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We consider sequences of U -processes based on symmetric kernels of
a fixed order, that possibly depend on the sample size. Our main contribu-
tion is the derivation of a set of analytic sufficient conditions, under which
the aforementioned U -processes weakly converge to a linear combination of
time-changed independent Brownian motions. In view of the underlying sym-
metric structure, the involved time-changes and weights remarkably depend
only on the order of the U -statistic, and have consequently a universal nature.
Checking these sufficient conditions requires calculations that have roughly
the same complexity as those involved in the computation of fourth moments
and cumulants. As such, when applied to the degenerate case, our findings are
infinite-dimensional extensions of the central limit theorems (CLTs) proved
in de Jong (J. Multivariate Anal. 34 (1990) 275–289) and Döbler and Pec-
cati (Electron. J. Probab. 22 (2017) Paper No. 2). As important tools in our
analysis, we exploit the multidimensional central limit theorems established
in Döbler and Peccati (Electron. J. Probab. 24 (2019) Paper No. 5) together
with upper bounds on absolute moments of degenerate U -statistics by Ibragi-
mov and Sharakhmetov (Studia Sci. Math. Hungar. 39 (2002) 251–275), and
also prove some novel multiplication formulae for degenerate symmetric U -
statistics—allowing for different sample sizes—that are of independent in-
terest. We provide applications to random geometric graphs and to a class
of U -statistics of order two, whose Gaussian fluctuations have been recently
studied by Robins et al. (Stochastic Process. Appl. 126 (2016) 3733–3759),
in connection with quadratic estimators in nonparametric models. In particu-
lar, our application to random graphs yields a class of new functional central
limit theorems for subgraph counting statistics, extending previous findings in
the literature. Finally, some connections with invariance principles in change-
point analysis are established.
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1. Introduction.

1.1. Overview. Consider a sequence {Xi : i = 1,2, . . .} of independent and identically
distributed (i.i.d.) random variables with values in some space (E,E). The aim of this paper
is to prove a class of Gaussian functional central limit theorems (FCLTs) involving general
sequences of sequential U -processes with symmetric kernels, that is, of càdlàg processes
on the time interval [0,1], obtained by progressively revealing the argument of a symmetric
U -statistic of order p ≥ 1 based on the sample (X1, . . . ,Xn), for n ≥ 1. The adjective sequen-
tial is meant to distinguish the main objects studied in the present paper from U -processes
indexed by abstract classes of kernels—see, for example, [1, 43]; for the sake of simplicity,
for the rest of the paper we will use indifferently the denomination “U -process” to indicate
sequential U -processes and function-indexed U -processes of the type described above.

The type of weak convergence we deal with is in the large sample limit n → ∞, and
holds in the sense of the Skorohod space D[0,1] of càdlàg mappings on [0,1], endowed
with Skorohod’s J1 topology (see, e.g., [7], page 123). The specific difficulty tackled in our
work—marking a difference with previous contributions (see, e.g., [1, 28, 40, 42, 43])—is
that we allow the kernels of the considered U -statistics to explicitly depend on the sample
size n, and we do not assume a priori any form of Hoeffding degeneracy.

Despite the generality of the above setup, the limit processes displayed in our results al-
ways have the form

(1.1) Z(t) =
p∑

k=1

αk,pZk,p(t), t ∈ [0,1],

where each αk,p ∈ [0,∞) is a constant depending on the sequence of U -statistics under
study, and {Zk,p(t) : t ∈ [0,1],1 ≤ k ≤ p} denotes a class of independent centered Gaussian
processes obtained as follows: first consider a sequence {Bk(t) : t ∈ [0,1],1 ≤ k ≤ p} of
independent standard Brownian motions on [0,1], and then set

(1.2) Zk,p(t) := tp−kBk

(
tk
)
, t ∈ [0,1],

in such a way that

(1.3) �k,p(s, t) := E
[
Zk,p(t)Zk,p(s)

]= (s ∧ t)p(s ∨ t)p−k, s, t ∈ [0,1],
and consequently

(1.4) �(s, t) := E
[
Z(t)Z(s)

]=
p∑

k=1

α2
k,p(s ∧ t)p(s ∨ t)p−k, s, t ∈ [0,1].
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Note that, in particular, the processes (Z(t))t∈[0,1] appearing in (1.1) all have continuous
paths. Such a rigid asymptotic structure originates from the fact that we exclusively focus on
symmetric U -statistics and i.i.d. samples: these strong assumptions yield then the emergence
of the “universal” time-changes t 	→ tk and time-dependent weights t 	→ tp−k from purely
combinatorial considerations. One should compare this situation with the reference [4], where
a Gaussian FCLT is proved for sequences of nonsymmetric homogenous sums, displaying as
possible weak limits arbitrarily time-changed Brownian motions.

