ARCONES, M. A. and GINÉ, E. (1993). Limit theorems for U-processes. Ann. Probab. 21 1494–1542. MR1235426
BARBOUR, A. D. (1990). Stein’s method for diffusion approximations. Probab. Theory Related Fields 84 297–322. MR1035659 https://doi.org/10.1007/BF01197887
BARBOUR, A. D. and JANSON, S. (2009). A functional combinatorial central limit theorem. Electron. J. Probab. 14 2352–2370. MR2556014 https://doi.org/10.1214/EJP.v14-709
BASALYKAS, A. (1994). Functional limit theorems for random multilinear forms. Stochastic Process. Appl. 53 175–191. MR1290712 https://doi.org/10.1016/0304-4149(94)90062-0
BHATTACHARYA, R. N. and GHOSH, J. K. (1992). A class of U-statistics and asymptotic normality of the number of k-clusters. J. Multivariate Anal. 43 300–330. MR1193616 https://doi.org/10.1016/0047-259X(92)90038-H
BICKEL, P. J. and RITOV, Y. (1988). Estimating integrated squared density derivatives: Sharp best order of convergence estimates. Sankhyā Ser. A 50 381–393. MR1065550
BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York. MR1700749 https://doi.org/10.1002/9780470316962
BOROVSKIKH, YU. V. (1996). U-Statistics in Banach Spaces. VSP, Utrecht. MR1419498
CHEN, H. and ZHANG, N. (2015). Graph-based change-point detection. Ann. Statist. 43 139–176. MR3285603 https://doi.org/10.1214/14-AOS1269
CHEN, X. (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications. Ann. Statist. 46 642–678. MR3782380 https://doi.org/10.1214/17-AOS1563
CHEN, X. and KATO, K. (2020). Jackknife multiplier bootstrap: Finite sample approximations to the Uprocess supremum with applications. Probab. Theory Related Fields 176 1097–1163. MR4087490 https://doi.org/10.1007/s00440-019-00936-y
CHU, L. and CHEN, H. (2019). Asymptotic distribution-free change-point detection for multivariate and non-Euclidean data. Ann. Statist. 47 382–414. MR3910545 https://doi.org/10.1214/18-AOS1691
CSÖRGO‟ , M. and HORVÁTH, L. (1988). Invariance principles for changepoint problems. J. Multivariate Anal. 27 151–168. MR0971179 https://doi.org/10.1016/0047-259X(88)90122-4
CSÖRGO‟ , M. and HORVÁTH, L. (1997). Limit Theorems in Change-Point Analysis. Wiley Series in Probability and Statistics. Wiley, Chichester. MR2743035
DE JONG, P. (1990). A central limit theorem for generalized multilinear forms. J. Multivariate Anal. 34 275–289. MR1073110 https://doi.org/10.1016/0047-259X(90)90040-O
DE LA PEÑA, V. H. and GINÉ, E. (1999). Decoupling: From Dependence to Independence. Probability and Its Applications (New York). Springer, New York. MR1666908 https://doi.org/10.1007/978-1-4612-0537-1
DÖBLER, C. and PECCATI, G. (2017). Quantitative de Jong theorems in any dimension. Electron. J. Probab. 22 Paper No. 2, 35 pp. MR3613695 https://doi.org/10.1214/16-EJP19
DÖBLER, C. and PECCATI, G. (2019). Quantitative CLTs for symmetric U-statistics using contractions. Electron. J. Probab. 24 Paper No. 5, 43 pp. MR3916325 https://doi.org/10.1214/19-EJP264
DUDLEY, R. M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Mathematics 74. Cambridge Univ. Press, Cambridge. MR1932358 https://doi.org/10.1017/CBO9780511755347
DYNKIN, E. B. and MANDELBAUM, A. (1983). Symmetric statistics, Poisson point processes, and multiple Wiener integrals. Ann. Statist. 11 739–745. MR0707925 https://doi.org/10.1214/aos/1176346241
FERGER, D. (1994). An extension of the Csörgo–Horváth ‟ functional limit theorem and its applications to changepoint problems. J. Multivariate Anal. 51 338–351. MR1321302 https://doi.org/10.1006/jmva.1994.1066
FERGER, D. (1995). The joint distribution of the running maximum and its location of D-valued Markov processes. J. Appl. Probab. 32 842–845. MR1344083 https://doi.org/10.2307/3215136
FERGER, D. (1999). On the uniqueness of maximizers of Markov–Gaussian processes. Statist. Probab. Lett. 45 71–77. MR1718353 https://doi.org/10.1016/S0167-7152(99)00044-9
FERGER, D. (2001). Analysis of change-point estimators under the null hypothesis. Bernoulli 7 487–506. MR1836742 https://doi.org/10.2307/3318498
GINÉ, E. and MASON, D. M. (2007). On local U-statistic processes and the estimation of densities of functions of several sample variables. Ann. Statist. 35 1105–1145. MR2341700 https://doi.org/10.1214/009053607000000154
