Article (Scientific journals)
Explicit Kummer theory for quadratic fields
Hörmann, Fritz; PERUCCA, Antonella; SGOBBA, Pietro et al.
2021In JP Journal of Algebra, Number Theory and Applications
Peer reviewed
 

Files


Full Text
Kummer-quadratic.pdf
Author preprint (306.19 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Kummer theory; Kummer extension; number field; cyclotomic field; quadratic field; degree
Abstract :
[en] Let K be a quadratic number field and let \alpha \in K*. We present an explicit finite procedure to compute at once all Kummer degrees [K(\zeta_m,\sqrt[n]{\alpha}):K(\zeta_m)] for n,m \geq 1 with n|m, where \zeta_m denotes a primitive m-th root of unity. We can also replace \alpha by any finitely generated subgroup of K*.
Disciplines :
Mathematics
Author, co-author :
Hörmann, Fritz;  University of Freiburg > Mathematics
PERUCCA, Antonella  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
SGOBBA, Pietro ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
TRONTO, Sebastiano ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
External co-authors :
yes
Language :
English
Title :
Explicit Kummer theory for quadratic fields
Publication date :
2021
Journal title :
JP Journal of Algebra, Number Theory and Applications
ISSN :
0972-5555
Publisher :
Pushpa Publishing House, India
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 27 January 2020

Statistics


Number of views
433 (15 by Unilu)
Number of downloads
258 (5 by Unilu)

OpenAlex citations
 
1
WoS citations
 
0

Bibliography


Similar publications



Contact ORBilu