The sufficient conditions for weak convergence discussed above are stated in the forth-
coming Theorem 3.1 and Theorem 3.4, and are expressed in terms of the contraction kernels
canonically associated with a given U -statistic (see Section 2.2 for definitions). We will see
in Section 5 that the conditions derived in our paper are a slight strengthening of the suffi-
cient conditions for one-dimensional CLTs derived in [18], Section 3—see Remark 3.6 be-
low for a full discussion of this point. Some of the additional requirements with respect to
[18] (in particular, Assumption (a) in Theorem 3.1 and Assumption (a′) in Theorem 3.4) are
necessary and sufficient for the pointwise convergence of the covariance functions of the de-
generate U -processes associated with a generic U -statistic via its Hoeffding decompositon.
Such a technical assumption (that can in principle be relaxed at the cost of more technical
statements—see Remark 3.6(ii)) is unavoidable in the case of degenerate U -statistics, and is
automatically verified in the applications developed in Section 4.

As discussed in Section 5—and similar to the main findings of [18]—when applied to
Hoeffding degenerate U -processes (see Section 2), the conditions expressed in Theorems 3.1
and 3.4 are roughly equivalent to the requirement that the joint cumulants of order ≤ 4 associ-
ated with the finite-dimensional restrictions of the U -processes under consideration converge
to those of an appropriate Gaussian limit, and that such a convergence takes place at a rate of
the type O(1/nα), where α > 0. As such, our findings can be regarded as functional versions
of the well-known de Jong CLT for degenerate U -statistics, first proved in [15] and then sub-
stantially extended in [17] (to which we refer for an overview of the relevant literature). To
the best of our knowledge, apart from the reference [4] (that only deals with homogeneous
sums), ours is the first functional version of de Jong’s CLT proved in the literature.

The main findings of our paper also contain an invariance principle by Miller and Sen
[41], Theorem 1, which can be obtained from our results by considering symmetric kernels
of order p that do not depend on the sample size and are not degenerate in the sense of Ho-
effding, see Remark 3.5(v). In this case, when p ≥ 2 the limiting process (1.1) is such that
αk,p = 0 for k = 2, . . . , p and Z reduces to a multiple of tp−1B(t), where B is a standard
Brownian motion, thus yielding in particular a full version of Donsker’s theorem for sums of
i.i.d. random variables in the case p = 1 (see [7], page 90). It is important to notice that this
result from [41] only requires the square-integrability of the involved U -statistics, whereas
our approach is originally best suitable to deal with U -statistics whose kernels satisfy some
higher moment assumptions. However, in this particular example, by means of a truncation
argument it is possible to reduce the assumptions to the minimal conditions of nondegeneracy
and square-integrability of the kernel. The stricter moment requirements emerging elsewhere
in our work are a direct emanation of the tools we chose to adopt, namely Stein’s method
and L2 estimates on contraction kernels, which cannot be dropped without replacement, in
general. It is plausible that alternate statements requiring less stringent integrability assump-
tions could be obtained by following a different route—but this would demand a significant
amount of novel ideas. The reader is referred to [32] for generalizations of Miller and Sen’s
results and for a discussion of the relevant literature. See also Remark 3.8.

