Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Predicting near-optimal skin distance in Verlet buffer approach for Discrete Element Method
MAINASSARA CHEKARAOU, Abdoul Wahid; BESSERON, Xavier; ROUSSET, Alban et al.
2020In 10th IEEE Workshop on Parallel / Distributed Combinatorics and Optimization
Peer reviewed
 

Documents


Texte intégral
PDCO_08.pdf
Postprint Auteur (2.88 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Verlet; DEM; HPC; Optimization; Dakota
Résumé :
[en] The Verlet list method is a well-known bookkeeping technique of the interaction list used both in Molecular Dynamic (MD) and Discrete Element Method (DEM). The Verlet buffer technique is an enhancement of the Verlet list that consists of extending the interaction radius of each particle by an extra margin to take into account more particles in the interaction list. The extra margin is based on the local flow regime of each particle to account for the different flow regimes that can coexist in the domain. However, the choice of the near-optimal extra margin (which ensures the best performance) for each particle and the related parameters remains unexplored in DEM unlike in MD. In this study, we demonstrate that the near-optimal extra margin can fairly be characterized by four parameters that describe each particle local flow regime: the particle velocity, the ratio of the containing cell size to particle size, the containing cell solid fraction, and the total number of particles in the system. For this purpose, we model the near-optimal extra margin as a function of these parameters using a quadratic polynomial function. We use the DAKOTA SOFTWARE to carry out the Design and Analysis of Computer Experiments (DACE) and the sampling of the parameters for the simulations. For a given instance of the set of parameters, a global optimization method is considered to find the near-optimal extra margin. The latter is required for the construction of the quadratic polynomial model. The numerous simulations generated by the sampling of the parameter were performed on a High-Performance Computing (HPC) environment granting parallel and concurrent executions. This work provides a better understanding of the Verlet buffer method in DEM simulations by analyzing its performances and behavior in various configurations. The near-optimal extra margin can reasonably be predicted by two out of the four chosen parameters using the quadratic polynomial model. This model has been integrated into XDEM in order to automatically choose the extra margin without any input from the user. Evaluations on real industrial-level test cases show up to a 26% reduction of the execution time.
Centre de recherche :
LuXDEM - University of Luxembourg: Luxembourg XDEM Research Centre
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MAINASSARA CHEKARAOU, Abdoul Wahid ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
BESSERON, Xavier  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
ROUSSET, Alban ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
KIEFFER, Emmanuel ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
PETERS, Bernhard ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Predicting near-optimal skin distance in Verlet buffer approach for Discrete Element Method
Date de publication/diffusion :
juin 2020
Nom de la manifestation :
10th IEEE Workshop on Parallel / Distributed Combinatorics and Optimization
Date de la manifestation :
18-05-2020
Manifestation à portée :
International
Titre de l'ouvrage principal :
10th IEEE Workshop on Parallel / Distributed Combinatorics and Optimization
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 25 novembre 2020

Statistiques


Nombre de vues
262 (dont 44 Unilu)
Nombre de téléchargements
12 (dont 10 Unilu)

citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu