Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Evaluating Representation Learning of Code Changes for Predicting Patch Correctness in Program Repair
TIAN, Haoye; LIU, Kui; KABORE, Abdoul Kader et al.
2020In TIAN, Haoye (Ed.) 35th IEEE/ACM International Conference on Automated Software Engineering, September 21-25, 2020, Melbourne, Australia
Peer reviewed
 

Documents


Texte intégral
evaluating represetation learning of code changes for predicting patch correctness in program repair.pdf
Preprint Auteur (2.05 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Software Engineering
Résumé :
[en] A large body of the literature of automated program repair develops approaches where patches are generated to be validated against an oracle (e.g., a test suite). Because such an oracle can be imperfect, the generated patches, although validated by the oracle, may actually be incorrect. While the state of the art explore research directions that require dynamic information or rely on manually-crafted heuristics, we study the benefit of learning code representations to learn deep features that may encode the properties of patch correctness. Our work mainly investigates different representation learning approaches for code changes to derive embeddings that are amenable to similarity computations. We report on findings based on embeddings produced by pre-trained and re-trained neural networks. Experimental results demonstrate the potential of embeddings to empower learning algorithms in reasoning about patch correctness: a machine learning predictor with BERT transformer-based embeddings...
Disciplines :
Sciences informatiques
Auteur, co-auteur :
TIAN, Haoye ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
LIU, Kui ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
KABORE, Abdoul Kader  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KOYUNCU, Anil ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Li, Li
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Evaluating Representation Learning of Code Changes for Predicting Patch Correctness in Program Repair
Date de publication/diffusion :
2020
Nom de la manifestation :
35th IEEE/ACM International Conference on Automated Software Engineering
Date de la manifestation :
21-09-220 to 25-09-2020
Titre de l'ouvrage principal :
35th IEEE/ACM International Conference on Automated Software Engineering, September 21-25, 2020, Melbourne, Australia
Auteur, co-auteur :
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 14 janvier 2021

Statistiques


Nombre de vues
312 (dont 69 Unilu)
Nombre de téléchargements
146 (dont 16 Unilu)

citations Scopus®
 
98
citations Scopus®
sans auto-citations
84
OpenCitations
 
17
citations OpenAlex
 
78
citations WoS
 
89

Bibliographie


Publications similaires



Contacter ORBilu