In the last four decades, numerous FCLTs for U -processes have been derived by sev-
eral groups of authors; yet—to the best of our knowledge and discounting Miller and Sen’s
result—none of them has a nature that is directly comparable to our findings. Among the
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large set of contributions in this domain, we refer the reader to the following relevant sample.
References [28, 40, 42] contain functional limit theorems for sequences of degenerate U -
statistics with a kernel independent of the sample size n: in such a framework, consistently
with the known one-dimensional results (see, e.g., [20]), the limit process lives in a Wiener
chaos of order > 1 and is therefore non-Gaussian. The already mentioned paper [4] proves
Gaussian FCLTs (in a spirit close to [15]) for sequences of homogeneous sums: in this case,
there is no overlap with our work since symmetric homogeneous sums (that are in princi-
ple contemplated in our setting) are necessarily multiples of degenerate U -statistics with a
kernel not depending on the sample size n, and their asymptotic behaviour is consequently
non-Gaussian (by virtue of [28, 42]). References [1, 43] are influential general contributions
to the theory of U -processes, containing uniform FCLTs for sequences of U -processes in-
dexed by function classes not depending on the sample size, both in the nondegenerate and
degenerate case. The recent contribution [11] deals with suprema of U -processes indexed
by nondegenerate symmetric function classes possibly depending on the sample size and not
necessarily verifying a FCLT, and also contains a detailed review of further relevant literature.
See also [10, 25], as well as [8, 16] for general references.

As discussed above, our main results are expressed in terms of explicit analytical quan-
tities (e.g., norms of contraction kernels), and they are therefore particularly well-adapted
to applications. As a demonstration of this fact, in Section 4 we deduce two new classes
of FCLTs, respectively related to subgraph counting in geometric random graphs (retrieving
novel functional versions of one-dimensional CLTs from [5, 18, 31, 46]), and to quadratic U -
statistics emerging, for example, in the nonparametric estimation of quadratic functionals of
compactly supported densities (see, e.g., [6, 38, 48]). In Section 3.2, we also illustrate some
connections with invariance principles related to changepoint analysis; see, for example, [13,
14, 26].

We eventually mention the challenging problem of deriving explicit rates of convergence
for the FCLTs derived in this paper. While some promising partial results seem to be obtain-
able by adapting the infinite-dimensional “generator approach” to Stein’s method developed
in [2, 3, 34], we prefer to consider this point as a separate issue, and leave it open for subse-
quent research.

1.2. Notation and tightness criteria. From now on, every random object considered in
the paper is assumed to be defined on a common probability space (�,F,P), with E denoting
expectation with respect to P. Given a collection of stochastic processes {X,Xn : n ≥ 1} with
values in D[0,1], we write Xn =⇒ X to indicate that Xn weakly converges to X, meaning
that E[ϕ(Xn)] → E[ϕ(X)], as n → ∞, for every bounded mapping ϕ : D[0,1] → R which
is continuous with respect to the Skorohod topology. Given two positive sequences {an, bn},
we write an ∼ bn whenever an/bn → 1, as n → ∞. We will also use the notation an � bn to
indicate that there exists an absolute finite constant C such that an ≤ Cbn for every n.

In several places of the present paper, tightness in the space D[0,1] is established by using
the following criterion. The argument in the proof reproduces the strategy adopted in [44],
Lemma 3.1, and is reported for the sake of completeness.

LEMMA 1.1. Let Xn = {Xn(t) : t ∈ [0,1]}, n ∈ N, be a sequence of stochastic processes
with paths a.s. in D[0,1]. Suppose that there is a stochastic process X = {X(t) : t ∈ [0,1]}
such that the finite-dimensional distributions of Xn, n ∈N, converge to those of X, as n → ∞.
Then, the paths of X are a.s. continuous and we have Xn =⇒ X, if there are constants C > 0,
β > 0 and α > 0 such that, for all n ∈ N sufficiently large and for all 0 ≤ s < t ≤ 1,

(1.5) E
∣∣Xn(t) − Xn(s)

∣∣β ≤ C

(nt� − ns�
n

)1+α

.

In particular, in this case the sequence (Xn)n∈N is tight in D[0,1].



FUNCTIONAL CONVERGENCE OF SEQUENTIAL U -PROCESSES 555

PROOF. We are going to use the following well-known criterion from [7]: let Xn =
{Xn(t) : t ∈ [0,1]}, n ∈ N, be a sequence of stochastic processes with paths a.s. in D[0,1]
such that there is a stochastic process X = {X(t) : t ∈ [0,1]} whose paths are a.s. continuous
and such that the finite-dimensional distributions of Xn, n ∈ N, converge to those of X, as
n → ∞. Then, the sequence (Xn)n∈N, converges in distribution with respect to the Skorohod
topology to X, if there are finite and strictly positive constants C1, α and γ such that, for all
n ∈N sufficiently large and for all 0 ≤ r ≤ s ≤ t ≤ 1,

(1.6) E
[∣∣Xn(t) − Xn(s)

∣∣γ ∣∣Xn(s) − Xn(r)
∣∣γ ]≤ C1(t − r)1+α.

Note that (1.6) is in fact a more specialized instance of formula (13.14) in [7]. Now assume
(1.5) and observe that

E
[∣∣Xn(t) − Xn(s)

∣∣β/2∣∣Xn(s) − Xn(r)
∣∣β/2]

≤
√
E
[∣∣Xn(t) − Xn(s)

∣∣β]√E[∣∣Xn(s) − Xn(r)
∣∣β]

≤
√

C

(nt� − ns�
n

)1+α
√

C

(ns� − nr�
n

)1+α

≤ 31+αC(t − r)1+α,

where the last inequality follows from an argument used in the proof of [44], Lemma 3.1.
Hence, we conclude that (1.6) holds true with γ = β/2 and with C1 = 31+αC. It remains
to show that (1.5) implies that X has a continuous modification. Indeed, from the con-
vergence of finite-dimensional distributions, the continuous mapping theorem and since
E|Y |r ≤ lim infn→∞E|Yn|r for all r > 0, whenever Yn, n ∈ N, converges in distribution to
Y , we conclude from (1.5) that for all 0 ≤ s < t ≤ 1 we have that

E
∣∣X(t) − X(s)

∣∣β ≤ lim inf
n→∞ E

∣∣Xn(t) − Xn(s)
∣∣β ≤ C(t − s)1+α,

where C, α and β are as in (1.5). Thus, the continuity of X follows from the Kolmogorov–
Chentsov theorem. �

1.3. Plan. Section 2 contains some general information about U -statistics and U -
processes and several useful estimates for contraction operators. The main results of the
paper, which give sufficient conditions for functional convergence of U -processes, are pre-
sented in Section 3.1; some connections to changepoint analysis are described in Section 3.2,
whereas multidimensional extensions are discussed in Section 3.3. Section 4 deals with appli-
cations of our main results to subgraph counting in random geometric graphs and U -statistics
of order 2 with a dominant diagonal component. Finally, Section 5 contains some further an-
cillary results, as well as the proofs of the main results.

2. General setup.

2.1. Symmetric U -statistics and U -processes. As before, we assume that X1,X2, . . . is
a sequence of i.i.d. random variables taking values in a measurable space (E,E) (that we fix
for the rest of this paper), and denote by μ their common distribution. For a fixed p ∈ N, let

ψ : (Ep,E⊗p)→ (
R,B(R)

)
be a symmetric and measurable kernel of order p. By “symmetric” we mean that, for all
x = (x1, . . . , xp) ∈ Ep and each σ ∈ Sp (the symmetric group acting on {1, . . . , p}), one has
that

ψ(x1, . . . , xp) = ψ(xσ(1), . . . , xσ(p)).
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In general, the kernel ψ = ψ(n) can (and will most of the time) depend on an additional
parameter n ∈ N (the size of the sample in the argument of the associated U -statistic), but we
will often suppress such a dependence, in order to simplify the notation. We use the symbol
μp to denote the pth power of μ (which is a measure on (Ep,E⊗p)). In what follows, we
will write X := {Xi : i ∈ N} and, for p, ψ , X as above and n ∈ N, we define

(2.1) J (n)
p (ψ) := J

(n)
p,X(ψ) := ∑

J∈Dp(n)

ψ(Xj , j ∈ J ) = ∑
1≤i1<···<ip≤n

ψ(Xi1, . . . ,Xip),

where Dp(n) indicates the subsets of size p of {1, . . . , n}. We say that the random variable

J
(n)
p (ψ) is the U -statistic of order p, based on X1, . . . ,Xn and generated by the kernel ψ .

For p = 0 and a constant c ∈ R we further let J0(c) := c.
Let p ≥ 1, and let ψ ∈ L1(μp) be symmetric. The kernel ψ is called (completely) degen-

erate or canonical with respect to μ, if∫
E

ψ(x1, x2, . . . , xp) dμ(x1) = 0 for μp−1-a.a. (x2, . . . , xp) ∈ Ep−1,

or, equivalently, if

E
[
ψ(X1, . . . ,Xp)|X1, . . . ,Xp−1

]= 0, P-a.s.

