend by continuity any embedding
T € ¥y to an embedding of the completion 7 : F, — K.



Chapter 2

Geometric Hilbert Modular Forms

In this chapter, we will recall the geometric construction of Hilbert modular forms. In particular,
we will recall and describe the Pappas-Rapoport ([PR05]), the Deligne-Pappas ([DP94]) and the
Rapoport ([Rap78|) models for the Hilbert-Blumenthal moduli space. We will then proceed
to construct and compare the toroidal and minimal compactifications of the obtained Hilbert
modular varieties. Finally, we will discuss the construction and the properties of the automorphic
sheaves of modular forms.

We point out to the reader that we will mainly work with & la Wiles Hilbert modular forms,
which correspond to Katz modular forms that are invariant under the action of a finite group of
units of the totally real number field F'. This is necessary in order to have a good Hecke theory,
in the sense of attached Galois representations. These forms will be global sections of a line
bundle living on a Shimura variety associated to Res(g GLy F.

Finally, we will recall in Section (2.3) how to construct the cusps of the Hilbert modular variety,
the associated Tate objects and how to trivialize the sheaf of Hilbert modular forms at the cusps.
We will finish this chapter by giving an explicit construction of geometric g-expansions and by
showing how changing cusps changes the g-expansion.

2.1 Hilbert modular varieties and Shimura varieties

2.1.1 Hilbert-Blumenthal Abelian Schemes

Let S be a locally Noetherian O-scheme. A Hilbert-Blumenthal abelian scheme (HBAS) over
S is an abelian scheme 7 : A — S of relative dimension d, together with a ring embedding
Or — End(A/S) (also called real multiplication by Or). For any HBAS A/S, we have a natural
direct sum decomposition

o
Qs = Pwassy = PP wassp -

plp plp =1

where each wy /g, ; is locally free Og-module of rank e, and in particular, W(Fy,) C OF, acts
on each wy/gp ; via 7y j. One also has a natural direct sum decomposition of the first degree de
Rham cohomology

fo
HcliR(A/S> = @ @H}iR(A/S>PJ )

plp 7=1
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where each Hlig (A/9),; is a locally free Og-module of rank 2e, since Hiz (A4/S) is locally free
of rank 2 over O ®7 Og ([Rap78, Lemme 1.3]). Again W (Fy) C O, acts on each Hiz (4/S)p.;
via Ty ;.

Let ¢ € € be a fractional ideal of F' and A a Hilbert-Blumenthal abelian scheme over S. We
recall that the functor on S-schemes (A®op,, ¢), given by A(T) ®o, ¢, is representable by a HBAV
over S. A c-polarization on a Hilbert-Blumenthal abelian scheme A/S is an S-isomorphism

)\:A®0FC1>AV,

such that the induced Op-linear isomorphism Homop, (A, A ®0, ¢) ~ Homp, (4, AY) maps c,
respectively ¢y, onto the Op-module of symmetric elements Sym(A/S), respectively onto the
cone of polarizations Pol(A/S).

Let n be an ideal of O coprime with p. A un-level structure on a Hilbert-Blumenthal abelian
scheme A/S is an Op-linear closed immersion of group S-schemes

M:Mn®ail<_>A7

where p, denotes the reduced sub-scheme of G,, ® 9~! defined as the intersection of the kernels
of multiplication by elements of n.
Throughout the thesis, we will make the following assumption.

Hypothesis 3. Assume that n does not divide 2,3 nor Nm(?).

2.1.2 Models of the Hilbert Modular Variety

Historically, the first model for the Hilbert-Blumenthal moduli space YR was introduced by
Rapoport ([Rap78, Definition 1.1]), where he supposed that the points of the moduli space,
which are HBAS 7 : A — S, are such that the cotangent space W*Q}q/s is a locally free O ® Og-

module of rank 1 (see Definition 2.1.3). In particular, Y® is a smooth Z[1/Nm(n)]-scheme
([Rap78, Lemme 1.23]). However, for characteristics dividing the different 9 it is not a proper
scheme (singularité o distance finie). This was first remarked by Deligne et Pappas (see [DP94,
Introduction]), who defined a new moduli problem giving rise to a proper Z[1/Nm(n)]-scheme
YPP | which is normal ([DP94, Corollaire 2.3]) and admits Y® as an open dense subscheme. The
Deligne-Pappas model is not ideal when working in characteristic p| Nm(?), since YﬁDP is not
smooth (see [DP94, Théoréme 2.2|), and for such a prime p ramifying in F there is a lack of
partial Hasse invariants as defined by Andreatta and Goren ([AGO05, Section 7]). Pappas and
Rapoport ([PR05]) then introduced what is now known as the splitting model for Hilbert modular
varieties, denoted here by YR which was later made explicit by Sasaki (|[Sas19]). The advantage
of this moduli space is that it allows us to work also with primes p that ramify in F. Moreover,
YPR is smooth over O ([Sas19, Proposition 6] or [RX17, Theorem 2.9]), and Reduzzi and Xiao
constructed in [RX17, Section 3| partial Hasse invariants living on YE®. In what follows, we will
make all of the above explicit working over Spec(O).

Let us start by defining the splitting model of the Hilbert modular variety as introduced by
Pappas-Rapoport ([PR05]), as defined by Reduzzi and Xiao in ([RX17, Section 2.2]).

Definition 2.1.1. For a fractional ideal ¢ € €, let MER = MFPR(n) be the functor associating
to an O-scheme S the set of isomorphism classes of data (A, A, u, F), where
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e (A, ) is a c-polarized HBAS over S,
e 4 is a uy level structure.

e F is a collection (.7:(

pf])-)p‘p;jzly__,,fp;izl,”_7ep of locally free sheaves over S such that

- 0= fp(g) C .7:'3(71]») C...C .7-"153?) = wy/s,p,; and each fé? is stable under Op-action;
i)

3§ / ]:éf;l) is a locally free Og-module of rank one (and hence the

— each subquotient fp(
(1) s 5.
rank of F, % is i);
— the action of Op on each subquotient .7-"33(1]) /.7-";?1) factors through Tp(Z]) : Op — O,
or equivalently, ]_-p(z]) /FP(Z_I) is annihilated by [w,] — TP(ZJ) (wp), where [wy] denotes the
action of wy as an element of Op.

Under Hypothesis 3, this functor is representable by an O-scheme of finite type that we will denote
YFPR (|[RX17, Proposition 2.4 (1)]). Moreover, Y'R is a smooth O-scheme ([Sas19, Proposition
6]). We call the space
yPR =T Yo"
ccC

the Pappas-Rapoport moduli space. For any O-algebra R, we will denote YER the base change of
the moduli space to R.

We point out that in general the Pappas-Rapoport functor MFR depends on the choice of
ordering {Tp(,lj), .. ,TP(Z.")} of the p-adic embeddings of F for every p|p (see Notation). The depen-
dence disappears when one base changes to F, however Hilbert modular forms over F will still

depend on this ordering, since they are defined through the integral model (see ([RX17, Remark

2.3))).

Let us now introduce the Deligne-Pappas model, which can be obtained from the Pappas-
Rapoport model by forgetting the filtration.

Definition 2.1.2. For a fractional ideal ¢ € €, let MPY = MPP(n) denote the scheme repre-
senting the functor associating to an O-scheme S the set of isomorphism classes of data (A, A, u),
where

e (A, \) is a c-polarized HBAS over S,
e 4 is a iy level structure.

Again, under Hypothesis 3, this functor is representable by an O-scheme of finite type ([RX17,
Proposition 2.4 (1)]) that we will denote YPY and by [DP94, Corollaire 2.3 it is a normal
O-scheme. We call the space YPP := ]_LeG YPP the Deligne-Pappas moduli space.

As remarked in the introduction of this section, the Deligne-Pappas moduli space is not
smooth, but it admits an open dense subscheme which is smooth.
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Definition 2.1.3. Let YR} denote the open subscheme of Y'R classifying c-polarized HBAS
7 : A — S satisfying the following, called Rapoport condition®

W*Qk/s is a locally free O ®7 Og-module of rank 1. (R)

The open subscheme YF is called the Rapoport locus. The scheme YR := [] YR is the smooth
locus of YPF.

It is clear from the definiton of YPY and YFR that for every ¢ € €, there is a natural forgetful
map
T YR YPY

which is projective and it induces an isomorphism from an open subscheme of YfR to the open
subscheme YF of YPP (JRX17, Proposition 2.4]).

Let us now recall here some of the properties of the above defined schemes.

e For characteristics away from Nm(?), the Deligne-Pappas and Rapoport moduli spaces
coincide (see [DP94, Section 2.10]). When p ramifies in F, the Rapoport locus YR is open
and dense in YR with a complement of dimension 2 ([DP94, Théoréme 2.2]).

e When p is unramified in F', the models agree over O (and in particular over F) in the sense
that YPR = YPP — YR (|RX17, Introduction]).

2.1.3 Unit Actions and Shimura Variety

As already explained in the introduction, for ? € {R, DP, PR} the moduli spaces Y do not have
a good Hecke theory and therefore one has to work with the corresponding Shimura varieties,
which will be quotients of Y’ by a finite group of totally positive units of Or. Here we detail
the action of (’)}X,’ + and the construction of the corresponding Shimura varieties.

The functors MPR and MPP carry an action of Op . Anelement € € O, acts via
e (AN, F) = (Ajel u, F) . (2.1)

In particular, this action is trivial on the subgroup (O}X,,n) - 0F+, where Olé,n ={u € Op:
u=1 mod n}. In fact, for u € ((9;7“)2 one has an isomorphism of (A, \, u, F) ~ (A, u?\, up, F).
Let us see why. For an abelian scheme A, multiplication by v € O} defines an isomorphism of
S-schemes A —> A, which induces an isomorphism on the dual abehan scheme AV % AV . This

isomorphism gives rise to the following commutative diagram for the c-polarization )\

A®@FCL®1> A®o, ¢

i s

A e Av

!This originates from [Rap78, Définition 1.1].
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Therefore, (A, \) and (A, u?)) belong to the same isomorphism class.
Moreover for u € (’)? . one has that the level structure upu, constructed via the commutative
diagram

Hn & RIS

A
k l-u
A

is such that up = p, since v =1 mod n. Therefore for an element u € O}X,’n, one has that
u? (AN, F) o (A X, F) = (A X up, F) = (A0 1, F),

so u? acts trivially on geometric points of Y'® and of YPF.
In what follows, we will denote
E:=0F_ /(0F,)7, (2.2)

and we will denote by [¢] the action of ¢ € E on geometric points of YYR or of YP:
[e] : (A, A 1, F) = (Ased pu, F) (2.3)

Proposition 2.1.4 (Reduzzi-Xiao, Proposition 2.4.(4) [RX17]). For n sufficiently divisible, the
group E acts freely on the geometric points of Y?P and YFP‘. In particular, the corresponding

quotients:
ShPR = YPR/E  and  ShPP = YPP/E

are O-schemes of finite type and the quotient morphisms are étale.

Form now on, we will assume the following:

Hypothesis 4. Assume Hypothesis 3 and that n is sufficiently divisible?, as in the sense of
Emerton, Reduzzi and Xiao (see [ERX17b, Section 2.1.1]).

For 7 € {PR,DP}, we set
Sh’:=J]Sh; .

cel

These varieties are Shimura varieties for the group Resg GLy, which explains the notation.

2.1.4 Compactifications

Rapoport ([Rap78, Section 5|) was the first to construct a toroidal compactification for YR, which
over C reduces to a toroidal Mumford compactification. This construction was later extended
to the Deligne-Pappas models and to the associated Shimura varieties by works of Dimitrov
([Dim04]). We will mainly focus in this section to recall the construction of ShP®tr without
going in the details of how toroidal compactifications are constructed, which can be found in
[Dim04].

For any ¢ € € fix a rational polyhedral admissible cone decomposition for each isomorphism class
of a cusp (see Section 2.3), which here we omit from the notation. By [Dim04, Théoréme 7.2

2This is defined in [ERX17b, 2.1.1]. An ideal n of OF is said to be sufficiently divisible if for every
CM-extensions L/F such that O} C OF and for any o € O /O, n C q for some prime q of F, inert in
L and such that the image of o in (O /q)* does not belong to (Op/q)*.
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(1)], there exists a smooth O-scheme Y& containing YR as a fiberwise dense open subscheme,
and by construction of Yr*™" the group E acts freely on it.

For ? € {PR,DP}, we will denote by Y. """ the scheme obtained by gluing Y&"*" to Y7 over YR,
Moreover, for 7 € {DP, PR}, we will denote

Y77t0r o HY?,tor and Sh?,tor o HY?’tor/E
= p = c .
el ced

The schemes Sh!*" := Y™ /E are proper ([Dim04, Théoréme 7.7]) and smooth over Spec(O)
(|[Dim04, Corollaire 7.5]).

The toroidal compactification is not canonical in any way, since it depends on the chosen poly-
hedral admissible cone decomposition. However, one can always obtain a smooth O-scheme by
eventually refining the decomposition (see [Dim04, Corollaire 7.5]).

The boundary of the toroidal compactification of Y”

D — Y?,tor _ Y?

is a relative simple normal crossing divisor on Y***. The boundary divisor of the corresponding
Shimura variety
D := Sh"t" —Sh’ (2.4)

is the quotient of D by the action of the group E and it is a divisor with simple normal crossings.
We will use it later to define Hilbert modular cuspforms.

For every ¢ € € and for 7 € {PR,DP, R}, let .AZ denote the universal abelian scheme over YZ.

Then there exists a semi-abelian scheme A" — Y?*" extending the universal abelian scheme
A? = Y! ([Dim04, Théoréme 7.2]). Set

? ?
Awtor — HAc.,tor ’

el

which is the universal object over Y% but it might not descend to Sh’.

Following Chai (|Cha90, Section 4|) and Dimitrov (|Dim04, Théoréme 8.6]), one defines the
minimal compactification® of YP by

yPPmin . proj [ @R <YPP7</\%YDP7T*QAPP/YPP) ) :
k>0 ¢

: : DP,mi
where 7 : APY — YDPP denotes the universal abelian scheme over YPY. The scheme Y, ™"

is projective, normal and of finite type (|Dim04, Théoréme 8.6.(iii)]). Moreover, by [Dim04,

Théoréme 8.6. (ii)] for any smooth toroidal compactification YOPr there is a canonical projec-
tion
YDP,tor — YDP,min
[ [ :
The minimal compactification YP¥'™™ is not smooth and the boundary of YPT'™™ is a union of

points, which has codimension d. In particular, toroidal compactifications can be seen as explicit

3This is also known as the Bailly-Borel-Satake compactification.
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desingularizations of the minimal compactification at its cusps. By construction (see [FC90,
Chapter V.2]), one has that for any smooth toroidal compactification

DP DP,tor DP,min
Y — Y, —» Y, .

~__

Proj

This does not translate to the Pappas-Rapoport model, i.e. the minimal compactification of YR

cannot be constructed via the Proj. This is because the semi-abelian varieties over points of YPF

are actual abelian varieties, and /\‘é op T Q 4op /YDP is trivial when restricted to the boundary of
YC c <

yPbtor (|Cha90, 4.4.3]). On the Pappas-Rapoport model the singularities at finite distance do
contract, and /\d(9 op 4§ 4PR JYPR is not generated by its global sections. One then defines the
YC c c

minimal compactification of the Pappas-Rapoport model, denoted Y¢ ™™ by gluing YR with
DP, min R
Y over the Rapoport locus Y;*.

The action of the group E extends to an action on YPP’min,' and therefore the minimal
compactification ShPT™ of ShPP ig defined as the quotient YPP’mm/E (see |[Dim04, Théoréme
8.6 (iii)]). Denote ShYfmin .— YFR’mm/E the minimal compactification of the Shimura variety
of the Pappas-Rapoport model. Again as before, for 7 € {PR, DP} one sets

? mi ? mi ? mi ? mi
y?min . HYc.,mln and Sh?min . — H Shé,mln )
el el

The minimal compactification does not admit a universal object over Y! for d > 1 (see [Cha90]).
However, this compactification is necessary to detect ampleness of sheaves, and we will use it
later in Section 4.1

We conclude this section with a commutative diagram connecting most of the objects defined
up until now. Let R be any O-algebra and recall that the subscript R denotes base change. One
has the following commutative diagram of O-schemes:

YER,tor YgP,tor
. ™~
Shl;R,tor Sth,tor
|
YZR,min YEP,min
\ \
ShZR,min Sth,min

where the horizontal lines are given by forgetful maps, the vertical maps are projections, and the
diagonal maps are the quotient maps with Galois group E.
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2.2 Automorphic Sheaves and Geometric Hilbert Mod-
ular Forms

We will from now on focus on the Pappas-Rapoport model and we now proceed to define the

sheaf of Hilbert modular forms over Y = Y'® and give conditions for its existence, via descent,
over Sh = ShPR.

2.2.1 Automorphic line bundles over Y'?

Recall that we denote by A. — Y. the universal abelian scheme over Y, and by 7 : A =[]  Ac —
Y the universal abelian scheme over Y. Let e be the zero-section of 7 : A — Y, then

WAy = 6*9,14/3( ~ Tr*Qi‘/Y .
Denote by F = (]:(,i])')Plp;jzl,-~7fp;i:L-u,Ep the universal filtration of w4,y. For each p-adic embed-

p

ding 7 = Tp(f])- of F into Q,, following [RX17, Section 2.2], we set

. i i—1
Wy 1= -7:;3(,)‘/]'—13(,]' ), (2.5)
which is an automorphic?* line bundle on Y. As explained in [RX17, Notation 2.6] each w, does
not descend in general to the Deligne-Pappas model YPP. This is because the Deligne-Pappas
model does not see the filtration. However, since ®,cx w, = Ade/Y is the Hodge bundle, it
does descend to YPP. Following [RX17] and [ERX17a], the dot notation will be reserved for
sheaves over the moduli space Y, while the notation without a dot will later denote sheaves on
the Shimura variety Sh.

For a p-adic embedding 7 of I’ and for each ¢ € €, we set

57— = ( /\?QF@)OYC H(liR(AC/YC)) ®0F®OY“T®1 OYc ’

which is a trivial line bundle over Oy, since by [RX17, Lemma 2.5], one has the following
canonical isomorphism

57— ~ (CD*l K7z OY:) ®0F®ZOYUT®1 OY: . (2.6)

One extends the line bundle d; to a trivial line bundle on Y, still denoted by é,. In particular,
for 7 € ¥, wr ®oy 0r > Wy,

By [RX17, Theorem 2.9], the sheaf of relative differentials Q#FR /o

Spencer filtration whose successive subquotients are given by

admits a canonical Kodaira-

w®? R0y pr 52 for 7 € X (2.7)

We will now proceed to recall, following [RX17, Section 2.11], how to construct line bundles
whor, 5t on the toroidal compatification Y that agree with the above defined ones when re-
stricted to Y. Let us point out that, when considering Hilbert modular forms, by the Ko6cher
principle the forms will be the same whether they are defined over the toroidal compactification
or on the non-compactified moduli space.

4The adjective automorphic here refers to the fact that global sections of this line bundle are auto-
morphic forms.
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Let AR-tor _ yRstor denote the semi-abelian scheme extending the universal abelian scheme
AR — YR and let e denote its unit section. The sheaf

wR,tOT = e*Q_AR,tor/YR,tor

is a locally free of rank one O ®7 Oyr,tor-module over YRtor For 7 € ¥, we set

- R,tor

- R,tor ,__
wo = w

®0F®ZOYR,tor ‘o1 Oyritor -

In particular, one has that wf-{ T and w; (defined in Equation 2.5) agree when they are both
restricted to the open subscheme Y®. Now, gluing &, with wE T over the Rapoport locus YR
gives a line bundle denoted wir over Y''. In the same fashion, one extends the trivial line
bundle §- on Y, to a (trivial) line bundle

ftor -1
67' - (ca ®Z OYﬁor) ®0F®Zoygor ,T®1 OYgor .

We will drop the notation tor from the bundles, when it is obvious to which bundles we are
refering.

As explained by Emerton, Reduzzi and Xiao in [ERX17a, Section 2.8], using results of Tian
and Xiao (see [TX16, Section 2.11(4)]), one deduces from the Kodaira-Spencer filtration (Equa-
tion 2.7) canonical isomorphisms:

ES:Ab . Qo j0(D) =~ X @ez DOy 55?(—1)) (2.8)
TEX
and
KS : /\%Shtor Qéhtor /O (D) = ® ((}.];@2 ®Oshtor 5;@(71)) (29)
TEYD

2.2.2 Unit Action and line bundles over Sh

Let us now proceed to see how the action defined in Equation (2.3) translates on sheaves and we
will provide the sheaves @, d; with an action of E := Or+/ (Oﬁ,n)Q.

Following Dimitrov and Tilouine (see [DT04, Section 4]), one provides the sheaves w, with an
action of O, : a positive unit ¢ € Op, maps a local section s of w; to 7(e)"V2[e]*s (see
Equation 2.3 for the definition of [¢]). Let us explain why this action is trivial for the subgroup
(O;m)?. Let u € O}X,ﬂyn. We know that u? acts trivially on points of Y, because (A, A, u, F) has
the same isomorphism class as (A, u?\, up, F). However, we recall that on the actual HBAS A

the action maps A to uA, which is isomorphic to A. Therefore, on open sets U = Spec R, this
action is given by the isomorphism of O-modules R M R, which induces an isomorphism of

sheaves (u?)*w,(U) = (@, (U) ®@g (t(w)R)) = 7(uw)w-(U). So 7(u)~t(u?)*s = 771 (u)T(u)s = s
for any local section s of w;. Therefore the action we provided w, with factors through the
group E. Moreover, this action is well defined over K, which we can suppose to contain, via the
embeddings 7 € X, the field extension F(v/¢, ¢ € Of ).

We provide also the invertible sheaf 4, with a non-trivial action of E: an element ¢ € E maps
a local section s of &, to 7(¢)~'[¢]*s. In particular, the invertible sheaves ¢, and d, descend to
invertible sheaves denoted respectively w, and §, on Sh, by Lemma B.1.1 and properties of the
descent (see Appendix B for more details).
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Lemma 2.2.1. Let R be any O-algebra. Then the descent of

skl - ®k @
wR T ® (wT,RT ®OYR 67',RT)’
TEY

over Yg to Shg has non-zero global sections only if ub+2¢ = T[_ s, 7(u)* 2 is 1 in R for all
ue O,

Proof. Let w%é denote the sheaf @) 5 (w;@ﬁ{ ®0gy, 6%5) over Shr. By properties of the descent
of sheaves through a finite étale map (see Equation B.1), one can identify

HO(Shp, wi’) = HO (YR, a5")",

which are invariant global sections under the E-action. Therefore, if an element u?, for u € Op s

does not act trivially on w%e the R-module of global sections HO(ShR,wE’é) will only contain

the zero element. In particular, a section s of the sheaf wﬁ‘;@ is mapped by the action of u? to
[ = 7(u)* 275, The Lemma follows. 0

Remark 2.2.2. If R is a ring of characteristic 0, the above lemma is verified if and only if
kr 4+ 2¢; = w € Z an integer independent of the embeddings. Such weights are called paritious,
see Definition 2.2.3.

In characteristic p, one has more freedom on the weights, as long as the condition of Lemma
2.2.1 is satisfied. Forms of non-paritious weights do exists, a concrete example are the generalized
partial Hasse invariants constructed by Reduzzi and Xiao in [RX17, Section 3|.

For any 7 € 3, the line bundles w!", 53‘“ constructed in the previous section descend to line

bundles over the Shimura variety Sh', where we will denote them respectively w, and 6,. In
particular, the line bundle §, may not be trivial over Sh'*", whereas ®,cxd; is, since 0; 4 acts
on it as the naive pullback (see discussion before [ERX17a, Remark 2.6]).

2.2.3 Geometric Hilbert Modular Forms
For k,¢ € 7Z*, we define a line bundle over Yt

okl - ®k- $®Lr
w L ® (w‘l‘ ®Oytor 67' )7
TEX

where by the definition of the action of E an element v € O, acts via multiplication by
ub 28 = T] o T(u)* 2. Moreover, for k, ¢ € Z, we set

k.t . _ Qkr ®Lr
Wt = ® (wE @O tor Or ).
TEY

As explained in Lemma 2.2.1, in order to possibly have global section of the descended sheaf,
one has to carefully choose the weights (k, £) according to the base one is working with. For any
O-algebra R, we will suppose the following.

Hypothesis 5. Let R any O-algebra. We assume that k,¢ € Z* are such that «*t2¢ is 1 in R,
for all u € OF .



2.2 Automorphic Sheaves and Geometric HMF 33

Under Hypothesis 5 and by Lemma 2.2.1, the line bundle wlgz is an invertible line bundle on
Shg and it might contain non-zero Hilbert modular forms.
We will be interested in working over O, and therefore we make the following definition.

Definition 2.2.3. Given k, ¢ € Z*, we say that the weight (k,¢) is paritious if k, +2¢; = w for
all 7 € X, where w € Z is an integer independent of .

In particular, when working over O we will be obliged to work with paritious weights.
We now have all the ingredients to define geometric Hilbert modular forms. Recall that
D := Sh'" — Sh, which is a divisor with simple normal crossing on Sh'".

Definition 2.2.4. Let (k,£) € Z* x Z* be a paritious weight. A geometric Hilbert modular form
of paritious weight w = k+2¢ and level n with coefficients over O is an element of HO(Sh'T, w*+*).
We will denote this module by My, (n; O).

A cuspidal Hilbert modular form of paritious weight w = k + 2€ and level n with coefficients over
O is an element of HO(Sh*", w*¢(—D)). We denote the submodule of cuspidal Hilbert modular
forms by S.w(n; O).

More in general, we define Hilbert modular forms of arbitrary weight on an O-algebra R
satisfying Hypothesis 5.

Definition 2.2.5. For a weight (k,¢) € Z* x Z* and for any O-algebra R satisfying Hypothesis
5, a geometric Hilbert modular form of weight (k,€) and level w with coefficients over R is an
element of H(Sh'", w%é). We will denote this module by My, ¢(n; R). A cuspidal Hilbert modular
form is an element of the sudmodule H°(Sh'S", wgz(—D)), which we will denote Sj ¢(n; R).

By definition of the Shimura variety Sh'", it is clear that My ¢(n; R) is a direct sum as an
R-module of HO(Sth’IE,w%Z), whose elements are called c-polarized Hilbert modular forms, over
the fixed set of representatives €.

To give a better understanding of these elements, one can use Katz’s description of ¢-polarized
Hilbert modular forms (|[Kat78, 1.2]), which we here recall as given by Reduzzi and Xiao in
[RX17, Section 2.12|.

Let R be an O-algebra and let k,¢ € Z* satisfying Hypothesis 5. Let R’ be an R-algebra
and let ¢ € €. A c-polarized test object over R’ is a tuple (A, \, u, F, s,t), where (A, \, u, F) is a
c-polarized HBAS with a level n structure p and filtration F as described above; s = (s;)rex is
a choice of generators for each free rank one R'-module w4 /R, and analogously t = (tr)rex is a
choice of generators for each free rank one R'-module 4 /R 7

Definition 2.2.6. A c-polarized Katz Hilbert modular form over R of level n and weights (k,£)
is a rule f which assigns to any Noetherian R-algebra R’ and to any c-polarized test object
(A, N\, F,s,t) over R an element f(A,\, u, F,s,t) € R such that

(i) f(A, X, F,s,t) depends only on the isomorphism class of (A, \, u, F, s, 1);
it is compatible with base change in R/;

)
(iii) it satisfies f(A,e\ p, F,s5,t) = f(A, A p, F,s,1) for any € € O, ,
) it satisfies

FAN 1, Fras, ) = (H a;’“Tﬁ;fT) FAN 1, Fo5,1)

TEX

forall @ = (a7 )rex; and 8 = (B;)rex in (RX)*, where a s = (ar$r)rex and Bt = (Brtr)res.
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Remark 2.2.7. Forms not satisfying condition (iii) are elements of H° (YC7R,dJ§’é).

For p unramified, the above definition is consistent with the ones of Diamond and Sasaki (see
[DS17, Definition 3.2.2]) and of Diamond, Kassaei and Sasaki (see [DKS20, Section 3.1.1]).

2.3 Cusps and Tate Varieties

In this section, we will recall the definition of cusps for the Hilbert modular variety Y, which
are used in the construction of the toroidal compactification of this variety. We will mainly be
following work of Dimitrov ([Dim04]). For a fractional ideal a of F', we will denote a* = (ad)~!.

Definition 2.3.1 (Dimitrov, Définition 3.2 [Dim04]). Let ¢ € Cl}, a c-cusp of level n is an
equivalence class of tuples C = (a, b, H, 1, j, A,y) where:

(i) a,b are fractional ideals of F coprime with p such that ¢ = ab™!;

(ii) H is an Op-lattice of F? that sits in the exact sequence of Op-modules 0 — a* ANy R
b —0;

(iii) A /\%FH = ¢* is an isomorphism of Op-modules;
(iv) v:n"'o71 /o7t < n~H/H is an injective morphism of Op-modules.

for the following equivalence relation: (a,b, H,1,7,A,v) and (a/,0", H', 7', j', A, ~') are equivalent
if all the following are verified:

l.a=d and b=10;

2. there exists a commutative diagram of Op-modules

0 - — 5 H-—5p 0
| [
0 (o) —— H —— ¢ 0

where the vertical maps are isomorphism;

3. the isomorphism /\?QFH ~ A?QF H'’ induces, via A and A’, an automorphism of ¢* given by

X
an element of OF, 4

4. the reduction modulo n of the isomorphism H ~ H’ makes the following diagram commu-
tative

nlH/H = nlH'/H

n~to~t/o-t.
Moreover, we associate to C the fractional ideal b’ O b such that b’/b = j(im(y)) and the

fractional ideal X = ¢bb’. The cusp is said to be unramified if b’ = b.

Remark 2.3.2. The lattice H is non-canonically isomorphic to b & a*. By definition X D ab. For
unramified cusps, X = ab.
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Let C be a c-cusp, with associated a, b, X and consider S := Spec(O[[¢%; ¢ € X,]]). One fixes
a smooth rational polyhedral admissible cone decomposition of X} giving rise by the construction
of [Dim04, Section 2| to a Tate object Tateq, defined over a suitable scheme Sy (This is a suitable
subring of O[[¢%; ¢ € X ]], which is denoted by Sy in [Dim04|, where o € X€ is an element of the
smooth rational polyhedral admissible cone decomposition of X7). Moreover, the Tate object
Tateq p is a c-polarized abelian variety with n-level structure. In particular, one has the following
short exact sequence of Sx-schemes,

0— b - G, ®z a* — Tategy — 0

This Tate object comes with additional structure (polarization, level structure, basis for the
differential sheaf, see [Dim04, Proof of Théoréme 7.2|), and is defined over any Sx/ for X' a
fractional ideal of Of such that X’ D ab.

Proposition 2.3.3. Let Tateq be a Tate object over the scheme Sx. Then there are canonical
isomorphisms as Og, -modules

Tr*Q’lI‘atea,b /Sx ~a®z OSX (210)
Norsoy, Hir(Tateqs /Sx) = 0~ @z Ogy (2.11)

Proof. For (2.10), see [Dim04, Equation (5)].
For (2.11), let A be an abelian scheme over a scheme S and consider the following short exact
sequence ([Rap78, See discussion after Lemme 1.3])

0 — Lie(A/S)" — Hig(A/S) — Lie(AY/S) = 0.
Recall that Lie(A/S) is the tangent space at 1 of the abelian scheme A/S, while w,/g is the

cotangent space at 1 for the abelian scheme A/S. Then we can reinterpret this short exact
sequence as

0— wa/s — HéR(A/S) — wXV/S — 0.

\/ ~Y
a,b —

Taking A = Tateq over S = Sx, and knowing that Tate Tatep 4, one gets
0— WTateq , /Sx 7 HtliR(Tateﬂyb /SX) - (“‘)'\I/’a1;(3[,7‘1 /Sx —0. (212)

Now by definition w%ateh’a JSx = Hom@SX (wTateb‘u,OSX) ~ Hom@F®oSX (wTatebyﬂ,(’)F R0 1®
Ogy ). Therefore by the first trivialisation (2.10),

Wnteg o s5x = (07 Osy)" = b" @7 Oy .
Using (2.10) and the short exact sequence (2.12), one gets that
/\%’)F®OSX 7{glR(Tatea,b /Sx) =~ (ab* @7 Ogy) = @' ®7 O, .
This finishes the proof. O

From now on, if not specified, tensor product will be taken over Z.
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Remark 2.3.4. Recall that at the beginning of Section 2.1.1, we have decomposed the sheaf

fo
s = P waysy = DD warsp -

plp plp J=1

for any HBAS A over a scheme S. This description is given by the decomposition of O ®yz Og,
induced by the following one:

Jo
Or @2 0 = (O ®z, Zy) ®2 0 = [ [ Orp @2, 0 = [ [ [ OF» @wEy)m, ©
plp plp 7=1

where we recall the reader that 7, ; denotes both the embedding F, — IF and the corresponding
p-adic one W (F,) — O. In particular, we can fix a filtration G = (géfg) of Opp Qw(w,)r, O by

free @-modules such that

Tp,j

e cach subquotient gg / géf;” is a free @-module of rank 1:

i)

(i) i)
p7-]

e cach subquotient G,/ Qé?l) is annihilated by w, — Tp(7 (@)

We will use this filtration to filtrate the O-module a ®7 O, where a is a fractional ideal a of F.
In fact, we can decompose

a®z@=a®oF0F®ZO

fo
=aQ0p H H OFp Ow(Ey)m, ; O
plp =1
fo
— H H (a ®or OFyp QW (Fp), 7, O) )

plp 7=1

Then we take the filtration of a®@zO to be the image of a®o,. gélj inside (a ®0or OFp QW (Fp),p.5 (’)) .
Since a is a flat Op-module, the subquotients of this filtration are exactly
a®op géi)v/géfj_l) =: (a® 0)

(@) -
J Tp,j

For any weight k& € Z*, we then define
(a®0)f == X)(a@0)H (2.13)
TEXN

which is a free O-module of rank 1. By the trivializations in Equations (2.10) and (2.11), one
has the following canonical identification

. can(a,b _
Wéfteu,h /Sx o) (a®0)f @0 (' ®0) @ O, (2.14)

where (a ® O)F and (¢~ ® O)¢ are free O-module of rank 1 defined as in Equation (2.13). In
particular, the coefficients of g-expansions will live in the rank one O-module (a® O)* ®¢ (ab* ®
O)l, while the powers of ¢ will be elements of the power series ring Og, (see Proposition 2.4.1).
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We take now the time to describe the effects on the line bundle w** of multiplying either a
or b by p, i.e. the effects of isogenies between the corresponding Tate varieties. We will use these
results later when computing the effect of the Hecke operator at p on g-expansions.

Proposition 2.3.5. Letp be a prime in O above p. Let a be a fractional ideal of F' coprime with
p. Then the Sx-isogeny Tateqp — Tateqy s, induced by the natural inclusion ap — a, induces a
commutative diagram of Og, -modules

-kl

o ke
Tateap,s /Sx

wTaten,b /Sx

[d

can(ap,b) can(a,b)

(ap ® O)F @0 (ab*p @ O) ®p Og, — (a® O)* @0 (ab* © O)° @p Oy
where X D ab.

Proof. Recall that the Tate object Tate,p is defined over any Sx, where X D ab (see Definition
2.3.1). Now, since apb C ab, the Tate varieties Tateq,, and Tate, can both be considered as
Sx-schemes, for X D ab. The natural inclusion ap < a induces an Sx-isogeny on the associated
tori

Gm®a* ‘»Gm®(ap)*v

which translates to an isogeny on the Tate varieties as Sx-schemes:

Tateq p Tategp,p

o~

Sx

Since differential forms and the sheaf A%F®Os HéR are contravariant, and using the identification
X
of Equation 2.14, the above isogeny induces an injective morphism of Og, -modules

(ap ® O)F @0 (ab*p @ O) ®o Og, — (a @ O)F ®o (ab* © O) o O, ,
which gives the desired result. O

Proposition 2.3.6. Let p be a prime in Op above p. Let b be a fractional ideal of F coprime
with p. Then the Sx-isogeny Tateqp — Tategpp—1, induced by the natural inclusion b*p < b*,
induces a commutative diagram of Og, -modules

Kyl

o -kt
Tatanbp_l /Sx

wTatea,b /SX

C

can(a,bp—1) can(a,b)

(a® O0)F @0 (ab*p @ 0) ®p 05, — (a @ O)F ®p (ab* ® O)f ®o Og,

where X D abp~!.
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Proof. Again as in the previous proposition, since X contains abp~! and ab C abp™!, both Tate
varieties are defined over Sx. Now, since b C bp~!, one has an isogeny on the Tate varieties as
S x-schemes:

Tatea,b = (Gm & a*)/Q(b) (Gm & a*)/Q(bp_l) = Tatea,bp—l

\/

Sx

Note that by the canonical identification of Equation (2.14), on the w part of the sheaf we will
have an isomorphism, since the above isogeny does not have an effect on the group of characters
of a. However, it does have an effect on the periods, and using the equation (2.11), one gets the
desired map via the natural inclusion ab=!p < ab~!. O

2.4 ¢-Expansions Modules

We recall that € is a fixed set of representatives of Cl;. For every ¢ € € we have a collection of
c-cusps, C = (a,b, H,1i,j, \, «), obtained by varying a et b such that ab=! = ¢. We set oo(c) to
denote the standard c-cusp at infinity, i.e. the c-cusp where a = ¢ and b = Op. Moreover, for
every cusp C, we have a Tate object Tate, over a scheme Sy, which depends on the smooth
rational polyhedral admissible cone decomposition of the fractional ideal X, containing ab. We
will use these ingredients to make explicit the local completed module of the sheaf w* over Sh**
along the cusp C.

Proposition 2.4.1. For an unramified c-cusp, C = (a,b, H,i,j, A\, ) with associated fractional
ideal X D ab, the completion of wF* over Sh* at C is given by

MEL() ::{ Y et

£eXu{0}

ag € (a® O)k ®o (cD_1 ® O)e; Qg = 6_€a5 foralle € (9;5&} .

(2.15)
For the infinity cusp oo(c), we will denote by MY (c) == Mf’éF(c) and we will call it the module
of g-expansions at the cusp oo(c).

We remark that the above description of the module of g-expansion agrees with the one given
by Diamond and Sasaki (|[DS17, Proposition 9.1.2]), where they work with the Deligne-Pappas
model since they are assuming that p is unramified in F.

