KASPRZAK, M., & PECCATI, G. (October 2023). Vector-valued statistics of binomial processes: Berry-Esseen bounds in the convex distance. Annals of Applied Probability, 33 (5), 3449-3492. doi:10.1214/22-AAP1897 Peer Reviewed verified by ORBi |
Döbler, C., KASPRZAK, M., & PECCATI, G. (February 2022). Functional Convergence of U-processes with Size-Dependent Kernels. Annals of Applied Probability, 32 (1), 551-601. doi:10.1214/21-AAP1688 Peer Reviewed verified by ORBi |
Döbler, C., KASPRZAK, M., & PECCATI, G. (2022). The multivariate functional de Jong CLT. Probability Theory and Related Fields, 184 (1), 367-399. doi:10.1007/s00440-022-01114-3 Peer Reviewed verified by ORBi |
KASPRZAK, M., Giordano, R., & Broderick, T. (2022). How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/53906. |
Wynne, G., KASPRZAK, M., & Duncan, A. (2022). A Spectral Representation of Kernel Stein Discrepancy with Application to Goodness-of-Fit Tests for Measures on Infinite Dimensional Hilbert Spaces. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/53905. |
Döbler, C., & KASPRZAK, M. (2021). Stein's method of exchangeable pairs in multivariate functional approximations. Electronic Journal of Probability, 26, 1-50. doi:10.1214/21-EJP587 Peer Reviewed verified by ORBi |
KASPRZAK, M. (August 2020). Stein’s method for multivariate Brownian approximations of sums under dependence. Stochastic Processes and Their Applications, 130 (8), 4927-4967. doi:10.1016/j.spa.2020.02.006 Peer Reviewed verified by ORBi |
Huggins, J., KASPRZAK, M., Campbell, T., & Broderick Tamara. (2020). Validated Variational Inference via Practical Posterior Error Bounds. Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS). Peer reviewed |
KASPRZAK, M. (2020). Functional approximations with Stein's method of exchangeable pairs. Annales Henri Poincare, 56 (4), 2540-564. doi:10.1214/20-AIHP1049 Peer reviewed |
Huggins, J., KASPRZAK, M., Campbell, T., & Broderick, T. (2019). Practical bounds on the error of Bayesian posterior approximations: A nonasymptotic approach. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/39831. |
Huggins, J., Campbell, T., KASPRZAK, M., & Broderick, T. (2019). Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees. Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019. Peer reviewed |
KASPRZAK, M. (2017). Diffusion approximations via Stein's method and time changes. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/39828. |
KASPRZAK, M., Duncan, A., & Vollmer, S. (2017). Note on A. Barbour’s paper on Stein’s method for diffusion approximations. Electronic Communications in Probability. doi:10.1214/17-ECP54 Peer Reviewed verified by ORBi |