Now assume that ψ ∈ L1(μp) is a symmetric but not necessarily degenerate kernel. In this
case, the random variable J

(n)
p (ψ) can be written as the sum of its expectation and a linear

combination of symmetric U -statistics with degenerate kernels of respective orders 1, . . . , p.
More precisely, one has the following Hoeffding decomposition of J

(n)
p (ψ):

(2.2) Jp(ψ) = E
[
Jp(ψ)

]+ p∑
k=1

(
n − k

p − k

)
Jk(ψk) =

p∑
k=0

(
n − k

p − k

)
Jk(ψk),

where

(2.3) ψk(x1, . . . , xk) =
k∑

l=0

(−1)k−l
∑

1≤i1<···<il≤k

gl(xi1, . . . , xil )

and the symmetric functions gl : El →R are defined by

(2.4) gl(y1, . . . , yl) := E
[
ψ(y1, . . . , yl,X1, . . . ,Xp−l)

]
,

in such a way that, for 1 ≤ k ≤ p, ψk is symmetric and degenerate of order k. In particular,
one has g0 ≡ ψ0 ≡ E[ψ(X1, . . . ,Xp)] and gp = ψ . See, for example, [49, 50] for general
references on Hoeffding decompositions.

Similar to (2.1), we can naturally define a U -process

(2.5) U = {
U(t) : t ∈ [0,1]}

as follows. For t ∈ [0,1], write U(t) := Un(t) := J
(nt�)
p (ψ). Then, for every t one has the

Hoeffding decomposition

(2.6) U(t) := E
[
U(t)

]+ p∑
k=1

(nt� − k

p − k

)
J

(nt�)
k (ψk).

Whenever ψ is a symmetric element of L2(μp), we will also make use of the notation

(2.7) W(t) := Wn(t) = U(t) −E[U(t)]
σn

, t ∈ [0,1],
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where

σ 2
n := Var

(
Un(1)

)= Var
(
J (n)

p (ψ)
)=

p∑
k=1

(
n − k

p − k

)2 (
n

k

)
‖ψk‖2

L2(μk)
(2.8)

=
(
n

p

) p∑
k=1

(
p

k

)(
n − p

p − k

)
Var

(
gk(X1, . . . ,Xk)

)
.(2.9)

Setting

ϕ(k) := ϕ(n,k) :=
(n−k
p−k

)
ψk

σn

, 1 ≤ k ≤ p,

one has that each ϕ(k) is a degenerate kernel and, using the notation Vk(t) := J
(nt�)
k (ϕ(k)),

one infers the following useful representation of W

W(t) =
p∑

k=1

(nt�−k
p−k

)
(n−k
p−k

) Vk(t), t ∈ [0,1].

It is immediately verified that, for each n ∈ N, both Wn := {Wn(t) : t ∈ [0,1]} and Un :=
{Un(t) : t ∈ [0,1]} are random elements with values in D[0,1]. As anticipated, the aim of this
paper is to deduce verifiable analytical conditions, under which the sequence {Wn : n ∈ N}
converges in distribution to some continuous Gaussian process Z = {Z(t) : t ∈ [0,1]} of the
form (1.1).

2.2. Contractions. We will now define “contraction kernels” obtained from pairs of
square-integrable mappings. These are one of the principal analytical tools exploited in our
paper. Given integers p,q ≥ 1, 0 ≤ l ≤ r ≤ p ∧ q and two symmetric kernels ψ ∈ L2(μp)

and ϕ ∈ L2(μq), we define the contraction kernel ψ 
l
r ϕ on Ep+q−r−l by the relation(

ψ 
l
r ϕ

)
(y1, . . . , yr−l , t1, . . . , tp−r , s1, . . . , sq−r )

:=
∫
El

(
ψ(x1, . . . , xl, y1, . . . , yr−l , t1, . . . , tp−r )

· ϕ(x1, . . . , xl, y1, . . . , yr−l, s1, . . . , sq−r )
)
dμl(x1, . . . , xl)(2.10)

= E
[
ψ(X1, . . . ,Xl, y1, . . . , yr−l , t1, . . . , tp−r )