Proof. In this proof we will use the notation and results of Dimitrov, in [Dim04]. Let C =
(a,b, H,i,j, A\, @) be a c-cusp and ¥¢ be a smooth rational polyhedral admissible cone decompo-
sition of X7. We will be working in a formal neighborhood of the cusp C, given by the formal

completed scheme Sgc, which is the completion of the variety obtained by gluing all the toric im-

mersions at infinity. By [Dim04, Théoréme 8.6 (v)], we know that the formal completion of Sh**

along the cusp C is canonically isomorphic to Sgc JOR xOp +» and in particular the completion

of wh* over Sh'" at C can be identified with the global sections H(S{. /OF, x OF ,whf).

Moreover, one can determine the set of global sections H (S, /OF  x OF . ,w**) by taking in-

. k,@)

variants under the action of Oy x OF , of the set of global sections HO(Se, @k ). As explained
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in Remark 2.3.4, the module HO(SQC,CA'J]C’E) can be described using the trivialisations (2.10) and
(2.11), as

. o B
il ) (4 9, 0V @0 (0~ 97 0) 0 Osp. -
=

An element in HO(S/Z\C,d)k’e) is then a power series } ccx, (o) agq®, with a¢ € (a @z O)F @0
(0! ®z O)f, which we recall is a free of rank one O-module. Now, let us recall that the group
Op, X Op . acts on the cusp C via a matrix <€§ u91
[Dim04, Proposition 3.3]. In particular, under this action, one has that a — wa and b — cub;
therefore we also have that ¢+ e !c and X ~ (eu?)X. Therefore the Fourier coefficients must
satisfy the following

> on the Op-lattice H ~ b @ a*, as in

k_—¢
a(u25)5 =Uu-c ag .

The g-expansion ring for C is identified with

HY(S4e/OF, % OF . w’“’“:{ > agd age (a0 0) @ (@ 0 0)",

gexu{0}

A(u2e)e = uPe™ag for all ¢ € Op,,u€ (’);n} )

For a scalar matrix, i.e. for ¢ = u™2, the action on X is then trivial and in fact under the
Hypothesis 5, one has
k+2¢,

k_—¢
a(u28)5:u5 agzu §=a5.

. . iy . 0 Lo
Since scalar matrices act trivially, one can decompose the matrix (65 u‘l> = <u0 u_1> .

2
<€g ?), and just look at the action of matrices of the form <(€) (1)> for e € O;’Jr’ which gives

that a.e = 5£a5 and therefore the Proposition. O

Corollary 2.4.2. Let R be a O-algebra satisfying Hypothesis 5. Then for a c-cusp, C =
(a,b,H,i,j, A\, &) with associated fractional ideal X D ab, the completion of w%g over Sh'S" at C
s given by

Ml::g(X;R) ::{ Z a€q5

£eX1U{0}

ae € ((a ©0)" ©o (@' ® O)E) ®0 R;

Qe = 5*%5 forall e € O;ur} )

Proof. This follows immediatly from Proposition 2.4.1, and by the canonical identification

ke can(a,b) _
S xspectry (09 0)F 00 (071 ® 0)) ©0 R 90 O, xspectry -

induced by Equation (2.14). O
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We will mainly consider expansion rings for the standard cusps at infinity, co(c). In particular
one has injective g-expansion maps

HO(Sh'", ™) — @D MEL () and HO(ShiE",wi’) = @D ME/ (¢ R).

ceC ceC

Since we are working over O, it will be very important for our computations on the g-expansion
to keep working with the set € of representatives coprime with p. However, we will have to
manipulate as seen in the previsous section, the p-isogenies on the Tate objects (see Proposition
2.3.5). We then end this chapter by showing what happens on g-expansions when we bring a
cusp to the fixed set of representatives €.

Lemma 2.4.3. Let R be a O-algebra satisfying Hypothesis 5. Let ¢ € € and p a prime above
p. Let a € Fy such that ¢p = ac’, where ¢ € € is a representative in Cl;. Then the following
morphism of O-modules:

MEL( R) 225 MEL (ep; R)

Z agqu — Z o/‘ﬁ‘Hgoquo‘é = Z akMaaqéq'ﬁ,
gec u{o} gec u{o} £€(cep)+U{0}

1s induced by the p-isogeny on the corresponding Tate varieties.

Proof. In order to establish the morphism above, one has to look at the cusps co(cp) and oco(c'),
and their associated Tate varieties. But first let us recall that the scheme Sx is constructed
from the scheme Spec(O[[¢¢ : ¢ € X.]]), and that in particular this construction based on
the smooth rational polyhedral cone decomposition is functorial (see [Dim04, Section 2|). In
particular, the base sheaves S¢, and Sy are isomorphic, where the isomorphism is induced by the
ring isomorphism

Olg* : ¢ €] =5 Olg* 1§ € o],
& — ¢%¢
qa‘lé —
We can then see the Tate variety Tatey, o, as a variety over S¢ via pullback in the following

cartesian square

Tateqp,0, —— (G @ (ep)*)/a(OF)

| |

Sc’ = SCP

i.e. we can see Tateq 0, as the Su-scheme (G, ® (cp)*)/q(OF)) xs,, Se.5 We can then look

5Concretely, we are re-indexing the powers of ¢ in the g-expansion.
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at both Tate varieties as Sy-schemes and consider the following commutative diagram:

0 O —1 Gp @ (p)* —— (G @ (ep)*)/q(OF) —————— 0
1®a 10« > Ser
0 Op —2 G @ (¢)* —— (G @ (¢)*)/q(OF) 0

Recall that w; and §, are contravariant, and that by the canonical identification in (2.14), the
above diagram induces a morphism:

(c,®0)k ®o (clail ®O)€®O R®o OSC/ xSpec(R) — (Cp ®O)k ®o (Cpail ®O)Z®O R®o OSC/ xSpec(R)*
(2.16)
For every embedding 7, one has the following commutative diagram of morphisms of O-modules:

(! ®0); —— Frac(0) =K (¢ ®1) — 7(¢)
La Lr(a) la I-T(Oé)
(cp® O); —— Frac(0O) = K (' ®1) —— 7(af)

which give morphisms on the O-modules:
.ak Al
(¢ @ O)F 25 (cp @ O)F (' @ 0)f 2 (epo~t @ O)F
So putting the two together, for £ € ¢/ one gets a morphism of the modules of coefficients,

(@0 @0 (0 '00) 00 R— (p20)F @0 (pp ' @ 0) ©0 R
ag — ozk'Ma&/ .
Now using the morphism on the coefficients and Equation (2.16), one obtains the following
morphism of O-modules

akte

MEL( R) — MEL(ep; R)

Z ag qgl — Z akHag qagl = Z bgqg

¢red, U{0} gred, U{0) £e(ep)+ U{0}

where by = a"™a,-1¢ € (cp ® O)F @0 (po™ ® 0)* ®o R. In fact, this morphism respects the
conditions given by the (9;, ,-action, as in Proposition 2.4.1: for € € O;, n

k+L k+¢ —L k+€a

bee = Q" a1 =0 A =@ ¢ = affbg ,

where the one before last equality is given by the fact that ag satisfies a.e = 6_Za§/ for all
€€O;+and§/6c’. O

Remark 2.4.4. We remark that this is not an isomorphism because « has strictly positive p-adic
valuation. In fact vy(a) = 1, since a’ = ¢p, and ¢, ¢’ € € are coprime with p.
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The strategy of proof of Lemma 2.4.3 can be applied to see what happens on the g-expansion
when changing the representative of the class ¢ € €.

Lemma 2.4.5. Let R be a O-module satisfying Hypothesis 5. Let ¢ and ve, with v € F*, be two
representatives of the same ideal class group element, both coprime with p. Then multiplication
by v on Tate varieties induces the isomorphism

MEL (e R) 225 ME (ve; R)

Z a§q§»—> Z Z/kMagq”&.
g€ u{0} gecU{0}

Proof. The proof goes exactly like in Lemma 2.4.3. However, this time one has an isomorphism
since v is invertible in O, because vc¢ is assumed to be coprime with p. ]



Chapter 3

Action of the Ty operator on
g-expansions

In this chapter, we construct step by step the Hecke operator at p, for a prime p C Op dividing p,
acting on Hilbert modular forms and compute its action on geometric g-expansions. The Hecke
operator at p in characteristic p was first constructed for paritious weights by Emerton, Reduzzi
and Xiao (see [ERX17a, Section 3|). In particular, they construct a normalized Hecke operator
at p (see [ERX17a, Definition 3.12]) that acts on the whole cohomology H'(Shgl;;;?,fo, w(kg’fwm o)
in positive characteristic. We will only be interested in the degree 0 cohomology, and we will
use their construction alongside some techniques of Dimitrov-Wiese (see [DW20, Section 3.3]) to
calculate the action of the Hecke operator at p on g-expansions for a generic partial weight (&, £)
as in Chapter 2.

The geometric construction of Emerton, Reduzzi and Xiao ([ERX17al|) gives rise to a Hecke
operator at p that we will denote T, pv’o‘ The o in this notation is to recall that this Hecke operator
is normalized in order for it to be optimally integral on O, and therefore to give rise to a non-
trivial operator modulo . The dual is due to the fact that we are later interested to work with
Galois representations attached to Hilbert modular forms, where the dual operator of the one
constructed in [ERX17al intervenes. The action of Tpv ° on g-expansions is given in Theorem
3.3.4.

In general, T, = TpV o (p), where (p) denotes the diamond operator at p. However, the
classical diamond operators, even if they come from a natural construction, do not give rise to
an automorphism over O for primes dividing p. One can overcome this issue by working with
paritious weights, i.e. weights (k,¢) € Z* x Z* such that k, +2¢, =w € Z for all 7 € ¥, and
by normalizing by Nm(p)" (see Definition 3.1.1). We therefore set T := Tp\/’O o (p)w, where (p)w
denotes the normalized diamond operator at p, and we compute its action on g-expansion in
Corollary 3.3.6.

Finally, we recall to the reader that we are not imposing p to be unramified in O, and
therefore we are working with the Pappas-Rapoport model. In particular, from now on, we will
drop the PR from all notations.

3.1 Normalized diamond operators

As explained in the introduction, we want to work with normalized diamond operators. We
will recall here how the general diamond operator for a prime ideal ¢ C Op not dividing n is
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constructed and we will explain why the normalization is essential to have an automorphism on
HO(Sh, w®*), for paritious weights (k, £) € Z* x Z*, i.e. such that k, +2(, =w € Z for all 7 € X.
Let A be a HBAS over S, and let q be a prime ideal of Op. Let us consider the following exact
sequence of HBAS over S:

0= Alq = A— A®0, q ' =0, (3.1)

where A ®p, q~! denotes the S-scheme representing the functor of points as in Section 2.1.1.
Since the Cartier dual of A[q] is (A®o, q~1)¥[q] (see [Hid04, Section 4.1.9]), dualizing the short
exact sequence (3.1) gives the following short exact sequence of HBAS over S:

0= (A®0, g )[4 = (ARo, ¢ )Y = AY = 0. (3.2)

Let us now suppose that A is ¢-polarized, with polarization A. It then results from the natural S-
isogeny A -+ A®o, g~ ! and the short exact sequence (3.2) that there is a canonical isomorphism
(see [DW20, Equation 10])

(A Rog qil)v =AY Rogr q- (33)
Let ¢ € € and § € F, such that §¢’ = c¢q?. Using the above equation, one sees that the HBAS
A ® q~! admits a ¢’-polarization:

N (A®op 9 ) ®op ¢ 1894 ®op cq XAV e q % (A®o, q )Y (3.4)
(This can also be seen in [ERX17a, Section 2.9]). We then consider the isomorphism

Yq: Y — Yo
(AN 1, F) — (A= Ao, q LN, 1, F),

where X is the ¢’-polarization given in Equation (3.4) , u/ is the py-structure induced by p and
(A®o, q1)[n] ~ A[n] (for primes q coprime with n), and F’ is induced filtration, i.e. F. =
Fr ®op,r q induced by the canonical isomorphism WA Ha/8 = Wa/s ROp 4. This isomorphism
extends to an isomorphism on the toroidal compactifications Y = YE?r, by sending a ¢-cusp
C = (a,b,H,i,7,A\,~) to the -cusp C’ = (aq,0bqg ", H® q Y, i®q!,j®0q~ 0A,~"), where +/
is the obvious induced level structure (see discussion in [ERX17a, Section 2.9]).

Let us now see what happens on our sheaf of Hilbert modular forms. First of all, let us recall

that there are canonical isomorphism of sheaves:

W(AopHq-1)/S = Wa/s Dok 4

9 1 1 2 1 2 (3:5)
Nopaos Hir(A ®op 477 /5) = NopeosHar(A/S) ®op a7 .

Let A, and A denote the universal semi-abelian varieties respectively over Y and YE,OY. Then
one has the following commutative diagram of O-schemes:

-Ac — -Ac ®OF

T T

¥q
Ygor - Yz/or
which induces a natural pullback morphism

SV o, k- tor - tor
Sa * Paa, vy 7 Gy
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- tor
where we recall that w Ay tor

Section 2.2.1 from e*QZB/Yf"“’r'

are working over the moduli space Y, and not over the corresponding Shimura variety Sh. The
dual in the notation is again due to the fact that this operator turns out to be the inverse of the
classical diamond operator.

Similarly, one has a natural morphism SSI/ : goz&/ﬁ — Scﬁ for any 7 € . Let (k,{) € Z* x Z*
be a paritious weight, with k; + 20, = w for all 7 € 3. One then has a natural isomorphism

denotes the sheaf of relative differentials over Y, constructed in

We recall that the dot in the notation is used to recall that we

—w GV

SV,0 * -k N4 (Nmg) Sq -k N4

K —_— .

Sq” 1 ¢y <® Werlr OOy t0r 5t’T,T> - ®wc} Oy tor Oc)r
TEY ¢ TEX

In fact, the canonical isomorphisms of Equation 3.5 induce the following isomorphism:

< ks L , ke : 2\¢r
90; <® Wer'r OO, tor O 7') B ®<Wc,T ®0p,r 4) QO ior (0c'r ®Op,ra7)7-
: & : ¥

TEX TEY

It is now clear that qu ° is an automorphism. We will later use g-expansions to illustrate why
the normalization is needed.
Taking the union over all ¢ € €, one gets an isomorphism

(Nmq)~"SY
—

Sv‘;/,o . HO(Ytor,djk’e) q HO(Ytor,d)k’Z).

~

Moreover, this isomorphism passes to the quotient by the action of the group E (see [ERX17a,
Section 2.9]), giving rise to

(Nm )5y
_—

S0+ HO(Sh*r, wht) HO(Sh'", k"), (3.6)

~

by taking the disjoint union over the fixed set of representatives €. Moreover, the action of qu °
is independent of the choice of the element 0 (see [ERX17a, Section 2.9]).

Definition 3.1.1. Let (k, /) € Z* x Z* be a paritious weight, with k, + 2¢, = w for all 7 € 3.
Let R be any O-algebra. We then define the diamond operator

or ,Z or 9
(0w : HO(ShE", w") — HO(Shi, o)

to be (q)w := (Nm(q)’WSc\[/ )_1, the inverse of the induced properly normalized isomorphism of
Equation 3.6.

We now explain why the normalization is essential by looking at what happens at the cusps.
Let us recall that the Tate object at the c-cusp C = (a,b, H,i,j,A,7) is (G, ® a*)/q(b) over
the base Sx (see Section 2.3). The isomorphism ¢4 send the c¢-cusp C to a ¢q?-cusp C' =
(ag, g7 H®q L i®q ', j ®q ', A,9), inducing the following commutative diagram of Sy
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group schemes’:

0 b g Gpn®@a* — (G, ® a*)/q(b) 0
1®q~! 1®q> Sx
0 — bg~! —= G, ® (aq)" —— (G @ (aq)*)/q(bg ™) 0

where the second and third vertical maps are induced by the natural Sx-isogeny from Equation
(3.1). Taking the c-cusp C to be the standard cusp at infinity oco(c), this implies that there is a
morphism of S¢-schemes:

Tate 0, — Tateg 41

which induces, via the canonical identification (2.14), the following diagram

S S L
Tatec,oF /SX Tate(qu71 /Sx
can(c,0Op) can(cq,q71) (37)

(c®0)f 2o (07! ® 0) @0 O, S (cq® O)F @0 (¢q?071 ® 0) ®p O,

where the bottom map is induced by the natural inclusions ¢q C ¢ and ¢q? C ¢. It is clear that
in the case of ¢ = p, a prime above p, this natural inclusion would not induce an isomorphism
over O. In the case of a paritious weight (k,¢), i.e. such that k, + 20, =w € Z for all 7 € X, the
introduced normalization is essential to make the diamond operator invertible on the sheaf of
paritious Hilbert modular forms over O for prime ideals of Op co-prime with n. For non-paritious
weights, it is not clear how to make the geometric operator Sp invertible, for places p dividing p.
Let us look at the map

Nm -wg
(c@ 0 @0 (071 @ 0) @0 O, Jm@) "8 (cq® O)F @0 (cg*07t © 0) ©p O,

We recall that (¢ ® O)F = @, 5 (c ® 0O)2* is an O-module of rank 1 (see Remark 2.3.4). In

particular, each (¢ ® O), is a principal ideal in @. So we consider the following morphism of
O-modules:

R (c20), =(0) +— (qe0) =X (g2 0),

TEX TEX
Nm(q) Han ®...®ar,) +— (an @...@ar,) ,

where t € Z* denotes the weight vector with 1 in each entry. This is in particular an isomorphism
for any prime ideal q of Op. In fact, for q not dividing p, this is clearly an isomorphism, since
Nm(q) € O*. For q = p a prime above p, an element a € (¢p ® O)' ~ Nm(p)O has p-valuation
vp(a) > 1, so the element Nm(p)~! has p-valuation greater or equal to 0, and it belongs to

'We are supposing here for simplicity that the element cq? belongs to our fixed set or representatives
¢, since the induced action of S;/ *° is independent of this choice.
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(¢c®O)t ~ O. Since k, + 2¢; = w € Z, the map

(c® 0 @0 (071 ® 0) R0 Ogy +— (c4® O R0 (cq?0 ' ® O)f @ O,
> (Nm(q) ™ag)g® «— Y aeqt

§eXy §eXy

is an isomorphism of O-modules. This extends to any O-module R.

For primes p C Of above p, one can construct normalized diamond operators also for non-
paritious weights, using the uniformizer wy. In particular, by applying the same reasoning as
above to the normalizing factor Hrezp 7(wp)~Fr+267) instead of Nm(p) ™", one gets an equivalent
of Equation 3.6 :

I,es, 7(wp)~tr 25y

Sy« HO(Sh'", ™) HO(Sh'", W) (3.8)

~

We remark that the above construction of S;/ *° depends up to a unit in O* on the choice of
uniformizer .

Definition 3.1.2. Let (k,¢) € Z* x Z* and let R be any O-algebra satisfying Hypothesis 5. Let
p C Op be a prime dividing p. We define the normalized diamond operator at p

(p)k.e - HO(ShiS™, whi’) — HO(Shigr, Wi

-1
to be (p)y,c == (HTEEF T(wp)_(kf"r?gf)sg/) , the inverse of the properly normalized isomorphism
of Equation (3.8).

3.2 Hilbert Moduli Space with Iwahori level structure

In order to construct Hecke operators at a prime p dividing p, one has to look at Hilbert modular
schemes with extra I'g(p)- structure, which here will be taken to be the Iwahori level structures as
in [ERX17a, Section 3.1|, first constructed by Pappas (|[Pap95]) and Pappas-Rapoport ([PR05]).
Let p be a prime ideal in Op dividing p, f its residual degree and e its inertia degree. For a
chosen representative ¢ € €, let a € F* be such that ¢p = ac/, for ¢ € € another representative
in Cl}.. The following definition is taken as in [ERX17a, Section 3.1].

Definition 3.2.1. Let M, (n;p) denote the functor associating to a locally noetherian O-scheme
S the set of isomorphism classes of tuples ((A, X, p, F); (A", X, 1/, F'); ¢;4)), where

e (A A\ i, F)is an S-point of Y;
o (AN, 1/, F')is an S-point of Y;
e p:A— Aland ¢ : A — A® ()"t are Op-equivariant S-isogenies such that:

— deg(¢) = p/ = deg(¥);
— the compositions 10 ¢ and (¢ ®c(¢') 1) 09 are the natural isogenies A — A®c(c¢/)~!
and A’ = A’ @ ¢(/)~! induced by Op C p~! = ¢(¢) 1
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— ¢ is compatible with polarizations, i.e. ¢poXo @Y = N, where X : (A')Y — A’ @ ¢ is
the map induced by composing N with ¢ ~ ¢p C c;

— ¢ and ¢ are compatible with level structures, i.e. ¢pop = ' and Yopu' = p@ ()~

— ¢ and 1) are compatible with the filtrations, i.e. for any p’ dividing p, and for any
j€{1,... fy} the morphisms of S-modules

i ~ /-1
O ways g T Wasspy and YT wasp g = WA sp @ CCT = War/sp gy
preserve the filtrations 7, ; and ]:';7 e

This functor is representable by an O-scheme of finite type that we will denote Y(p) ([ERX17a,
Section 3.1]).

There are two natural forgetful maps:

“V Ya (3.9)

induced by keeping only the appropriate data of HBAV, i.e.
(AN, o F); (AN ' F); 659))
1, T2«

(A7 )\7 M? ’F) (A/7 Al? /’LI7‘F,) °

As seen for Y. in Section 2.1.3 the group E acts freely on Y(p), by acting at the same time on
A and A’, and hence we denote by Sh¢(p) the corresponding quotient. As before, we set

Y(p) =] Yep),  Sh(p) =[] She(p).
C ¥
Since 71 o, T2,o are both equivariant under the action of E, we have induced projections:

Sh(p)

Sh Sh,

which are independent of the choices of « by [ERX17a, Equation 3.1.2]. Moreover, by [ERX17a,
Proposition 3.7|, these morphisms of O-schemes are finite and flat over the ordinary locus of
Sh(p). One can construct smooth toroidal compactifications for the splitting models with Iwahori
level structures as in [RX17, Section 2.11] and extend the above maps 71, 72 to maps Sh(p)t°r —
Sh'°’ | as in [ERX17a, Section 3.9], which may no longer be finite and flat over the ordinary locus.
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3.3 Hecke Operator at p over O

We first recall the definition of the normalized Hecke operator at p as given by Emerton, Reduzzi
and Xiao. In their construction of the Hecke operator at p, Emerton, Reduzzi and Xiao have to
suppose the following for the weight k € Z* (see [ERX17a, Conditions 3.11.1]).

Hypothesis 6. Assume that the weights k; for 7 € ¥, satisfy the following:

i ZTGEp kT 2 ef;

o k iy >k @forallj=1,...,fandi=1,...,e—1;
Tp.d Tp.d

o pk 1y >k (o forallj=1,...,f.
Tp.j Tpg—1
We would like to remark that by these conditions, one has that k; > 0 for all 7 € X,.
Moreover, these conditions correspond to what Diamond-Kassaei define as minimal cone, in
[DK17] for unramified p and in [DK20| for general p, which we recall here.

Definition 3.3.1 (Diamond-Kassaei). We say that a weight k& € Z* belongs to the minimal
cone, denoted C™"  if for every p|p:

ok iy >k gforallj=1,...,fpandi=1,...,ep —1;
Tp.d Toj

[ pk (1) > k (ep) for allj: 1,...fp.

Tp.g To,j—1

We would like to stress that, in order to have a good theory of Hecke operators, one has to

work with minimal weights. In particular, in Chapter 4 we will mainly work with weights that
live in the minimal cone, or we will bring our forms to weights living in the minimal cone.

Definition 3.3.2 (Definition 3.12 of [ERX17a|). Let (k,¢) be a paritious weight, i.e. k; +20; =
w € Z, satisfying Hypothesis 6. Let R, := O/w™O. The action of the Hecke operator Tp\/’O on

the cohomology of w%ﬁ/ is defined as the composition of the following maps:

HY(Sh'", wi’ ) 25 HY(Sh(p)'", mywpy" )
T H(Sh', Ry wrwpy’ ) ™ H(Sh™", wiy’ ),
where 7, : Rm’*w;w;’i — w%ﬁl is a normalized morphism constructed from the dualizing trace
map (see Introduction, Section 3.10 and Proposition 3.11 of [ERX17a]).

We want to remark that we denote this geometric normalized Hecke operator with a dual
to distinguish it from the "arithmetic" normalized Hecke operator at p, which we will denote
Ty. The two are dual of each other, as in Equation (3.17). As said in the introduction of this
chapter, we want to work with "arithmetic" Hecke operators because they are the good ones to
consider when working with the Galois representations attached to Hilbert modular forms.

In what follows, we will go through the steps to construct the Hecke operator Tpv’o, to
calculate its action on g-expansion. We maintain the generality of partial weights (k, £), because
we believe that the operator defined by Emerton, Reduzzi and Xiao can be extended to non-
paritious minimal weights as well.

In order to understand the effect of the T}, operator on g-expansions, it suffices to look first
at the varieties Y. (p) and their toroidal compactifications, and therefore at the projection maps
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1,0, T2, defined in (3.9). We will later take into account the passage to quotient Sh, and its
compactification.

Since we will be working with cusps ¢p and ¢p~!, which are not in our fixed set of represen-
tatives €, we will take «, § € F'* such that

p=ac and cp ! =p5",

where ¢/, ¢’ are in the set of chosen representatives €, coprime with p.

Proposition 3.3.3. Let oco(c) be the cusp at infinity and let Tate o, /S. be the associated Tate
variety (see Section 2.3). Then the inverse image under mi o of co(c) consists of two cusps,
which will be labeled oo, and O, the ramified one. In particular the inverse image under T o of
Tate. 0, — S consists of

e an Sc-point on Y(p), with A = (G, ® ¢*)/q(OF) and A" = (G, @ (¢p)*)/q(OF) over S¢;

o an Sy-1-point on Y(p), with A = (G, @ ¢*)/q(OF) and A" = (G, ® ¢*)/q(p™), over
Sep-1-

Proof. This follows from the construction of the Iwahori level structure and from [DW20, Propo-
sition 3.3]. O

To calculate the action of T, pv *° on g-expansions on a form with coefficients in R, = O/@w™O,
we will work with the schemes Sx over which the Tate object for the cusp oco(c) lives. In par-
ticular, the module of ¢g-expansions ./\/llégf(c; R,,) can be injected in a completed ring Ry ®o Ry,
(see the proof of Theorem 3.3.4), whose elements can be lifted in O. We will then follow the
steps of the construction of Tp\/’O over O and we will reduce modulo @™ to obtain the equation.
This can be done because the operator Tpv © exists and is integral over O.

Following the definition of the maps 71,72, and by the above proposition, one gets the
following diagram corresponding to the cusp ocog:

(G ® ¢*)/4(OF) —2— (G @ (cp)*)/(OF)

/ LN

(Gm @) /q(OF) (Gm @ ())/a(OF)
Se Ser

(3.10)
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and the following diagram for the ramified cusp O.:

(G @ ¢)/g(OF) —2— (G ® ) /q(p~)

.

™1 ™2

(Gm ®c*)/q(OF) (Gm ®c*)/a(p™)
S Sep
(3.11)

Since we want to work only with the standard cusps at infinity, i.e. those cusps labeled oco(c)
for ¢ € €, here we will use the natural diamond operator Sc\l/ and the natural morphism ¢q from
Section 3.1 to bring the cusp co(cp, p~t), with corresponding Tate variety (G, ®@¢*)/q(p™!)/Sep-1
to the cusp oo(c”). In this step, since we have fixed 3 € F, such that 3¢ = cp~!, we will see
the term S appear in the g-expansions.

3.3.1 Action on geometric ¢g-expansions

Recall that in the definition of Tpv *® (see Definition 3.3.2) the weights (k, £) are supposed to be
paritious, but that we keep the generality of the notation (k,¢) . We now have all the ingredients
to prove the following.

Theorem 3.3.4. Let R,, = O/@w™O and let (k,{) € Z* x Z* be paritious weights satis-
fying Hypothesis 5 and Hypothesis 6. Let f € HO(ShRm,w%i) and let f = (fc)ce€, where
fe= dec+u{o} a§q5 be its geometric q-expansions at the cusp oo(c). For a place p of F above p,
let a, B € Fy be such that ¢p = ac’ and cp~t = ¢, for ¢, ¢ € €. Then for £ € ¢y

ag((Ty"°f)e) = Nm(p) ™" | ] 7(@p) ™ | " ag-1¢(fe)
e (3.12)

+ | I 7@) " | B ag-1e (S f)er),

TEX

with ag—1¢ = 0 if a"l¢ ¢ d and S;/’O is given in Equation 3.8. We recall that we denote by o
the element [] o5 T(ct)" .

Remark 3.3.5. As we will see in the proof of Theorem 3.3.4, the formula in Equation 3.12 makes
sense as it is over O and in particular it is integral over O. Let us explain why. First of
all, the coefficients aaqg(fc/) and aﬁflg((sg/pf)c/) live respectively in the rank one O-module
(¢ ® 0)F 20 (07! ® 0) and (' ® O)F ®p (07! ® O), so they have non-negative w-adic
valuation. Let us remark that the normahzatlon of the operator S ° is again essential for the term
ag-1¢ ((S 7 ) ) to have non-negative w-valuation. In fact, thanks to the normalization, one has
an isomorphism of rank one O-modules (¢"p0)*®p (c"p%’l ®0)! = ("®0)F R0 (e 0)".
Now let us proceed to calculate the w-adic valuation of each addend of Equation (3.12). Since
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ac = ¢p and ¢, ¢ are coprime with p, vp(o) = 1. Therefore the w-adic valuation of the first term
)
is:

v (first term) > | —ef — Z /R Z (kr +¢;) €K/F,

TELp TELp

= Z kT—ef eK/Fp > 0.

TESY

The last equality is given by the first condition of Hypothesis 6.
Since B¢” = ¢p~! and ¢, ¢ are coprime with p, vy(3) = —1. Therefore the w-adic valuation of
the second term is

v (second term) > Z kr+ 47 — Z (kr +47) | ex/p, =0

TEX) TEY
Therefore, the above Equation (3.12) taken over O is integral.

Proof. Let us give an argument to why we can work over O and then reduce modulo @w™. By the
construction of the toroidal compactification by Dimitrov ([Dim04, Théoréme 7.2]), we can work
over the schemes Sx at the chosen cusps. This is because the schemes Sx are by construction
such that one has an open immersion Sxy < Sh!® and by formal completion one has also a
morphism of schemes S§ — Sx, where S% = Spf(R%) denotes the formal completion of Sx.
This induces for any O-algebra R the following commutative diagram:

HO(Shc’R,wge) —— HO(Sx x Spec(R),wf%’K) —— HO(S% x Spec(R),w%e)

I I

MEL (e R) Ry ®o R

where we have fixed a basis of the rank one coefficient module of g-expansion to construct the
bottom arrow. In particular, elements of Ré\( ®0 Ry, lift in characteristic 0 to R%. The Hecke
operators T, pv ** does not preserve components nor cusps (see for example Equation 3.10 and 3.11)
and therefore we will work with multiple g-expansion rings and direct sums of the rings R%. In
particular, one has the following commutative diagram:

HO(She g, it ) > ME (¢ Rin) @ MPL (¢ Rpy) —— (R) @ R)\,) ®0 Ron

ept cp—t

b | |

H°(She,p,,, wh' ) = M (¢; Ryn) R} ®0 Ry,

where here we use red arrows to stress the fact that we are working over R,,, and that the vertical
maps correspond to the Hecke operator 7, pv,o acting on H°(Shg, , wlé’fl).
Moreover, over O, one has a normalized Hecke operator T, pv "> on HY(Sh, w“) which is defined, as

in Definition 3.3.2, as the composition (o 71, o 75). We point out that 7, in Definition 3.3.2

2We remind the reader that e and f are respectively the inertia and residual degree of p.
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of Tpv’O over H’(Shg, , wféi) is induced by the map 7 (see discussion before [ERX17a, Definition
3.12]). One has then the following commutative diagram:

Ry @ RN, —— MEL() @ MPL () —— HO(Shy, wh)

! opt

J l l(nom,*om

R} MEL () «———— HO(She, wh)

where here we use blue arrows to stress the fact that the vertical arrows are in characteristic
0, corresponding to the Hecke operator Tp\/’O = (nomoms) on H(Sh,w®’). By construction,
the map R} @ R&_l —R{* reduces modulo @™ to (R} @ jo_l) ®o Rm—R) @0 Ry,. Putting
everything together, one has the following commutative diagram:

(nom1,+om3)

H(She, ") HO(She, wht)

[ [

Ky e MELL() 5 (c)
I
R) e}pr_l R¢
\ \
(R) @ R}, 1) @0 B R} ®0 R
] J
(s Rin) © MEC (65 Rin) 5 (¢; Run)
] J
HO(She .. 5" i HO(Sh, k)

One can therefore look at the action of 7,° on the O-modules R/ & Rl . — R{ and then
reduce modulo ™. The existence of compatible operators on H(Shg,, wf%’fz) and HO(Sh, wh*)
by construction of Emerton, Reduzzi and Xiao (see Definition 3.3.2) and the injectivity of the
g-expansion maps assure that the obtained result is the image under the operators Tp\/ " of the
original modulo @™ modular form. Here, we will compute the action of Tpv *® on the O-modules

) @ Mff,l(c’) — ML (¢) by doing O-integral steps between these modules. We will at
the end reduce the obtained equation modulo w™.

We now follow diagrams (3.10) and (3.11) to compute the corresponding effect of g-expansions.
It will then suffice to add the results to obtained the desired equation.

Let us start by the cusp oo.. Following the diagram (3.10), the sheaf wht can be trivialized as
explained in Remark 2.3.4, yielding the following chain of homomorphisms of O-modules (recall
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that the sheaves w; and ¢, are contra-variant):

k.t ’
5 (¢) ngec;u{o} agq*
lﬂ"; “Lemma 2.4.3
k.t
M0, (p) Yee(e)sufoy @ aa-160°
¢*
kg (3.13)
Mo (c) aktt Z£€c+U{0} aa—léqg
le(P)*l(nom*)
k.0 _ —e,
MEL(c) Nm(p) ™! [T,es, 7(@p) ™70 S g0y Gamred

Let us recall that in the last step, the map 7 (see [ERX17a, Section 3.10]) is obtained via the
dualizing trace map and it contains the normalization factor Hrezp 7(wy) 7. Moreover, the
middle step corresponding to the isogeny ¢ is the natural inclusion given by Proposition 2.3.5.

Let us now look at the cusp 0.. We first have to complete the diagram (3.11) in order to
start from a cusp at infinity, oo(c”). Recall that ¢p~! = B¢”, so we first re-elaborate the Tate
object in order to write it over S¢v and then we apply the map ¢q (see Section 3.1).

G ® /q(pY) —225 G @ (¢"p)*/a(p™1) 22— G @ () /q(OF)

"p)*/
l i (3.14)
Sep-1 S

The last morphism is the one defining the operator Sg/ identifying the ¢g-expansion of a HMF f at
oo(¢"p?, p~1) with the g-expansion of (S;’f)t// at oo(¢”), which we will write as Eg”ec;’u{o} bgquu.
In particular, since we haven’t yet normalized the operators S/, it is clear (see diagram (3.7))
that the elements bgr come from the rank one O-module (¢"p ® O)F ®o (¢p?0~! ® O)F —
(¢"©0)F @0 (07! © 0) and have w-valuation greater of equal than g, - >ores, (ke +267).

The first square of diagram (3.14) induces, similarly to Lemma 2.4.3, a multiplication by 8*+¢ on
the sheaves. In fact, starting from the following commutative diagram of short exact sequences

0 Op G @ ——— (G @) /q(p™) 0
124 128 \ S
0 OF G @ (¢"p)* —— (G @ ("p)*) /a(p™) 0

one obtains via the canonical identification 2.14a morphism on the O-modules of coefficients
(P2 0)' & (P ©0) = (c® 0)' @ (! © O)f
bf” —> 6k+€b£// s
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gkt
which gives a morphism of O-modules M"¢ (<) RN VLY, L (cp™1), mapping

C”P,p_ c,p_
Z bgqu — Z 6k+€b§//qﬁf = Z ﬁk—‘rébﬁ—lgq&.
g"ec{u{o} ¢’ecU{0} ge(ep~)+U{0}

Now we can go through the diagram (3.11) for the cusp O,:

oo,
My (ep™) See(er-1)sufoy B bg1¢d®
5
ko o
Mc’pfl(qj 1) de(cp—l)JrU{O} /BkJrebﬂ*lﬁqg
e
y (3.15)
Mo, (p™h) B ey, ui0) a6
l(nom*)
oyt e,
o (¢) HTezp (o) ¢ 5“2 dec+u{o} bﬁ—lin :

We recall as above that in the last step the map 7 (see Definition 3.3.2) is obtained by the
dualizing trace map and it contains the normalization factor Hrezp 7(wy) 7. Moreover, the
middle step corresponding to the isogeny ¢ is the natural inclusion given by Proposition 2.3.6. We
know what to rewrite the obtained factor using the normalized operator S;/ ° as given in Equation
3.8. Recall that ber = agr ((Sy f)er) and in particular, one has that [Ires, ()~ ke 20 =

agn ((Spv °f )c”)- Therefore, the last equation of the above diagram can be rewritten as

[T 7)o 8 S agae (S5 )er). (3.16)

TEY, e U{0}

Adding together the last equation of diagram 3.13 for the cusp oo, and Equation 3.16 for the
cusp O, gives the desired result.

O

We now recall that the weights (k,¢) € Z*¥ x Z*, satisfying Hypothesis 6, are paritious, i.e.
kr 4+ 2¢; =w € Z for all 7 € ¥. We now use the normalized diamond operator (p), as defined
in Definition 3.1.1, to set the normalized Hecke operator at p to be

Ty =T, o (P)w - (3.17)

Let us remark that changing the uniformizer w, will multiply the operator 7}, by an element in
O*. To lighten the formulas, we will denote by wﬁ” the product [] ¢y, 7 ()b

Corollary 3.3.6. Let R, := O/@™O and let (k,{) € 7> x Z* be a paritious weight, i.e.

kr + 20, = w for all T € X. Suppose that R, and the weights (k,¢) satisfy Hypothesis 5 and

Hypothesis 6. Let f € HO(ShRm,w%Z) and let f = (f‘)ceCI+’ where f, = Z§Ec+u{0} agq® is its
m F
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geometric q-expansions at the cusp oo(c). For a place p of F' above p, let o, § € F be such that
cp=ad and cp~t = Bc”, for e, " € Clf.. Then for & € oy

oe(7500 =Nmr ™ (Gey ) = %o (1))

N Vo
NE R

(3.18)

with ag-1¢ =0 if a7 ¢ ¢

Let us remark that our geometric coefficients depend on the choice of fixed representatives
of Cl;, so we can normalize the geometric coefficients to get better readable formulas.