GOMBAY, E. (2004). U-statistics in sequential tests and change detection. Sequential Anal. 23 257–274. MR2064232 https://doi.org/10.1081/SQA-120034111
GOMBAY, E. and HORVÁTH, L. (1995). An application of U-statistics to change-point analysis. Acta Sci. Math. (Szeged) 60 345–357. MR1348699 [28] HALL, P. (1979). On the invariance principle for U-statistics. Stochastic Process. Appl. 9 163–174. MR0548836 https://doi.org/10.1016/0304-4149(79)90028-0
HORVÁTH, L. and RICE, G. (2014). Extensions of some classical methods in change point analysis. TEST 23 219–255. MR3210268 https://doi.org/10.1007/s11749-014-0368-4
IBRAGIMOV, R. and SHARAKHMETOV, S. (2002). Bounds on moments of symmetric statistics. Studia Sci. Math. Hungar. 39 251–275. MR1956938 https://doi.org/10.1556/SScMath.39.2002.3-4.1
JAMMALAMADAKA, S. R. and JANSON, S. (1986). Limit theorems for a triangular scheme of U-statistics with applications to inter-point distances. Ann. Probab. 14 1347–1358. MR0866355
JANSON, S. (2018). Renewal theory for asymmetric U-statistics. Electron. J. Probab. 23 Paper No. 129, 27 pp. MR3896866 https://doi.org/10.1214/18-EJP252
KARLIN, S. and RINOTT, Y. (1982). Applications of ANOVA type decompositions for comparisons of conditional variance statistics including jackknife estimates. Ann. Statist. 10 485–501. MR0653524
KASPRZAK, M. J. (2020). Stein’s method for multivariate Brownian approximations of sums under dependence. Stochastic Process. Appl. 130 4927–4967. MR4108478 https://doi.org/10.1016/j.spa.2020.02. 006
LACHIÈZE-REY, R. and PECCATI, G. (2013). Fine Gaussian fluctuations on the Poisson space II: Rescaled kernels, marked processes and geometric U-statistics. Stochastic Process. Appl. 123 4186–4218. MR3096352 https://doi.org/10.1016/j.spa.2013.06.004
LAURENT, B. (1996). Efficient estimation of integral functionals of a density. Ann. Statist. 24 659–681. MR1394981 https://doi.org/10.1214/aos/1032894458
LAURENT, B. (1997). Estimation of integral functionals of a density and its derivatives. Bernoulli 3 181–211. MR1466306 https://doi.org/10.2307/3318586
LAURENT, B. and MASSART, P. (2000). Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 1302–1338. MR1805785 https://doi.org/10.1214/aos/1015957395
MAJOR, P. (2013). On the Estimation of Multiple Random Integrals and U-Statistics. Lecture Notes in Math. 2079. Springer, Heidelberg. MR3087566 https://doi.org/10.1007/978-3-642-37617-7
MANDELBAUM, A. and TAQQU, M. S. (1984). Invariance principle for symmetric statistics. Ann. Statist. 12 483–496. MR0740907 https://doi.org/10.1214/aos/1176346501
MILLER, R. G. JR. and SEN, P. K. (1972). Weak convergence of U-statistics and von Mises’ differentiable statistical functions. Ann. Math. Stat. 43 31–41. MR0300321 https://doi.org/10.1214/aoms/1177692698
NEUHAUS, G. (1977). Functional limit theorems for U-statistics in the degenerate case. J. Multivariate Anal. 7 424–439. MR0455084 https://doi.org/10.1016/0047-259X(77)90083-5
NOLAN, D. and POLLARD, D. (1987). U-processes: Rates of convergence. Ann. Statist. 15 780–799. MR0888439 https://doi.org/10.1214/aos/1176350374
NOURDIN, I. and NUALART, D. (2020). The functional Breuer–Major theorem. Probab. Theory Related Fields 176 203–218. MR4055189 https://doi.org/10.1007/s00440-019-00917-1
PECCATI, G. and REITZNER, M., eds. (2016). Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener–Itô Chaos Expansions and Stochastic Geometry. Bocconi & Springer Series 7. Springer, Cham. MR3444831 https://doi.org/10.1007/978-3-319-05233-5
PENROSE, M. (2003). Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford. MR1986198 https://doi.org/10.1093/acprof:oso/9780198506263.001.0001
RACKAUSKAS , A. and WENDLER, M. (2020). Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment. Statist. Papers 61 1409–1435. MR4127480 https://doi.org/10.1007/s00362-020-01161-9
ROBINS, J. M., LI, L., TCHETGEN, E. T. and VAN DER VAART, A. (2016). Asymptotic normality of quadratic estimators. Stochastic Process. Appl. 126 3733–3759. MR3565475 https://doi.org/10.1016/j.spa.2016.04.005
SERFLING, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley Series in Probability and Mathematical Statistics. Wiley, New York. MR0595165
VITALE, R. A. (1992). Covariances of symmetric statistics. J. Multivariate Anal. 41 14–26. MR1156678 https://doi.org/10.1016/0047-259X(92)90054-J