· ϕ(X1, . . . ,Xl, y1, . . . , yr−l , s1, . . . , sq−r )
]
,(2.11)

for every (y1, . . . , yr−l , t1, . . . , tp−r , s1, . . . , sq−r ) belonging to the set A0 ⊂ Ep+q−r−l such
that the right-hand side of the previous equation is well defined and finite, and we conven-
tionally set it equal to zero otherwise. Given ψ , ϕ, r , l as above, we write that the kernel
ψ 
l

r ϕ is well defined if μp+q−r−l(Ac
0) = 0 (where A0 is the set defined above). Note that,

in general, it is not clear that ψ 
l
r ϕ is well defined in the sense specified above, or that the

obtained contraction is square-integrable.
If l = 0, then (2.10) has to be understood as follows:(

ψ 
0
r ϕ

)
(y1, . . . , yr , t1, . . . , tp−r , s1, . . . , sq−r )

= ψ(y1, . . . , yr , t1, . . . , tp−r )ϕ(y1, . . . , yr , s1, . . . , sq−r ).

In particular, if l = r = 0, then ψ 
l
r ϕ boils down to the tensor product ψ ⊗ ϕ : Ep+q → R

of ψ and ϕ, given by

(ψ ⊗ ϕ)(x1, . . . , xp+q) = ψ(x1, . . . , xp) · ϕ(xp+1, . . . , xp+q).
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We observe that ψ 
0
p ψ = ψ2 is square-integrable if and only if ψ ∈ L4(μp). As a conse-

quence, ψ 
l
r ϕ might not be in L2(μp+q−r−l) even though ψ ∈ L2(μp) and ϕ ∈ L2(μq).

Moreover, if l = r = p, then ψ 

p
p ψ = ‖ψ‖2

L2(μp)
is constant. By Lemma 2.4 of [18] the in-

volved contraction kernels are always well defined. Moreover, the same lemma gives various
bounds on norms of contractions that are useful for the present paper.

In what follows, for p ∈ N and a function f : Ep → R we write f̃ for its symmetrization,
that is,

f̃ (x1, . . . , xp) := 1

p!
∑

σ∈Sp

f (xσ(1), . . . , xσ(p)), (x1, . . . , xp) ∈ Ep,

where Sp denotes the symmetric group acting on {1, . . . , p}. Note that, if f ∈ Lq(μp), then
‖f̃ ‖Lq(μp) ≤ ‖f ‖Lq(μp), by the triangle inequality.

3. Weak convergence of U -processes with symmetric kernels.

3.1. Main results. For the rest of this section, we let p ≥ 1 be an integer. Moreover, for
positive integers 1 ≤ r , i, k ≤ p and 0 ≤ l ≤ p such that 0 ≤ l ≤ r ≤ i ∧ k, we let Q(i, k, r, l)

be the set of quadruples (j,m,a, b) of nonnegative integers such that the following hold:

1. j ≤ i and m ≤ k, 2. b ≤ a ≤ r , 3. b ≤ l, 4. a − b ≤ r − l,
5. j + m − a − b ≤ i + k − r − l ≤ i + k − 1, 6. a ≤ j ∧ m,
7. if j = m = p, then b = l and a = r ≥ 1.

The next statement is the main result of the paper.

THEOREM 3.1 (Functional convergence of general U -statistics, I). Let the assumptions
and notation of Section 2 prevail, define the sequence

Wn = {
Wn(t) : t ∈ [0,1]}, n ∈N,

according to (2.7), and assume that the following three conditions (expressed by means of the
notation (2.4)) are satisfied:

(a) for all 1 ≤ k ≤ p, the real limit

b2
k := lim

n→∞
n2p−k

σ 2
n

(‖gk‖2
L2(μk)

− (
E
[
ψ(X1, . . . ,Xp)

])2)
= lim

n→∞
n2p−k

σ 2
n

Var
(
gk(X1, . . . ,Xk)

)
exists;

(b) for all 1 ≤ v ≤ u ≤ p and all pairs (l, r) and quadruples (j,m,a, b) of integers such
that 1 ≤ r ≤ v, 0 ≤ l ≤ r ∧ (u + v − r − 1) and (j,m,a, b) ∈ Q(v,u, r, l) one has that

lim
n→∞

n2p− u+v+r−l
2

σ 2
n

∥∥gj 
b
a gm

∥∥
L2(μj+m−a−b) = 0;

(c) there exists some ε > 0, such that, for all 1 ≤ r ≤ p, all 0 ≤ l ≤ r − 1 and all quadru-
ples (j,m,a, b) ∈ Q(r, r, r, l), the sequence

n2p−r− r−l
2 +ε

σ 2
n

∥∥gj 
b
a gm

∥∥
L2(μj+m−a−b)

is bounded.
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Then, as n → ∞, one has that Wn =⇒ Z, where Z is the centered Gaussian process defined
in (1.1), for

α2
k,p = b2

k

k!(p − k)!2 , 1 ≤ k ≤ p.

