Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Specifying key-properties to improve the recognition skills of neural networks
JAHIC, Benjamin; GUELFI, Nicolas; RIES, Benoit
2020In Proceedings of the 2020 European Symposium on Software Engineering
Peer reviewed
 

Documents


Texte intégral
2020-esse-keypropertiespecification-published.pdf
Postprint Éditeur (1.27 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Software engineering; methods; neural networks; specifications; key-properties; dataset augmentation
Résumé :
[en] Software engineers are increasingly asked to build datasets for engineering neural network-based software systems. These datasets are used to train neural networks to recognise data. Traditionally, data scientists build datasets consisting of random collected or generated data. Their approaches are often costly, inefficient and time-consuming. Software engineers rely on these traditional approaches that do not support precise data selection criteria based on customer’s requirements. In this paper, we introduce an extended software engineering method for dataset augmentation to improve neural networks by satisfying the customer’s requirements. We introduce the notion of key-properties to describe the neural network’s recognition skills. Key-properties are used all along the engineering process for developing the neural network in cooperation with the customer. We propose a rigorous process for augmenting datasets based on the analysis and specification of the key-properties. We conducted an experimentation on a case study on the recognition of the state of a digital meter counter. We demonstrate an informal specification of the neural network’s key-properties and a successful improvement of a neural network’s recognition of the meter counter state.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
JAHIC, Benjamin ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
GUELFI, Nicolas ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
RIES, Benoit ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Specifying key-properties to improve the recognition skills of neural networks
Date de publication/diffusion :
06 novembre 2020
Nom de la manifestation :
2020 European Symposium on Software Engineering
Date de la manifestation :
from 06-11-2020 to 08-11-2020
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 2020 European Symposium on Software Engineering
Maison d'édition :
Association for Computing Machinery, New York, Etats-Unis
ISBN/EAN :
9781450377621
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 21 octobre 2020

Statistiques


Nombre de vues
357 (dont 57 Unilu)
Nombre de téléchargements
268 (dont 17 Unilu)

OpenCitations
 
0
citations OpenAlex
 
4

Bibliographie


Publications similaires



Contacter ORBilu