Definition 3.3.7. Let (k,{) € Z* x Z* be a paritous weight, i.e. k, +2¢, = w for all 7 € 3. Let
f € H(Sh,w®?) and let f = (ft)ceCﬁ’ where f. = dec+u{0} agq® be its geometric g-expansions
F

at the cusp oco(c). We define the normalized geometric coefficients as

az (fc) = Nm(c)_wag(fc) .

Remark 3.3.8. With this notation, one can re-write the above Equation (3.18) as
o o — —L —{¢ o —ly h—0 o
ag((Tp f)c) = Nm(p)" 1wp e eaa—lg((<p>Wf)c/) + @, B éa@—lg(fc”) . (3.19)

Now, recalling that vy(a) =1 and vy(8) = —1, it is clear that v, (ag((Tpf)c)) > 0. In fact,

v (@g (T3 )e)) 2 min | Y (kr +26r) —ef = Y 26, Y (~br+4:) | =0.

TEX) TEY TEY
So for any ¢ € € and £ € ¢, ag((T;f)c) lies in O, making it possible to consider this operator
modulo w. Moreover, it is not the 0 operator modulo w.

Remark 3.3.9. We also would like to remark that the construction and the computations of
Theorem 3.3.4 work also for a prime ¢ C Op not dividing p, with a non-normalized map n of
Definition 3.3.2. Therefore, one obtains the action of the Hecke operator Tj:

a2((Tof)e) = Nm(@)" o “ad s (@) o) + B a5ore(for) (3.20)

where now «, 3 € Fy and ¢, ¢’ € € are such that ac¢’ = ¢q and B¢ = c¢q~ L.

Let us now proceed with the proof Corollary 3.3.6.
Proof. First of all, let us look at the last equation of diagram 3.15 and recall that ber =

agr ((Sy f)er). Since § € Fy is such that f¢” = cp~!, Nm(8) = 1é\lmmi((;,))Nm(p)_l and there-
fore the last equation of diagram 3.15 becomes

@y P agr (S Fer) =y BB ag-re((Sy )er)

R (1\1?121(&5’)0 N (p) ™ ag-1¢((Sy f)er)

= w;épﬁ_g <§I;n((;/))> aﬁflg((Nm(p)_WS;/f)c//) .
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Recall that (p)w = (Nm(P)’WSpV)_l (see Definition 3.1.1) and consider the modular form g :=
(p)5'f. Then the above term becomes

_ - N v
=B (5 D)e) =58 () asreae)

Now, since Ty = T,"% o (p)w, 1;(9) = T,"°(f). So Equation (3.12) becomes

o 1t —ty pe ( Nm(c) \"™
a&((Tp g)c) = Nm(p) lwp po‘k+£ aa*{((<p>w g)c’) + Wy pﬂ ¢ (Nm(c”)) aﬂflf(gc”) .
Now it suffices to recall that, since a¢’ = ¢p and @ € F;, Nm(«) = g;n((;,)) Nm(p) and use this
relationship in the above equation to conclude the proof. O

Remark 3.3.10. We now study with particular attention Equation (3.19) over F.

(a) If k> 1 for a 7" € ¥, and k; > 1 for all other 7 € 3, then for any ¢ € € and £ € ¢

G ((Tyf)e) = @y "B~ a1 (fer) (3.21)

where ¢ € € and 8 € FT are such that 8¢” = ¢p~!. This is because the p-valuation of the
first term of Equation (3.19) is Zrezp k; — ef, which is positive, by our assumption on the
weights kr for 7 € 3.

(b) For parallel weight 1 above p, i.e. for k; =1 for all 7 € ¥, one will have the two terms of
Equation 4.3. In fact, for ¢/,¢” € ¢ and «, 8 € F1 are such that ac’ = ¢p and S’ = cp~!. |
one has that

o (Nm(p)w—lwp—f?a—faz_lg(((p)wf)c/)) = ke t26) —ef = Y 2

TELY TED

:21 —ef =0,

TEX)

and we already know that the second term has vy-valuation equal to 0. Therefore, for any
¢ € Cand £ € ¢y, the formula stays the same

ag (T £)e) = Nm(p)* 'y, P o~ ad1e ((D)wf)e) +wp "B~ a5 1¢(fer) - (3.22)

Remark 3.3.11. We take a moment to compare our formula for the action of the normalized T}
operator on geometric g-expansion with known cases.

(a) F=Q.
For F' = Q, one has that w = p, « = p and § = p~*. In this case, for w = k£ and for any
positive integer n, one gets the very well known formula.

1

an(Tpf) = pkilap—ln(<p>f) + apn(f) -
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(b) p inert in F.
If p is inert in F', then « = p, § = p~
For any & € ¢y, one has then

150 = (R ) 1P TLr TLv ey sohusie)

TED TEX TEX

Nm(c) \ " e :
+ <Nm(c)> gp ¢ Hpé ape(fer)

TEY

! and @, = p. Moreover Nm(p) = [[,os,p and £ = 5,,.

) (pr) s (I o) + el o)

TEY

This matches the formula in Remark 3.14 of [ERX17a].

(c) k parallel, i.e. k; =k and ¢, =0 for all 7 € X.
Let £ € ¢4, then Equation (3.18) becomes

k k
ce((1,)) = Non) (G2 aarel(@he) + (Goh ) aelio

and in particular

ag((Tpf)e) = Nm(p)* tagae (P f)er) +af-se(fer)

which is the known formula. We will see in the following section that this formula translates
to the usual one on adelic g-expansions.

3.3.2 Adelic g-expansion

We will now end this chapter by looking at adelic g-expansions and in particular we will give the
action of the Ti-operator in terms of adelic g-expansions. Let m be an integral ideal of Op, then

one can write m = £¢~! for a unique ¢ € Cl; and € € Ff For such an ideal and a modular form
f, we define

C(m, ) := Nm(c) "¢’ae(fe) = 'ag(fo), (3.23)
where ag(f.) is the £ coefficient of the g-expansion of f at ¢, and ag is the normalized geometric
coefficient as defined in Definition 3.3.7.

Remark 3.3.12. These adelic coefficients obviously make sense in a field of characteristic 0 for
any paritious weight, but in characteristic p, these coefficients make sense only in parallel weight,
i.e. when k; = k and £, = 0 for all 7 € X. This is the reason why we are obliged to work with
the geometric coefficients when dealing with partial weight. For the parallel case, the adelic
coefficients are more convenient because the formulas are more compact and clean.

Proposition 3.3.13. Suppose that the weights (k,£) are paritious and that we are working in a
coefficient field of characteristic 0. Then the above definition is independent of the choice of &
and of the choice of representative c.

Proof. Another choice of £ is €€ for € € (9;§+. For such an element we have that a. = e%ag.
Therefore

Nm(e) ™ (e€)" aze(f:) = Nm(c)™ ()’ e Cag(fe) = Nm(c)™ & ag(f.) -
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Another choice of a class representative for ¢ is vc for v € F}*. By Lemma 2.4.5, one has that

Nim(ve) ™" (v6) ag(fue) = Nm(ve) ™ (v€) v ag(fe) = Nm(e)™ £ ag(f,) -
O
Remark 3.3.14. Our definition of C'(m, f) differs from the one of Shimura ([Shi78, Equation 2.24])
in the normalization factor. In fact, Shimura normalizes the adelic coefficients by Nm(c)*ko/ 2,
where ko is the maximum of the (k;)rcx. This difference is due to the fact that Shimura

considers forms that are on the sheaf w¥ ® 6%/2, while here we consider independent powers £ on
the determinant sheaf.

Corollary 3.3.15. Let the weight (k,¢) be paritious, i.e. ky + 20 = w for all 7 € ¥ and let
f € H(Sh,w®?’) be a HMF. Then in K = Frac(O) one has that

C(m, Ty f) = Nm(q)"" 1 C(mq ™", (a)w f) + C(maq, f)
and ,
C(m, Ty f) = " (Nm()" " C(mp™", (phw /) + Clmp, ) -
In particular, for parallel weight (k,0), one has that in O
C(m, Ty f) = Nm(q)*"'C(mq~", (@) f) + C(mq, f)
for any prime ideal q C coprime with pn and for q = p.
Proof. Consider Equation (3.20):
a2 ((Tuf)e) = Nm(@)" "o~ i (@) ) + B afoag(fer)
where a, 3 € F are such that ac¢’ = ¢q and B¢” = c¢q~!. Let us remark that for an integral ideal
m C Op, such that m = &c™ !, then
mg ' =¢a ()T and mg=€87N(")
and therefore by definition
C<mq_17 ) = Nm(c/>_w(a_1€)eaa*1§('d)
C(mq,-) = Nm(c")™™(B7'€) ag1e(-er)
Putting everything together, one gets that
C(m, Ty f) = £ ag((Tyf)e)
= Nm(@)* a0 (0w £), + EB a1 (for)
= Nm(q)"~' C(mg™", (q)w f) + C(ma, ) .
The same arguments work for the normalized Hecke operator 7 = @y E"Tp, using equation
(3.19).
For parallel weight (k,0), the adelic coefficients C'(m, Tj, f) are by definition (see Equation (3.23))
given by ag((Tgf)c), where § € F{ is an element such that me = (£). So in particular, these

coefficients are integral, since ag((Tyf):) € O. The formula follows from the adelic formula for
Ty. Let us also point out that for parallel weight 7,7 = T},. O

Remark 3.3.16. The formulas obtained in Corollary 3.3.15 are a generalization of previous known
formulas for parallel weight and non-normalized T}, Hecke operator, found for example in [DW20,
Theorem 1.2].
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Chapter 4

Unramifiedness of (Galois
representations modulo @

In this chapter we will only work with paritious weight forms, i.e. Hilbert modular forms of
weights (k, () € Z* x Z*. such that k, + 2(, is independent of 7, i.e. there exists a w € Z such
that k, +2¢, = w for all 7 € X Tt is clear that it is enough to consider a couple (k,w) € Z* x Z
to describe such weights. Therefore in what follows we will denote the sheaf of differentials of
paritious weight (k,w) by

W(k7W) = ® (w’?kT ®Osht0r 5§(W_kT)/2) .

TEX

Definition 4.0.1. We denote by M ) (n; R) := H(Shg, ™) the R-module of Hilbert mod-

ular forms of level n and paritious weight (k,w) with coefficients over an O-algebra R, and by

Sk ) (n; R) = HO(ShR,wg’W)(—D)) the submodule of cuspidal forms. (see Chapter 2 for more
details.)

Recall that we have Hecke operators Ty for ¢ C Op a prime not dividing pn acting on
Mpw(n; O). Moreover, in Chapter 3, we constructed normalized diamond operators (q), for
any prime ideal ¢ C Op, and we have recalled the construction by Emerton-Reduzzi-Xiao of a
normalized Hecke operator 77 for p C OF a prime above p.

Our goal is to show the following generalization to non-parallel paritious weight 1 Hilbert mod-
ular forms of results of Dimitrov-Wiese ([DW20, Theorem 1.1]) and of Emerton-Reduzzi-Xiao
([ERX17a, Theorem 1.1]).

Theorem 4.0.2. Let p be a fized prime of F above p. Let (k,1) be a paritious weight such that
kr =1 forall T € %y Let f € Sy1)(n,F) be a cuspidal Hilbert modular form and assume that
f is common eigenvector for the Hecke operators Ty and (q)1 for all q outside a finite set S of
primes of F, containing {v : v a place of F,v # p and v|pn}. Then there exists a continuous

semi-simple representation
pf - GF — GLQ(]F) s

which is unramified at all primes q not dividing pn and at q = p, and is such that the trace of
p¢(Frobg) equals the eigenvalue of Ty on f for all such primes q.

In order to prove this theorem we will need many ingredients. Firstly, we will need a way to
liftt modulo w modular forms to characteristic 0. As explained in Chapter 2, one can only hope
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to lift paritious weight forms, this explains why we restrict to work with paritious weight forms
and not with general partial weight forms. Lifting forms will be achieved through an exceptional
sheaf of paritious weight 0, which will be described in the next section. This sheaf is a variation
of the exceptional sheaf defined in [RX17, Lemma 2.7]. Moreover, we will work in the generality
of Hilbert modular form modulo @™, in order to lay the fundation to extend the above result to
the entire Hecke algebra (see section 4.4). Secondly, we will need to work with the generalized
partial Hasse invariants as defined by Reduzzi and Xiao in [RX17, Section 3|. In Section 4.2, we
will recall and prove some of their properties. Finally, we will use the doubling method of Wiese
([Wield]) and follow the strategy of Dimitrov-Wiese (|[DW20]) to finish the proof to prove our
result. This will be done in the remaining sections.

4.1 Lifting modulo @™ Hilbert Modular Forms

It is known that Hilbert modular forms mod w™ of low weight are not necessarily all liftable in
characteristic 0. However, if one can embed those, e.g. via multiplication by powers of partial
Hasse invariants, as a Hecke stable subspace in liftable weight, then by a result of Deligne and
Serre (|[DS74, Lemme 6.11]) the corresponding systems of eigenvalues would lift as well and thus
one can attach Galois representations to the original mod w™ eigenforms. In particular, one
knows that for parallel weights, there always exists a big enough weight where the forms can
be lifted in characteristic 0, see [DDW19, Lemma 2.2]. This is not the case for partial weight
forms. Because of the description of the geometric g expansion (2.4.1), one can only hope to be
able to lift cuspforms for some "big" enough weights. This is the object of Proposition 4.6 of
[RX17], where Reduzzi and Xiao prove that all weights in a "sufficiently positive direction" are
liftable weights for cuspforms. This direction is given by a specific weight, denoted ex, which
looks mysterious at first. However this direction can be given a heuristic explanation by the
need for ampleness in order to lift the forms. Moreover, moving in the direction called ex by
Reduzzi-Xiao brings forms in what Diamond and Kassaei (see [DK17], [DK20]) call the minimal
cone, where they will be of minimal weight. Let us recall the definition of Diamond and Kassaei
(see [DK17] and [DK20| for unramified p) of the minimal cone.

Definition (Definition 3.3.1). We say that a weight vector k € Z* belongs to the minimal cone,
denoted C™™  if for every p|p:

ok iy >k pforallj=1,..., fpandi=1,...,ep —1;
Tp. To.

[ ka(U > kq—(e?’) for all _] = 1, .. -fp'

P,J p,j—1

In what follows, we will construct an exceptional sheaf, along the lines of Reduzzi-Xiao
(|JRX17, Lemma 2.7]), show some of its properties and finally use this sheaf to prove a lifting
lemma for paritious weight HMFs.

4.1.1 Exceptional Sheaf

Inspired by the exceptional sheaf of differentials defined by Reduzzi and Xiao in ([RX17, Lemma
2.7]), we set the exceptional weight to be the weight vector ex € Z* such that ex ) = 2(2i—ey—1)
P

forall plp, j =1,...,fy and i = 1,...,ep. In particular, we will call exception;zl sheaf on YIFF)R
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the line bundle:

o ep
- (ex,0) _ . ®2(2i—ep—1) @ (ep+1—2i)
S = @@ (718 e 57 @

P|P j=1 i=1 P37 P,

which descends to a line bundle on Sh]IF)R. We now proceed to adapt results and proofs of
Reduzzi-Xiao [RX17] to our exceptional sheaf.

Lemma 4.1.1. The line bundle wf;x’o) 1s relatively ample with respect to the natural projection
YER — YRP.

Proof. This follows exactly from the same argument as Lemma 2.7 of [RX17]. O

Lemma 4.1.2. The line bundle wéﬁx’o) defined over YHE)R’tor descends to a line bundle, denoted

wéei?g, over the minimal compactification Y[PF)R’mm, which is relatively ample with respect to the

. . PR,min DP,min
natural projection Yp — Yp .

Proof. Since the sheaves 0, are all trivial over Ong(see Equation 2.6), we will be interested

only in the k-part of the sheaves, i.e. in sheaves of the form w@PR’mr = Q,ex wff. By works

of [Rap78] and [Cha90], we know that for k € Z*, the sheaf d)@PRytor descends to the minimal

compatification YPRmIn if and only if k is parallel. However, the situation is different on the

special fiber, 7 : Y]IFDR’mr — Y%;R’mm. Going through the proof of [Dim04, Théoréme 8.6 part

(vi)], for an O-algebra R, one sees that in general the sheaf wf{ pr.tor descends to an invertible
R

sheaf on YZR’min if and only if it can be trivialized on S&./OF  x Spec(R), in the sense that it is

free of rank 1 on the structure sheaf O, prior. Consider a cusp C = (a,b, H,7,j, A\, &) and let SQC
R
be as in [Dim04, Théoréme 7.2|, then the pullback of W, pr.tor to S{e x Spec(R) is canonically
R
trivial and isomorphic to

(a® 0)* ®o R®0o Osy.. (4.2)

which in particular tells us how a unit u € O;n acts on this sheaf, i.e. via multiplication by
u¥ =[], ex 7(w)*. In fact,

HO (SQC/O}X«“,n X Spec(R),w’;gR,m) = { Z a5q5 tag € R, a2 = ukag for all uw € O;ﬂn}’
£eX+U{0}

which is a projective module, but not free of rank 1. Actually, we want this module to be
isomorphic to

H° (SQC/O;;’“ x Spec(R), OYPR,tor) = { Z agq® s ag € R, ay2¢ = ag for all u € (9;,57“},
" cexX+tu{o}
i.e. the line bundle wz pr.tor Will descend to YER’min if and only if u”* acts trivially in R. Therefore,
R

in order to see if the line bundle w** descends to the minimal compactification YIE R’min, it suffices



64 Chapter 4: Unramifiedness of Galois representations

to verify that u®* =1 in F. In fact,

TEY
_ H H H (7,) 2(2ifep71)
plp j=1i=1
and, since Tp(zj) = Téffl) mod w for all ¢ € {1,...e, — 1}, the above product in F becomes:

uex/2 H H (1) p1 2(2i—ep—1) =1,

plp =1

(ex,0)

since Y 5% (2i — ey — 1) = 0. The relative ampleness of W min With respect to the natural map

Y];)R min_ Yﬂ? Pomin g0 ows by the previous lemma. O

4.1.2 Lifting Lemma

In order to achieve a lifting lemma, we want to transform the exceptional line bundle into an
ample line bundle on the minimal compactification YPR M We will denote by t the element
(1,...,1) in Z*.

Lemma 4.1.3. There exists a positive integer Ng € Z~q such that for any N > Ny, the weight
vector Nt + ex lies in the minimal cone C™™.

Proof. This follows immediately from the definition of the minimal cone, Definition 3.3.1, and
from the definition of the weight vector ex. O

We fix once and for all such an integer Np.

Lemma 4.1.4. There exists an even integer N > Ngo such that the line bundle w(Nt+eX 0,

PR,min

YIFF)R T descends to an ample line bundle on the minimal compactification Y . Szmzlarly,

for the same N, the line bundle wI(FNHeX 0 descends to an ample line bundle on the minimal
PR,min

compactification Shy
Proof. This follows from the exact same argument as in [RX17, Lemma 4.5], using relative
ampleness from Lemma 4.1.2.

O

We fix once and for all an even integer N as in Lemma 4.1.4, i.e. such that the line

bundle w]%ereX’ 0 Jescends to an ample line bundle on the minimal compactification ShPR min

Lemma 4.1.5. For any paritious weight (k,w) € Z* x Z, there is an integer ro = ro(k,w) such
that for any r > rg and any i > 0 one has

Hi (ShPR,tor7 w(k+r(Nt+ex),w)(7D)) —-0.

Proof. This follows form the exact same argument as in [ERX17b, Lemma 4.2.2], using the
ampleness from Lemma 4.1.4. O
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We now have all the ingredients to prove the following Lifting Lemma.

Lemma 4.1.6 (Lifting Lemma). For any paritiotus weight (k,w) € Z* x 7, there exists an
integer ro = ro(k,w) such that for any r > rq there is a natural Hecke equivariant isomorphism:

Sk—}—r‘(Nt—}—ex),W (m 0) ®o (9/7ﬂm(9 = 8k+r~(Nt+ex),w<n; O/me)

Proof. Let us set k := k + 7 - (Nt + ex) and R, := O/w™0O. Recall that we denote by D the

divisor of the cusps. The sheaf wFw) g 5 locally free Ogytor-module of rank 1, and therefore one
has a short exact sequence of sheaves on Sh**

0 — wEW (D) 2 k) (D) — W (D) 0,

which induces a long exact sequence in cohomology

0 — HO(Sh, w ") (D)) =5 HO(Sh,w®W) (~D)) — H(Sh,wE*) (~D)) —
— HY(Sh,w®")(~D))

Now for k as defined as above, Hl(Sh,w(’}’W)(fD)) = 0 by Lemma 4.1.5, and by definition of
cusp forms (see Definition 4.0.1), one has a short exact sequence of O-modules

0 — ;. (00) ey Sio(:0) — 8;,(,0/m™O) — 0,

which yields the desired result.

4.2 Generalized partial Hasse invariants

In this section, we will recall the generalized partial Hasse invariants defined by Reduzzi and
Xiao (see [RX17, Section 3.1]) and we will use them to construct a form, whose weight is in the
"liftable direction".

Definition 4.2.1 (Section 3.1 [RX17]). For every 7 € ¥, there exists a Hilbert modular form

0 -1 o (1)
H <Sh]p,w o ® W ep) ]F) , AT =7,
P]’ p] 1
hr €

<Sh]F,w(Z>F®w(l 1 >, lfT—T( fori # 1

Tp,5° Tp.j

called the generalized partial Hasse invariant. We will denote by w” the weight of the generalized
partial Hasse invariant h.,.

In particular, the generalized partial Hasse is not a paritious weight form, and therefore it
cannot be lifted to characteristic 0. However, using the trivializations ([RX17, 3.2.1])

5(1)]F®6(€p) .

~ OShtor and 5 (1) F ® 5 (,L 1) = OShtor 5
To.j> To,j—17

Tp.i>
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one can view

» WRNE)
(Sh]F,w (1) X (,d (ep) X 6 (1) F ® 5 <€p> > ) lf T = Tp,j
g F Tog oF Tpg—10

=

T

(Sh]F,W(Z)F@al??I) ®5()]F®5<1 1>F> if 7= ()forz;él
»J F

Iy

as a paritious weight w = 0 Hilbert modular forms. In particular, h2 € H°(Shp, wI(szT’O)).

By Lemma 1.4 of [DDW19], for any 7 € X, the generalized partial Hasse invariant h; has
geometric g-expansion equal to 1 at each cusp oo(c). Therefore, also h% has geometric g-expansion
equal to 1 at every infinity cusp oo(¢). So multiplying Hilbert modular forms by these elements
will not change their g-expansions.

4.2.1 Working over I

The following lemma shows that there exists a product of generalized partial Hasse invariants
modulo p that lives in the direction of the liftable weight of the previous section.

Lemma 4.2.2. There exist a product of partial Hasse invariants hex lying in H° (Sh]p, w]gfie"’o) ,

where Kex = (p — 1)(Nt + ex). Moreover, for any ¢ € €, the g-expansion of hex at the cusp 0o(c)
is 1.

Proof. Let us first remark that kex belongs to the minimal cone C™®, which is included in the
Hasse cone CH2%¢ (see [DK17, Introduction|). Therefore our weights are non-negative. Now the
statement can be proven via linear algebra methods on the weights of the generalized partial
Hasse invariants of Definition 4.2.1. Let p|p be a fixed prime ideal of Op and let W, be the
matrix of weights of generalized partial Hasse invariants h, for 7 € ¥,. Then W, is of the form

-1 1

o1
P -1

where each block has dimension e, x e, and the matrix has dimension e, f,. A weight vector
ky = (kr)rex, can be then written as an integer linear combinations of weights {w”},cyx, of

generalized partial Hasse invariants if and only if Z Z ’y Pk () is divisible by pfr — 1 =
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det W,!. Tt therefore suffices to prove that p/v — 1 divides Y 5", Zf‘;lpj(exr(i) +N)(p —1). Let
P

us at this sum.

ey Jp €p €p
Zij(eXT<i)_+N)(p—1): <(ep—1)+p~2(2i—ep—1)+p2~Z(2i—ep—1)+...
i=1 j=1 P i=1 i=1
’ ep—1
ol Z (2i—ep—1))(p—1)
i=1

+N (1 +pep +pPep + ...+ ey + pfr(e, — 1)) (p—1).

Recall that Zfil (2i —ep — 1) = 0, therefore, after some computations, the above equation
becomes

ep  Jp
DD Plex o -1 = @~ 1)1 —e) o)+ (5~ 1) L -ptpey) .

i=1 j=1

which is cleary divisible by pfr — 1.

Now, for any ¢ € €, and for any 7 € X, the g-expansion of the partial Hasse invariant h, at oo(c)
is 1, by [DDW19, Lemma 1.4]. Therefore, any product of partial Hasse invariants will still have
g-expansion at the cusp oo(c) equal to 1. O

Lemma 4.2.3. Let q C O be a prime ideal not dividing pn. For any paritious weight (k,w) €
7> x 7, and any form f € Stkw) (W F), one has that

hex(qu) = Tq(hexf) :

Proof. We will verify this on geometric g-expansion using the explicit description of the action of
Hecke operators given by Equation (3.20). Recall that the Hasse invariant heyx has g-expansion
equal to 1 at all cusps oco(c) (by [DDW19, Lemma 1.4]), therefore if f. = Z§€c+ agqt for ¢ € €,

then (hCX f)c = Z§€c+ agqf. Moreover, since heyx has paritious weight 0, hey f is still paritious of
weight w. Let ¢ € Op be a prime ideal not dividing pn, and let ¢, ¢” € € and a, 8 € F such
that ¢q = ac’ and ¢q~! = B¢”. Then by Equation (3.20),

ag ((Tq(hexf)>c) _ Nm(q)W_104_(Wt_k)/2+nex/2a2*1§ (<<q>whexf)c’)
+ B_(Wt_k)/2+ﬁex/2a2—lg ((hexf>c”) .

Now let us look more closely at affex/2 = P~DEt+ex)/2 - The same arguments will apply to 3.

'We thank Fred Diamond for pointing out this to us.
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As already seen before

H H ﬁ T(Z) (22 ep—1)

p|p] 1:=1
1 —en— 1
= H HT( ) i21(2i—ep=1) , because Tp(zj) = Tp(lJr ) mod w,
plp =1

Cp
=1 , because 2(21 —e—1)=0.
i=1

p—1)Nt/2

Moreover a! = NrnF/Q(04)(1”_1)1\1/2 =1 mod w, since vp(a) = 0 and N is even. Therefore

one has that:

ag ((Tq(heXf))c) = Nm(q)vwlaiga;—lg((<q>Wf)c/) + ﬁigaz;—lg (fc”)

4.2.2 Working in R,, = O/w™O

In order to work over rings R,,, = O/w™Q, one has to lift partial Hasse invariants and construct
a product of partial Hasse invariants living in liftable weight with coefficients over R,,.

Liftings of 22 modulo @™

We recall here how Reduzzi-Xiao (see [RX17, Section 3.13.1]), via a method of Emerton, Reduzzi
and Xiao (see [ERX17b, Section 3.3.1] construct lifts of the generalized partial Hasse invariants.
Recall that we denote by w™ the weight of the partial Hasse invariant h,, for 7 € 3 (see Definition
4.2.1).

m—1

Lemma 4.2.4. Let M be a positive integer divisible by 2p . For any T € X, there exists a

Hilbert modular form
BT,M c HO (ShRma E{Mw 0)) )

which is locally the = Mih power of a lift of h2 € HO(Shy, w (2wT7O))'

Proof. Let U be an open affine covering of Sh**. Let U € U be an open affine subscheme of Sh**
and let h2 TUs € HY(Up, w(zw 0))

Hasse invariant at 7 to Up = U Xgpec(o) SpeckF, for any 7 € X. The form h? ~.u. can be lifted

arbitrarily to an element h, Ug,, € HY(Ug,, wg:: 0)) where Ur,, = U Xgpec(0) Spec(Ry,). Since

denote the restriction of the square of the generalized partial

M is a positive integer divisible by p™ 1, the lift hITWU is independent of this arbitrary choice.

We now deduce that the sections {h Yveu glue together into a global section

TUR

hT M EH (ShRm,wE%Mw 0)) s

which is independent of the choice of affine covering U of Sh*" and locally is the 5 Mth power of
a lift of h2 € HO(Shg, w™™?)). O
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Lemma 4.2.5. For any integer m > 1, let K, = p™ Y(p — 1)(Nt + ex). Then for any integer
m > 1, there exists a Hilbert modular form hexm € HO (ShRm,ng;"’o)), which locally is the

p™t-th power of a lift of hex. Moreover, for any ¢ € &, the q-expansion of hex,m at the cusp
oo(c) s 1.

Proof. By Lemma 4.2.4, we know that for any 7 € 3, we can construct a Hilbert modular form
BT,me_1 € HO(ShRm,wg:MAWT’O)), which is locally the p™~!-th power of h2. In particular, it
will then have g-expansion equal to 1 at any cusp co(c) for any ¢ € €, since h2 has g-expansion
equal to 1 at any cusp oo(c), by [DDW19, Lemma 1.4]. Moreover, by Lemma 4.2.2, we know

(/"v'cxvo)
F

that there exists a product of generalized partial Hasse invariants hey, € H° (Sh]p, w ), with

Kex = (p — 1)(Nt + ex). Let us write the product hex = [], 5 B2, with ¢; € Z. Then taking

hex,m to be [ cx iLiTme,l, which is an element of H° (ShRm,wgi_l)pm_l(NHeX)’o)), gives the

result. Ol

Lemma 4.2.6. Let q C Of be a prime ideal not dividing pn, and let m be an integer m > 1.
For any paritious weight (k,w) € Z* x Z, and any form f € Skw) (W Rin), one has that

hex,m (qu) = Tq (hex,mf) .

Proof. We will verify this on geometric g-expansion using the explicit description of the action of
Hecke operators given by Equation 3.19. Recall that the Hasse invariant hex ., has g-expansion
equal to 1 at all cusps oco(c), therefore if f, = dec+u{0} agq® for ¢ € €, then (hex,mf)c =
Z&HU 0} agqg. Moreover, since hex,m has paritious weight 0, hex,m f is still paritious of weight
w. Let ¢ C Op be a prime ideal not dividing pn, and let ¢/,¢” € € and «,8 € F; such that
¢q = ac’ and ¢! = B¢”. Then by Equation 3.19

ag ((Tq(hex,mf))c> _ Nm(q>w—1a—(Wt—k)/2+Hm/2(1;71& (((q)whex,mf)c')
+ ﬁ—(wt—k)/2+ﬁrn/2a%71€ ((hex,mf)cn) .

Km m=1(p—1)(Nt+ex)

Now let us look more closely at o™ = of The same arguments will apply to 3.
As already seen in the proof of Lemma 4.2.3, since vy(a) = 0, aP=Dt+ex) = 1 164 @ and

therefore a?™ ™' (P=D(t+ex) = 1 104 ™. The above equation then becomes

a2 ((Tylhexmf),) = Nm(@)" o= 0205 (@) f)e) + B~ a5 (for)

4.3 Unramifiedness modulo @

Here we proceed to prove Theorem 4.0.2. The existence of the representation py : Gp —
GLy(F) of Theorem 4.0.2 follows from a standard argument, which is presented in the following
Proposition. The difficulty of the proof of Theorem 4.0.2 lies in showing that the representation
py is unramified at p.
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Proposition 4.3.1. Let p be a fized prime of F' above p and let S = Supp(pn). Let (k,1) be a
paritious weight such that k. = 1 for all T € . Let f € Sy.1)(n,F) be an eigenform for all
Hecke operators Ty, with eigenvalues A(f,q), and for diamond operators (q)1, with eigenvalues
€(q), for q a prime ideal of O, q ¢ S. Then there exists a semi-simple Galois representation
pr : Gp — GLo(F), which is unramified at all ¢ & S and such that tr(ps(Frobg)) = A(f,q) and
det(ps(Frobg)) = e(q) Nm(q)" !, for all q ¢ S.

Proof. By Lemma 4.1.6 there exists an integer r¢ such that for all » > rg, one can lift paritious
weight cuspidal Hilbert modular forms modulo p in characteristic 0, i.e.

Sk+7‘~(Nt+ex),w (I‘l; O) QF ~ Sk+r~(Nt+ex),w (l‘l; F) :

Moreover, by Lemma 4.2.3, one knows that for any integer  the form hg, f will still be an eigen-
form for all Hecke operators Ty, for q as in the hypothesis, with same eigenvalues as f. Now
it suffices to lift Al f for r > ro and to apply a theorem of Deligne-Serre [DS74, Lemme 6.11]
to obtain a Galois representation p : Gp — GL2(O) such that tr(p(Frobg)) = A(f,q) mod w,
for all ¢ ¢ S (see [Tay89, Theorem 2|). Therefore we take ps to be the semi-simplification
of the reduction modulo w of the representation p given by Deligne-Serre. Moreover, the ob-
tained representation is such that det(py(Frobg)) corresponds to the eigenvalue of the operator
(q)w Nm(q)"~! (see [Tay89, Theorem 2]). O

In order to show that py is unramified at p, we will apply the doubling method, see [Wiel4].
We will therefore need two ways to go in higher weight. One is given by multiplying by the Hasse
invariant hex and the second one is given by the Frobenius Operator.

4.3.1 Frobenius Operator

Recall that p is a fixed prime of O dividing p, we take a moment to recall here the action
of the normalized Hecke operator 77 on g-expansions, in the paritious weight (k,w) setting.
Let (k,w) € Z* x Z be a paritious weight. Let f € Stkw)(m;0) and let f = (fc)cee, Where
fo = Z§€c+ a§q§ is its geometric g-expansion at the cusp oco(c). Recall that we denote by
ag(fo) = Nm(c)™™ag(f) the normalized geometric coefficients. Let «, 3 € F be such that
ep = ac’ and cp~! = B¢, for ¢, ¢/, ¢’ € €. Then for any ¢ € ¢, Equation 3.19 can be written as
o o - kp— 2 (k— o kp— 2 n(k— o

a’§ ((Tp f)c) _ Nm(p)w 1@;(3 p—Wtp )/ O((k Wt)/2a0ﬁ1§ ((<p>wf)c’) + wé p—Wtp)/ ﬁ(k Wt)/2a571£ ({c”))'

4.3
Since we will be working between two sets of paritious weights, in what follows we will add the

(

weights to the notation of the Hecke operator, i.e. will write TpO (W) for the normalized Hecke

operator Ty acting on My, (n; R).

Definition 4.3.2. Let (k, 1) € Z* x Z be a paritious weight such that k. = 1 for all 7 € %,. We
define the Frobenius operator at p on modulo p modular forms

‘/p : S(kJ)(tI; IF) — S(k+nex’1)(n; F)

to be
Vo(f) == ()7 (hex - (T 0V 1) = T R (g, - 1)) 2

2Recall that we have defined normalized diamond operators in Section 3.1.
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We now proceed to calculate how the Frobenius operator acts on geometric g-expansions.
Proposition 4.3.3. Let (k,1) € Z* x Z be such that k; =1 for all T € ¥,. Let f € S,y (n, F)
with f = (f)cee, where fo = Z£€c+ agq® is its geometric q-expansion at the cusp oo(c). Then for
any £ € c4

ag((Vof)e) = o~ 0208 (o)
where a € Fy and ¢ € € such that o’ = ¢p, and a1 =0 if a7 ¢ ¢

Proof. Let us recall that the g-expansion of hex f and f are the same. Now since k;+(p—1)(N +
ex;) > 1 and k, =1 for all 7 € X, by Equation 3.21, one has that for £ € ¢

az ((Tpo7(k+'§ex:1) (hexf>>c) — wlgp71)(th+eXP)/25_(t—k)/2+ﬁex/2a%71£ ((hexf)c”)

(p—l)(th+exp)/25ch/2ﬁ_(t_k)/2a%—1€(fC”)
=B~ (t— k/z ° (fc”)

where ¢ € ¢ and B € Fy are such that ¢’ = ¢p~!. The last equality is given by the fact
that wép ~L(tptexy)/ 2B(p—1(Mt+ex)/2 — 1 iy F. We will now show this fact. Let us recall that
vp(B) = —1, and therefore 7(wy,)7(B) € (’);p for any 7 € ¥,. In particular, we can decompose
ngp /Qﬁex /2

as follows:

ZUexp /QBexp /2 _ H H ( (z) B)) (2i—ep—1) o,

7j=1l=1

where 8o == [, p.vzp [Lres, 7(8)7" /2 is an element of ©*3, which reduces to 1 modulo w. In

fact,
fo=TI II )"

vlp,v#p TEDY
= H HT(I) i (2imep—1) , because T(z]) = quijl) mod w
vlp,v#p j=1
p
=1, because 2(22 —e—1)=0.
i=1
Moreover, the same arguments apply to
°p i (2i—ep—1) fo Zfi (2i—ep—1)
HH( ()5) EH( (1) (l)w)) 1
J=1li=1 j=1
€p
=1, because Z(Qz —e—1)=0.
i=1

Therefore wépil) “9/23(p=1)ex/2 = 1 mod . It suffices now to show that wép_l)th/QB(p_l)Ntﬁ =
1in F. Let us first remark that
@y Nm(p) ™" € Z)

3This is because for any place v dividing p, different from p, 8 has v-adic valuation equal to 0.
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In fact, vy(Nm(p)) = vp(p’*) = ey fy = #%p. Therefore, since we are now working with parallel
weights (p — 1)Nt, /2 and (p — 1)Nt/2, one has that

wép—l)th/Q/B(p—l)Nt/Q _ wgp—l)th/Q Nm(ﬂ)(pfl)lﬂ/?

