[en] Let T be a finite product of one-dimensional tori defined over a number field K. We consider the torsion-Kummer extension K(T[nt], (1/n)G), where n,t are positive integers and G is a finitely generated group of K-points on T. We show how to compute the degree of K(T[nt], (1/n)G) over K and how to determine whether T is split over such an extension. If K=Q, then we may compute at once the degree of the above extensions for all n and t.
Disciplines :
Mathématiques
Auteur, co-auteur :
PERISSINOTTO, Flavio ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
PERUCCA, Antonella ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Kummer theory for products of one-dimensional tori
C. Debry & A. Perucca, “Reductions of algebraic integers”, J. Number Theory 167 (2016), p. 259-283.
F. Perissinotto & A. Perucca, “Kummer theory for multiquadratic or quartic cyclic number fields”, Unif. Distrib. Theory 17 (2022), no. 2, p. 165-194.
A. Perucca, “Reductions of one-dimensional tori”, Int. J. Number Theory 13 (2017), no. 1, p. 1473-1489.
K. A. Ribet, “Kummer Theory on Extensions of Abelian Varieties by Tori”, Duke Math. J. 46 (1979), no. 4, p. 745-761.
A. Schinzel, “Abelian binomials, power residues and exponential congruences”, Acta Arith. 32 (1977), no. 3, p. 245-274, addendum in 36 (1980), p. 939-970.
V. E. Voskresenskiĭ, Algebraic Groups and Their Birational Invariants, Translations of Mathematical Monographs, vol. 179, American Mathematical Society, 1998.
L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, vol. 83, Springer, 1982.