(p—1)N/2
_ w}(apfl)th/Q Nm<p)—(p—1)N/2 (;;Ei(;/))) P c Z;

which is congruent to 1 modulo w, by Fermat’s little theorem.
Let us now look at the g-expansion of 1) f in S(k’l)(n; IF). Since kr =1 for all 7 € 3, for any
& € ¢y one has by Equation 4.3

a¢ (hex (T BV 1)) = ag (T 5V f)e) = aW02a8 L, ()1 f)e) + B0/ 2054 (for),

where ¢ € ¢’ and a € Fy are such that ac’ = ¢p, and a,-1, =0if a1 ¢ ¢,
Combining the two formulae and since diamond operators commute with Hecke operators and
with multiplication by partial Hasse invariants, one has that for any & € ¢,

ag ((heX(T;,(k,l)f) _ T;,(k—}—fiex,l)(hexf))c) _ a—(wt—k:)/Qagﬁlg ((<p>1f)c’)
Therefore ag ((Vaf)c) = a_(""t_k)/za;_lé(fc/). O

Remark 4.3.4. The adelic g-expansion for the action of the Frobenius operator makes sense only
for parallel weights (see Remark 3.3.12), since we are working modulo w. Therefore the HMF f
has weights w = 1, k, = 1 for all 7 € X, and the action of the Frobenius operator is then:

C(m, Vo f) = Nm(c) lag (Ve f)e) = Nm(¢) Lag-1¢(fe) = Clmp~, f)

for m an integral ideal of Op, and m = £c¢! for unique ¢ € € and & € ¢,. This is the same
formula of [DW20, Proposition 3.6 or as in [DDW19].

Proposition 4.3.5. Let (k,1) € Z* x Z be such that k; =1 for all T € ¥y. Let f € S,y (n; ),
then " :
O’ + ex,l
Tp " (%f)zhexf

Proof. 1t suffices to check this on g-expansions. So let ¢ € € and f, = Z§Ec+ agqf be the ¢-
expansion of f at the cusp co(c). Then for £ € ¢y, as in the proof of Proposition 4.3.3, one has
that

o o,(k+kKex,1 -1 exp)/2 _ x ~(t— °
ag((Tp (k+ )(%f))c) — wép )(Ntptexp)/ B(P 1)(Nt+e )/26 (t k)/2aﬁ*1§((%f)c”)
— 5*(t—k)/2a%_15((fo)cn) ,

where 8 € Fy and ¢’ € € are such that 8¢’ = ¢p~!. Now we want to apply the previous
Proposition to the cusp oo(¢”), and since ¢’p = S~ L¢c, one has that

ag((T;v(k+nex,l)<%f>)c) — g2 (5(t—k)/2a§(fc))
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Proposition 4.3.6. Let (k,1) € Z* x Z be such that kr =1 for all T € %,. Let f € S,y (n; F)
be an eigenform for all Ty and (q)1, for q a prime of Op, q € S, and suppose that it is also an

eigenform for Tpo’(k’l) and for (p)1 with eigenvalue respectively A°(f,p) and e(p).

1.

2.

3.
Proof.

The forms hex - f and V, f are F-linearly independent.

The F-vector space W := IE‘(heX - f) &) IF(V},f) is stable under Tpo’(k+k"ex’1), which acts via
the matriz (A_(GJE;;) é) with respect to the basis {hex, Vy f}. In particular, T,f (ktrel) 4o
inwvertible on W.

The Hecke operator Ty in weight (k 4 kex, 1) acts scalarly on W.

1. Let us remark that by Proposition 4.3.5 V, f is not 0. Suppose that there exists
A € F* such that V, f = Mhex f. Let ¢ € € and £ € ¢4, then

ag(Vof)e) = X ag((hexf)e) = A ag(fe) -
By Proposition 4.3.3, the above equation becomes
Oé_(""t_k)/Qa‘;,lg(fc/) =\ ag(fc) ,

where ¢/ € € and « € F} are such that o’ = ¢p, and a1 = 0if a1 ¢ ¢/, Let us consider
the set {n € Z>¢ : there exists ¢ € € and £ € ¢y such that ag(fc) # 0 et vy(§) = n}. This
set is non-empty since f # 0, and therefore it admits a minimum, ng. Let ¢ and £ € ¢t
the elements realizing the minimum ng. Then one has the following contradiction

0#Nag(fo) =a W22, (fo)=0.

In fact, since vy(ar) > 1, vy(a™'€) < ng, which by minimality implies that a,-1¢(fe) = 0.

. Let us recall that by Proposition 4.3.5, we already know that T;’(k+'€e"’1)(V‘3f) = hex f € W.

Now we will look at the action of TP(HHQ"’U on hey f. By definition of Vj, we can write

(I Vf = hex (T9 D §) — Tty f),

which gives the desired result for the matrix (A_(EJEQ;) (1)) . This also means that T; (ktriex,1)

is annihilated by X2 — Tpo’(k’l)X + (p)1 on W.

. It follows directly from Lemma 4.2.3 and by commutativity of Hecke operators (see Propo-

sition C.1.1 and Proposition C.1.3).
O

4.3.2 Nearly-ordinary Hilbert modular forms
The following definition is due to Hida (see [Hid89b|) (cf. also [Dim05, Definition 1.3]).

Definition 4.3.7. Let f € Sy, ) (n; O) be a Hilbert modular eigenform. We suppose that O
contains all the Hecke eigenvalues of f. We say that f is nearly-ordinary at p if its Ty -eigenvalue
is a p-adic unit, i.e. it lies in O*.
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We recall the reader that we work with arithmetic Frobenius elements, therefore we normalize
the Artin recipocity map so that a uniformizer wy, is sent to an arithmetic Frobenius Frob,.
Moreover, we take a cyclotomic character xcye corresponding via global class field theory to the
idele class character xeye @ F1 \A; 5 — Zy sending y to [, Nm;pl/Qp(ypN y¢|z'. In particular,
it is such that Xcyc(wq) = Nm(q) for q not dividing p and Xcye(@p) = Nm(p) [] 5, 7(wmy) LA
The following result is due results of Wiles (|Wil88, Theorem 2|) and Hida ([Hid89a, Theorem
L.]) and by local-global compatibility for Hilbert modular forms by works of Saito ([Sai09]) and
Skinner ([Ski09]).

Theorem 4.3.8 (Hida, Saito, Skinner, Wiles). Let (k,w) be a paritious weight such that k; > 1
Jor all 7 € Xy, Let f € Sw) (n,0) be a nearly-ordinary at p Hilbert modular eigenform with
Ty -eigenvalue N(f,Ty) € O* . Then the associated Galois representation py : Gp — GLa(O) is

such that
X1 %

where x1 and x2 are characters such that on the inertia they are respectively obtained by com-
posing the Artin reciprocity map I, — O;‘p with the maps

X1 O}X,,p — 0%, H () ke tw=2)/2,
TEY)

X2 : O}X?’p - O0%, H T(a:)(w_k*)m.

TEYY

Moreover, x2(wyp) = ay, the unit root of the normalized Hecke polynomial

X2 =M THX + e(p)xe (@p) [ m(@p)* ", (4.4)
TEX

where €(p) is the eigenvalue of f for the operator (p)y,.

Remark 4.3.9. Let us remark that by Equation 4.4, oy is congruent to A(f, T;) modulo w. This
is due to the fact that we are supposing k; > 1 for all 7 € X;,.

Remark 4.3.10. We take a moment to discuss the Hecke polynomials. By our choice of convention
and normalization, the representation py is such that the characteristic polynomial of p¢(Frobg)
is given by:

X2 = A(f, Ty)X + e(q) Nm(q)" ", (4.5)

where €(q) is the eigenvalue of (q), for the eigenform f. Now, the Hecke operator T}; is normalized
and by abuse of notation we can see it as

1y = ] r(ewp) ",

TEYY
where the operator T}, is not well defined, but we use it here to highlight the different normal-
ization taken for the Hecke operator at p compared to the operator T;. In particular, the Hecke
polynomial of Equation 4.5 might not have integral roots for ¢ = p. So the polynomial of Equa-
tion 4.4 is obtained by multiplying the roots the Hecke polynomial of Equation 4.5 by the factor

s, (@)%

4Qur choice of cyclotomic character is the inverse of the cyclotomic character used by Barrera, Dimitrov
and Jorza (see [BDJ17, Notation|). This is because they work with geometric Frobenius and we want to
work with arithmetic Frobenius.
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Remark 4.3.11. Let (k,1) be a paritious weight such that k, =1 for all 7 € 3,. We remark that
for paritious weights (k + rkex, 1), the characters x1 and x2 of Theorem 4.3.8 are unramified
modulo w. In fact, for z € O;P’ one has that

1_(kr+7"€ex7‘r>
Xa(7) = H T(x)” 2z, sincew=1
TEYp

= H T($)7TN2€X'T , since kr =1 for all 7 € 3,
TESp

o e B A
= H HTP(Z)(;EY T (122, -1)) , (recall that N is even.)

j=li=1

fo
= H 7y '(x)fT(pisze'J' mod w , since 7.) = 7"V mod w
- p.J ’ LA PV ]

Jj=1

_1‘Nep _ fr—1 .
= 1y (2) 5 (=D A+p++2") 1164 | since Toj = ng_l mod @

=1 mod w.

The same calculations apply to x1. Therefore, the characters y; mod w and y3 mod w are
unramified at p.

4.3.3 Proof of Theorem 4.0.2

is satisfied, so that all results from the previous chapters apply. We will follow the strategy of
the proof of [DW20, Theorem 1.1] to prove our result.

First, let us introduce a piece of notation. Let R be an O-algebra and let ¢ denote an R-
valued finite order Hecke character of F' of conductor dividing n. We denote by S, w)(n, €; R)
the sub-R-module of S(;, )(n; R) of forms on which the operators (q)w act via €(q), for all prime
ideals q C OF coprime with n.

Now, let us recall that we are considering a cuspidal form f € S 1y(n; F), which is a common

eigenvector for all Hecke operators Tq(k’l) for all ¢ ¢ S D {v : a a place of F,v # p and v|pn}.
Since the diamond operators (q); commute with all Hecke operators, there exists an F*-valued
Hecke character €, whose conductor divides n and a form, still denoted f € S(k,l) (n, €; F), sharing
the same eigenvalues as f. So from now on, we will work with such an eigenform f € S, 1)(n, & F).
The following is a corollary of the previous theorem.

Corollary 4.3.12. Let (k,1) be a paritious weight such that k. = 1 for all T € £,. Let f €
Sk,1)(n, € F) be an eigenvector for all Hecke operators Tq(k’l), forq ¢ S = supp(pn) and for T;7(k71)
with eigenvalues X(f,q) and X°(f,p) respectively. Let oy € F* be a root of X*—X°(f,p)X +€(p).
Then pfp, : Dy — GLo(F) admits a 1-dimensional unramified quotient on which Frob, acts by
Q-

Proof. Let us construct the subspace W := F(hex f) ®F(Vy f) C Sktrer,1(n, € F) as in Proposition
4.3.6. By part 2. of this Proposition, we know that T;’(Hﬁe"’l)

()

fag € W which is an eigenform for all Hecke operators

acts on this W via the matrix

1 . . . . . .
O>’ and by hypothesis «ap is an eigenvalue of this matrix. Therefore there exists

Tq(k+n'ex,1) with eigenvalues >\(f7 CI) for
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q 1 np and for the Hecke operator T;’(kJrF"e"’l) with eigenvalue o, € F*. Multiplying by a big
enough power of heyx, we can bring the system of eigenvalues of fag to liftable weight and in
particular, by Lemma 4.1.6, there exists f € S(ktrres,1) (0, € O) with eigenvalues lifting those of
,(k?“r/‘icxvl)}‘v:

fag, where ¢ is a lift of e. Moreover, f is nearly-ordinary at p, since TpO ap f, where

&\g € O* is a lift of ay, which is not 0 in F. Now by Theorem 4.3.8, the Galois representation Py
attached to f is of the form
o [xrox
pleF ( O X2>

where x; and Yo are characters such that they are unramified modulo @w by Remark 4.3.11.
Therefore, py = p 7 mod w admits an unramified quotient. Moreover, Frob, acts on this un-

ramified quotient via ay, since by Theorem 4.3.8 x2(wyp) = &E =a, mod w@. O

Now one has to distinguish two cases: when the polynomial X2 — X°(f,p)X + ¢(p) admits
distinct roots ay # S, and when it has a double root aj.

Distinct roots a, # 3,

If X2 —X°(f,p)X +e(p) has two distinct roots a, and ), it suffices to apply Corollary 4.3.12 to

(f,ap) and to (f, B;) to get that pyp, admits two distinct unramified quotients on which Frob,

acts via aj and ;. Therefore py is unramified at p. Moreover, tr (ps(Froby)) = ap, + B, =
A°(f,p). This proves the theorem in this case.

Double root oz;

We now treat the case where X2 — X°(f,p)X + €(p) = (X — ap)?, and we will need to introduce
some notation. Let

T = im (O[T, (@) ]pm = Endo (Sp)(n: 0)))

qtpn

denote the Hecke algebra acting on Sy, 1y(n; O) and set Tk = k1) [T;’(k’l)] inside the ring

Ende (S(k,l)(n; (’))) Moreover, we will denote

k, . k,
T = im (O[T, (@)1]gpm = Endo (S (0 F))

and T](Fk’l) = TI(Fk’l) [T;’(k’l)] inside Endo (S(,1)(n; F)). Recall that by Lemma 4.1.6, (k+7fex, 1)

is a liftable weight and therefore one has a natural surjection
T(k'+7’:“iex,1) ®O F — TI(F]C-Q—’I”Hex,l) ’

(k+rrex,1)
T! .

which induces a surjection Tktrhel) _, Moreover, by Lemma 4.2.3, one has a

surjection T](FkerQ"’l) — TI(Fk’l). To recap:
T(ktreexl) TI(Fk?"‘T‘Hex,l) _ T]%k’l) (46)

Let m denote the maximal ideal of T](Fk’l) corresponding to the Hilbert modular cuspform f €
S(k,1)(m; F) of Theorem 4.0.2. We will also denote by m the maximal ideal of TI(Fkere"’l) or of

T(k+r5el) defined as the pullback of m C T](Fk’l)7 via the surjections in Equation (4.6).
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(k+rrex,1) (k4rkex,
m

Lemma 4.3.13. The Hecke operator T;’ b RoF. Moreover,

T$+T’iexvl) .

does not belong to T

it does not belong to

Proof. By the lifting Lemma 4.1.6, one has a surjection T#+7exl) @5 F — TI(Fkere"’l). So

if Tpo’(k+ﬁe"’1) belonged to T£ﬁ+mex’1), it would belong to Tl(l,krtme"’l). Let us now proceed to
show that this is impossible. Let W C Sk, 1(n;F) denote the F-vector space of Proposition

4.3.6, and recall that on this space the Hecke operators Tq(k_me"’l) act scalarly, while the operator

Tp((k-i_ﬁex’l)) acts with minimal polynomial X2 — X°(f,p)X + e(p) = (X — Oég)Q- One has the
inclusion
h£;1W C S(k—l—rnex,l) (n; F)m )

which is equivariant for all Hecke operators Ty, for g ¢ S. So if T; (kthiex1) belonged to Té‘k;me"’l),
it would belong to the Hecke algebra generated by the operators Tq(k+m°"’1) for q ¢ S acting on

hIZ'W. But by what we have said before, we know that this algebra acts via a character, while
T; (kFreol) Goes not act semi-simply. O

We can now proceed to complete the proof of Theorem 4.0.2 for the case where X2 —

A(f,p)X + e(p) = (X — ap)?. Since Titreeol) s torsion free and generated by Hecke op-

erators away from the level and p, one has that TEﬁJFmCX’l) ®o K ~ ] gEN K, where N denotes

the set of all newforms contributing t0 S(j4re,,1)(1; O)m, Where we now suppose that O is big
enough to contain all eigenvalues of all newforms g € N.

Recall that by Proposition 4.3.1 we already have constructed the Galois representation p
attached to f, which is semi-simple. If ps is not irreducible, then it is the sum of two characters
X1 @ x2. In particular, since the determinant of py is unramified at p, then the product x1xs2 is
unramified at p. So if one of the two was ramified at p, so would the other, but this contradicts
the existence of an unramified quotient of Corollary 4.3.12. Therefore, the only possibility is
that both x1 and x2 are unramified at p, and hence ps is unramified at p.

Let us suppose that the Galois representation py attached to f is absolutely irreducible, and
therefore by [Car94, Théoréme 2|, there exists a free of rank two T Frrecl) module M with a
continuous action of G such that the Gr action on M induces a Gp-equivariant isomorphism

geN

where V(g) denotes the K[Dy]-module corresponding to the Galois representation attached to

g. The T;’(kJme"’l)-eigenvalue for any g € N is an element of O, reducing to a, modulo @, ie.
each g € NV is nearly-ordinary at p. Therefore, by Theorem 4.3.8, one has a short exact sequence
of K[Dy]-modules

0— V()" — V(g) — V(g™ —0,

where V(g)* and V(g)~ have dimension 1 over K. Moreover, D, acts on V(g)~/wV (g)~ via
an unramified character mapping Frob, to ay € F. Now, let M™ := M N [yen V(g)" and let

M7 :=Im (./\/l — [lyen V(g)_). Then the above exact sequence induces a short exact sequence

of Tiktrrexl) [Dp]-modules

0O—M"— M-—M —0.
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Reducing modulo the maximal ideal m gives a short exact sequence of F[D,]-modules
M/ mMT — M/mM — M~ /mM~ — 0.

To prove that py is unramified at p, it now suffices to show that the F[Dp]-module M/mM is
isomorphic to its unramified quotient M~ /mM ™.

Let us then study the F[Dy]-module M~ /mM™~. Since M~ is not 0, by Nakayama’s lemma for
the local O-algebra Tﬁﬁ*’“*’"%l), the F[Dy]-module M~ /mM™ is not the 0 module. In particular,
as an [F-vector space it has either dimension 1 or 2.

Suppose that dimp M~ /mM~ = 1, then Nakayama’s lemma produces a surjective homomor-
phism T£ﬁ+me"’1) —- M~ as Tfffme"’l) -modules. However, they have the same rank over O

TETki+T'€eX71)

and therefore M~ is a free -module of rank 1. In particular, by Theorem 4.3.8 the

X
uniformizer w, acts via local class field theory on M™ via an element U € (Tﬂi*“‘“’” .

Since for every g € N the eigenvalue of U on g is the unique unit root of the Hecke polynomial
X2~ T;’(k-i_ﬁex’l)X + P 1les, 7(wy)FrrRex =1 on g, one has that

(k+rkex,1) (k+rKex,1)
Tm — T]F,m
0,(k+kex,1)
U—1T, oot

which implies that U = Tpo’(k+m°"’1) lies in Endp (S(k+mex,1)(“§ O)m) and in particular it implies
that T;’(kJme"’l) € T]%k:;me"’l), but this contradicts Lemma 4.3.13.

Therefore dimp M’/fn/Vl’ = 2, which implies that M/mM ~ M~™/mM~. Let us now look
at the action of Frob, on M/mM. We know that w, acts on each V(g)~ via the unit root
a(g,p) of the polynomial X2 — &EX +€(p) Hrezp 7(wwp) <7 and therefore a(g, p) reduces to oy
modulo @ and that Froby acts on each V(g)~/mV(g)~ via ap. Moreover, since M~ /mM™ is a

o]

*
quotient of two lattices in [, V(g)~, Frob, acts on M/mM via a matrix (083 a°>’ which
p

implies that tr (pf(Frobp)) = 2y = A°(f,p). This completes the proof.

4.4 Future Prospects

In this paragraph we illustrate future possible directions of the work of this thesis. Recall that
K is a finite extensions of @, containing the images of all embeddings of F' in @, and that we
denote with O its valuation ring, w a uniformizer and F = O/w. We denote then

M0 K/O) 1= limg My <n; wlmom) ~ lim My (03 0/0) (4.7)

For any paritious weight (k,w), the R-module of Hilbert modular forms My, (n; R) is equipped
with a commuting family of Hecke operators T; and normalized Diamond operators (q). (see
Section 3.1) for any prime ideal ¢ C Op not dividing pn. We then define the paritious weight
(k,w) Hecke algebra as

T*W) .= im (O[T, (@) wlgpn — Endo (M (n; K/0))) . (4.8)

Moreover, as detailed in Chapter 3, we recall that Emerton-Reduzzi-Xiao have constructed in
|[ERX17a| the Hecke operator T}, for all primes p in Of above p.
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Our future goal is to show the following generalization to non-parallel paritious weight 1
Hilbert modular forms of results of Dimitrov-Wiese ([DW20, Theorem 1.1]), Deo-Dimitrov-Wiese
([DDW19]) and of Emerton-Reduzzi-Xiao ([ERX17a, Theorem 1.1]).

Expected Theorem 4.4.1. Let p|p be a fized prime in Op, and let (k,1) € Z* xZ be a paritious
weight such that kr =1 for all T € Xy. Then there exists a T®D yalued pseudo-representation
PEY of Gr of degree 2 which is unramified at all primes q not dividing pn and also at q = p,
and such that P*Y) (Froby) = (Ty, (), for any such q.

In particular, if the localisation of P*Y) at a mazimal ideal m of T®:Y) is residually absolutely
irreducible, then the corresponding representation

pm : Gr —> GLg (Tﬁﬁ’”)

exists and is unramified at all primes q not dividing pn and at q = p and satisfies tr(pm(Froby)) =
Ty and det(pm(Frobg)) = (q), for all such primes q.

In Lemma 4.2.5, we already showed that there exists a product of partial Hasse invariants
hex,m that we can use to bring our forms modulo @™ in liftable weight and then apply Lemma
4.1.6. One would then need to use partial Theta operators, as done by Deo, Dimitrov and Wiese
in [DDW19] and study p-ordinary pseudo-representations, to apply the strategy of Calegari and
Specter (|CS19]).



80

Chapter 4: Unramifiedness of Galois representations




Appendix A

Some Algebraic Geometry

In this section we will recall and show some results of algebraic geometry used in Chapter 1.

A.1 The sheaf L),

Let A be aring and X EN Spec(A) be a scheme over A. Let M be an A-module and £ a coherent
sheaf on X. As explained in [Har77|, one can construct a sheaf M which is a Ogpec(4)-module,

L.e. a sheaf of modules over Ogpec(a). Moreover, M is quasi-coherent as a sheaf of modules on
Ospec(4)- Applying pullback, one gets f *M which is a quasi-coherent O x-module (again this is
shown in [Har77]). One can define

Ly:=L Rox f*]/\\]

as the tensor product of two Ox-modules which is a quasi-coherent Ox-module. Now we want
to see how this sheaf looks on open sets U C X.

Claim A.1.1. For any open U C X, Ly(U) ~ L(U) @4 M.

Proof. Recall that for V' an open subset of Spec(A)
M(V) = Ospec(a)(V) ®a M
and for U an open subset of X, one has a presheaf
f*M(U) = fﬁlM(U) ®filoSpcc(A)(U) OX(U) :

Let’s first try to calculate f_IM(U).
MUY = lim M(V)
VDO f(U)

= hﬂ (OSpec(A)(V)®AM)
VO f(U)

o~ ( lim Ospec(A)(V)) ®a M
VO f(U)

= (filOSpec(A)(U)) ®a M
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Therefore, we have that the presheaf
F*MU)~M®40x(U) .
Using the definition of the tensor product of sheaves, one gets that sheaf associated to the
presheaf
Lu(U) = £U) @0y w) (M @4 Ox(U))
~ L(U) ®a M .
O

Therefore, one can see the sheaf Ly; as L ® 4 M, which is the definition used in the text.
Moreover, one now knows that it’s a quasi-coherent sheaf on X.
If A is a local ring, which is the case for the main text, for every z € X one gets that (L), =
L, ®4 M. In fact, by known results of algebraic geometry, one would have (Lyr)y = Lo ®4 =)
My (), and My(y) = Agyy ®a M, which implies that (Lar): = Lo ®a M.

A.2 Torsion in Cohomology Rings

Recall that X is a modular curve over Spec(Q) and w its sheaf of differential. By the previous
section, the sheaf wg /o is well defined. One can see that it can be identified with the direct limit

h&w@/wmo .

Our interest is now to show that modular forms with coefficients in O/w™ can be identified with
the w™-torsion of modular forms with coefficients in K/O.

Proposition A.2.1. There is a natural isomorphism
HO(Xa w(’)/w’"(’)) = HO(X7 wK/(’))[wm}
Proof. To show this isomorphism we will proceed in different steps.

1. multiplication by w™ is a morphism of sheaves.
Let us consider the map
o WK/O — WK/O
defined on open sets U C X by

w"(U) : wgjo(U) — wijo(U)

T — zw’”

as a homomorphism of O-modules. To show that it’s a morphism of pre-sheaf, one has to
check that this map commutes with restriction maps. Let V' C U be affine open subsets
of X and ayv : wg/o(U) = wg/o(V) the restriction map for wg/o. One then considers
the following diagram

wico(U) —Z wi/o(U)

J/O‘UV laUV

wio(V) =, wr/o(V)
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By the previous section we know that wg,0(U) ~ w(U) ®0 K/O and since U is an affine
open, this quantity can actually be seen as M ®p K/O, where M is an O-module. The
same can be done for V, i.e. one gets wg/o(V) =~ N ®o K/O for some O-module N. In
particular ayy = apyny ® id, where apy : M — N is a morphism of O-modules. The
diagram above becomes

M @0 K/O =5 M @0 K/O
J/OH\/IN@id lale@id
N ®o K/O - N ®o K/O

which is clearly commutative.

2. wo mmo = wjolw™].
Now we want to show that wy/mme ~ wi/o[w™] as sheaves, which we will prove on the
stalks. Let us first recall that K/O[w™] = O/@w™O. Recall that wy o[w™] is defined as
the sheaf kernel of the multiplication by @w™; and that given a morphism ¢ : F — G of
sheaves, the stalk at a point x of the kernel presheaf is the kernel of ¢,. Looking at the
previous section, one can see that wy o[@™] = (w®o K/O)[w™]. Since w is an invertible
sheaf, its stalks are free modules, therefore flat. By the previous section we know that the
stalk of wg /o at a point € X is isomorphic to the tensor product of the stalk of w at x
with K/O. In other words, (wx/0)z =~ w: ® K/O. So, if we take the short exact sequence

i

0= K/O[@™] ~ 0/w™0 — K/O 22 (@™ K/O —0
tensoring with the flat module w,, we still get an exact sequence:
0= w, ® K/O[w™] = w, @ K/O T 0y ® (@™)K/O =0
Therefore
(e ® K/O)[&™] = w, © K/O["]
~w, ®O0/w™O
= (wo/zmo),

which means that at every z € X, (Wo/wm(g)z ~ (wg/o[@™])z, which gives wp/omo =~
wrc/ol@™].

3. H(X,wg/ol@™]) ~ HY(X,wk/0)[@™] Recall that the cohomology of level 0 is just the
global section. One has that HY(X, wk /o[@™]) = wg/ol@™](X) and H(X, wk/0)[@™] =
wr/0(X)[@™]. Looking at the exact sequence of sheaves

w™

0— wK/O[wm] — WK/O = WK/O
and conjugating it for X
0 = wijol@™](X) = wi/o(X) == wi/o(X)

one gets that wg/p[ww™](X) is isomorphic to the kernel of the map wg /o (X) =, wi/0(X)
which is exactly wg /o (X)[@™].

O
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Appendix B

Descent

In this brief appendix, we will recall some results of Descent theory that we apply in the thesis.

Definition B.0.1. Let S be a scheme and let f : X — Y be a morphism of S-schemes. We say
that a quasi-coherent Ox module F descends to Y, if there exists an Oy-module G such that

ffG~F.

In general, the theory of descent studies the equivalence of fibered categories. Here we will
recall some results that can be applied in our case. We are particularly interested in two specific
cases:

1. When Y is the quotient variety X/G by an (abelian) group G and f is a finite étale
covering;

2. When X and Y are respectively the toroidal and minimal compactification of a modular
variety and f is the corresponding map between the two compactifications (see Section
2.1.4 for more details).

B.1 Finite descent

The following is [Stal8, Lemma 35.6.2]

Lemma B.1.1. Let 7 : X — Y be a surjective finite étale morphism of S-schemes. Let G be a
finite group together with a group homomorphism G°PP ~ Auty (X), mapping o — f,, such that
the map

GxX > Xxy X
(0,2) = (@, fo(2))

is an isomorphism. Then the category of quasi-coherent Oy -modules is equivalent to the category
of systems (F, (¢o)occ) where

(1) F is a quasi-coherent Ox-module;
(i) oo : F — fiF is an isomorphism of Ox-modules;

(iii) por = fipro@s for all o, € G.
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Let us recall that in our situation, we have provided the line bundles w, and 57 defined over
Y, with an E-action, mapping respectively a local section s to 7(g)~1/2[¢]*s and a local section
s to 7(¢)"![e]*s. This correspond to the isomoprhism ¢, of the above lemma. It is easy to
check that these maps satisfy the conditions of Lemma B.1.1, since the group E is abelian, and
therefore they descend to line bundles w; and J, over the quotient variety Sh.

In particular, for a finite abelian group G, one can see that if G is a quasi-coherent Oy-
module corresponding to a system (F, (¢o)occ), then

HO(K g) = HO(X) -F)Gv (Bl)

which is the set of global sections which are invariant under the action of G. Therefore, in
our case, the set of Hilbert modular forms H°(Sh, w“) corresponds to the subset of elements in
HO(Y,w"*) which are invariant under the action of the group E.

B.2 Descent for the compactifications

As seen in Section 2.1.4, one can construct the toroidal and the minimal compactification of the
moduli space Y, and moreover one has a surjective morphism

YR sy
which is an isomorphism on Y..

Lemma B.2.1. The line bundle wﬁR = ®T€E(w$§77)®kf on Yaolfz descends to a line bundle on
Ygl}%l if and only if uF = [Les 7(u)* acts trivially in R, for all u € O

In characteristic 0, Lemma B.2.1 implies that the sheaf &w* descends to the minimal compact-
ification if and only if k is parallel (as stated in [Dim04, Théoréme 8.6(vi)]).

Proof. We will prove this on formal schemes, and in particular on the formal completion at the
cusps. By |[Dim04, Théoréme 8.6(v)|, we know that the formal completion of Y% at the inverse

image 7 1(C) of a cusp C of Y, g, seen inside Y™ is SGe /O, x Spec(R). This tells us that the
sheaf wf r Will descend to an invertible sheaf on the minimal compactification Y{“gl if and only
if wﬁR can be trivialized over SQC/OEn x Spec(R). Y. g, seen inside YE?IEL, is S5 x Spec(R). In
particular, we have the following surjective morphism of formal schemes:

S&e x Spec(R) — SQC/O;n x Spec(R) (B.2)

As seen throughout the thesis (see Remark 2.3.4 and proof of Proposition 2.4.1), the sheaf wf R
can be canonically trivialized over S x Spec(R) as follows:

wf,R SQCxSpcc(R) A (Cl & O)k Ko R®o OSQC ,

where C = (a,b, H,4,j,\, ) (see Definition 2.3.1). Moreover, an element u € O} acts on this

sheaf via multiplication by u* = [, oy, 7(u)* . In particular,

H°<s§c/o§mxspec<m,wﬁg>:{ S act: ac € (@00 @0 R, g = u'a for a”“EOPX‘"}’
£eXU{0}
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which is a projective module, but a priori not a free of rank 1 module. Therefore the pullback
of wf R to SQC x Spec(R) via the map in Equation B.2 will be canonically trivial if and only if

uk/? acts trivially in R. O

We have applied this Lemma in the proof of Lemma 4.1.2 to descend the sheaf wl(;"“ 9 {6 an

ample invertible sheaf over the minimal compactification.
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Appendix C

Extra Calculations with ¢g-expansions

We collect in this appendix proofs by computations on g-expansions of well known relations
between the various operators defined throughout the thesis.

C.1 Proofs by calculations on g-expansions
We will use here the notation of Chapter 4.

Proposition C.1.1. Let f € My w(n;R). Then To(Tyf) = Tq(Tef) for all v,q prime ideals of
OF, coprime with np.

Proof. We prove it on g-expansions for non-normalized Hecke operators, using Equation (3.20).
We want to show that for any ¢ € € and £ € ¢

ag ((T(Tqf)),) = ag (Ty(T21)),) - (C.1)

Let us start by applying Equation (3.19) to the left hand side of the above equation. Recall that
we take ¢, ¢ € € and «, 8 € F such that ac’ = cv and S¢” = ct™!, then we have

ag (T(Ty 1)) = Nm(®)" o™ ag 1 ((W)wTaf)e) + B aG (Tof)er)
= Nm(9)" o™ (Nm(0) "6 016 ((@w(hul)e) + 8775, 1 ((Dhufer)

s (Nmm)Wlwa;&mlg(«qm De) +5 e (f).

where ¢'q = a¢’ = B¢ g =ac and 'q! = 5:%”, for @,¢,¢,¢" € € and d,ﬁ,o:z,ﬁ: e Fy.
Rearranging the termb, one has that
CLZ ((Tr<qu)) ) = ( (t> m(q))W{L(da) Za?aa) 15((( >W<q>wf>i/)
+Nm(e)" (e ‘gga) e (©f)er)
+Nm(q)" " (aB8)“afz 4 1 (((a)w)z)

+ (55)_ a(ﬁ:ﬂ),lg(fén) .
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Let us now look at the right hand side of Equation (C.1). Let ¢,¢” € ¢ and a,3 € Fy such

that ac’ = ¢q and B¢” = ¢q~'. Then one has that ¢t = %E’, vl = %E’, 't = %O‘E” and

vl = Bs . Applying Equation (3.20) twice with these representatives, one gets that

&2
ag ((T4(T:f)) ) = (Nm(r) Nm (q))w_l(aa) ‘05016 ((wla)wf)e)
+ N(@)* " (68) " a%s, (@)
+ Nm(e)* " (Ba) a2, 1 (©wher)
(66) (,8,8 15(f§//)7
and therefore the commutativity of the operators. ]

The following Proposition is a direct consequence of Proposition 4.3.6(2). However, we show
it here via computations on g-expansions.

Proposition C.1.2. Let f € Si1(n, €;F) be an eigenform for all Ty, for q a prime of O, q { np,
and suppose that it is also an ez'genform for T;’(k’l) with eigenvalue \°(f,p). Then the T;’(kJmex’l)
operator is such that (T, o: (ke 1) ) (hexf) — )\O(faP)T;’(k+nex’1)(hexf) + €(p)(hexf) = 0.

Proof. Let us start by looking at the g-expansion of hey f for any ¢ € €.
(hexf), = Y ag((hexf)e)a* = ag(fo)a
{ecy ey

Now by Equation 4.3, one has that for £ € ¢

ag((T;»(kJmex,l)heXf) ) _ (p—l)(th+exp)ﬁ(k7t)/2+ﬂex/2 ° ((hexf)c”)
(p 1)(th+e)(p)6/§ex/2ﬁ(k t)/2 o (fc”)

where ¢/ € ¢’ and B € F, are such that 3¢” = ¢p~!. Recall that w’gpfl)(mﬁex")ﬁ“ex/? =1
mod w (see proof of Proposition 4.3.3), and therefore aé(( 70 (e 1 hexf)c) = 5(k*t)/2a%_15(fcn).

(k1)

Now let us look at the action of Tp on f: for any £ € ¢, one has that

a2 (T 1)) = 9262 (0w f)er) + BE 9205 1 (for)
= e(p)a* "V 2a i (fo) + ﬁ“ﬁﬂ/zaﬁflg(fw) ,

where ¢ € ¢/ and o € F are such that o’ = ¢p. Then we can re-write the action of T}, (et e 1)

on hey f via the action of T;’(k’l

af (Ty o Ve f)e) = ag (T 1)) — ep)a®=9/2a2 ., (for)

If we transpose this to £ € ¢{, one gets that

) on f as follows: let £ € ¢4, then

a (T3 D ho fon) = ag (T "V Fen) — e(p) B 2age(fe) -
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Let us now apply a second time the Tpo’(k+“e"’1)

operator to hex f: let € € ¢4, then
o O, k Rex, 0,(k+Kex, — o o,(k+Kex,
ag (T rmes D (g e Vg 1)) = 897208, (T 5V by f)en)
= 800205 (1) f)en) — e(p)ag (fe) -

of eigenvalue A°(f,p). In particular, for any ¢ € €
and for any £ € ¢, ag((T;’(k’l)f)c) = A°(f,p)ag(fc). Therefore the above equation becomes:

ag (T WD e Up 1)) = A(f,0) 8% 205 (for) — e(p)ag(fo)
= X°(f,p)ag (T oD 1)) — ep)ag (hexf):) -

Therefore, one gets that Tpo’(kJme"’l) is annihilated by X2 — A°(f,p)X + e(p)id. O

By hypothesis f is an eigenform for Tpo’(k’l)

The following Proposition is used in the proof of part (3) of 4.3.6.

Proposition C.1.3. Let f € Sy 1y(n, €, F) a Hilbert modular form of partial weight 1, with
parallel weight 1 over the fixed place p above p. Let q be an integral ideal of O, coprime with
np. Then the operators Ty and V, commute, i.e.

T D (Vo f) = V(T ) (C2)

Proof. We will prove it on geometric g-expansion, i.e. we want to show that for any & € ¢y,
where ¢ € €, one has that

a (%)) = ag((H@),) - (C3)

Let us start on the right hand side. Let ¢ € € and o € F; such that ac¢’ = ¢p. By Proposition
4.3.3,

a2 (B ).,) = a®92ag . (10 1))

Let @,¢ € € and &, 5 € F, such that ¢/q = a¢ and ¢/q~! = 3¢”. Then by Equation (3.20) and
since w = 1, one has that

a2 (BT ),) = a®972 (e(@)a®92a, )1 (fe) + BED a2 (for)
= e(a)(@a)*%ag; e (for) + (Ba) * 0 %ag; L (fer)

Let us now look at the left hand side of (C.3). Let ¢,¢” € € and &, 3 € F; be such that ¢q = ac’
and c¢q~! = B¢”. Then by Equation (3.20)

a (@ (10),) = e@al 2az (VG f)e) + 85 2az 1 (Vof)er)

PN e Ve ) i oBn s ;
Remark that ¢'p = “*¢" and that ¢'p = ¢ and by Proposition 4.3.3, the above expression
becomes

«Q

+ -2 (C“B)(ktwa o)
3 (aB)=1e\¥

()2
ag ((Tq(kﬁex’l)(vpf))c) =e(q)aF1/2 <<w> a(aa)—lg(fzf)>
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Therefore the left hand side
o k Rex, ~ — P _
ag (T =D (), ) = e(a) (@) 9 2ags0 ael(fe) + () 9205, 1 o(fer)
coincides with the right hand side. O

This in particular means that if f is an eigenform for Tq(k’l), with eigenvalue A(f, ¢), then V,
is also an eigenform for Tq(kJmcx’l) with same eigenvalue. In fact, T‘](k+ﬁcx’1)(%f) = Vp(Tq(k’l)f) =

Vola(f,a)f) = A(f, )Vo f-
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