REMARK 3.2. The contractions appearing at Point (c) of Theorem 3.1 also appear at
Point (b) of the same statement. In particular the requirement at Point (c) can be rephrased
by saying that, for all (j,m,a, b) ∈ Q(r, r, r, l), the sequence

n2p−r− r−l
2

σ 2
n

∥∥gj 
b
a gm

∥∥
L2(μj+m−a−b), n ≥ 1,

converges to zero as O(1/nε), for some ε > 0. A similar remark applies to Point (b′) and
Point (c′) of Theorem 3.4.

REMARK 3.3. In the case p = 2, after removing redundant terms, verifying conditions
(b) and (c) of Theorem 3.1 boils down to checking that the following quantities converge to
zero, as n → ∞:

1. n2

σ 2
n
‖g2‖L2(μ2)|Eg2(X1,X2)|, 2. n2

σ 2
n
‖g1 
0

1 g2‖L2(μ2), 3. n5/2

σ 2
n

‖g1 
1
1 g2‖L2(μ),

4. n3/2

σ 2
n

‖g2 
0
1 g2‖L2(μ3), 5. n2

σ 2
n
‖g2 
1

1 g2‖L2(μ2),

6. n3/2

σ 2
n

‖g2 
0
0 g1‖L2(μ3) = n3/2

σ 2
n

‖g1‖L2(μ)‖g2‖L2(μ2),

and that the following sequences are bounded for some ε > 0:

(i) n 	→ n5/2+ε

σ 2
n

(Eg2(X1,X2))
2, (ii) n 	→ n5/2+ε

σ 2
n

‖g1‖L2(μ)|Eg2(X1,X2)|,
(iii) n 	→ n5/2+ε

σ 2
n

‖g1‖2
L4(μ)

, (iv) n 	→ n1+ε

σ 2
n

‖g2‖2
L4(μ2)

.

Recall also that in this case we have that g2 = ψ .

When the Hoeffding decomposition of a given U -statistic is directly provided, it is more
convenient to work with the kernels {ψk} defined in formula (2.3), rather than with the class
{gk}. The next statement allows one to obtain the same conclusion as in Theorem 3.1 by
uniquely checking conditions related to the family {ψk} defined in (2.3).

THEOREM 3.4 (Functional convergence of general U -statistics, II). The conclusion of
Theorem 3.1 continues to hold if the following three conditions (a′), (b′) and (c′) replace
conditions (a), (b) and (c):

(a′) for all 1 ≤ k ≤ p, the real limit b2
k := limn→∞ n2p−k

σ 2
n

‖ψk‖2
L2(μk)

exists;

(b′) for all 1 ≤ v ≤ u ≤ p and all pairs (l, r) of integers such that 1 ≤ r ≤ v, 0 ≤ l ≤
r ∧ (u + v − r − 1),

lim
n→∞

n2p− u+v+r−l
2

σ 2
n

∥∥ψv 
l
r ψu

∥∥
L2(μv+u−r−l ) = 0;

(c′) there exists some ε > 0 such that, for all 1 ≤ r ≤ p and 0 ≤ l ≤ r − 1, the sequence

n2p−r− r−l
2 +ε

σ 2
n

∥∥ψr 
l
r ψr

∥∥
L2(μr−l )

is bounded.
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REMARK 3.5. In case p = 2, verifying conditions (b′) and (c′) of Theorem 3.4 boils
down to checking that the following quantities converge to zero as n → ∞:

1. n2

σ 2
n
‖ψ1 
0

1 ψ2‖L2(μ2), 2. n5/2

σ 2
n

‖ψ1 
1
1 ψ2‖L2(μ), 3. n3/2

σ 2
n

‖ψ2 
0
1 ψ2‖L2(μ3),

4. n2

σ 2
n
‖ψ2 
1

1 ψ2‖L2(μ2),

and the following sequences are bounded for some ε > 0:

(i) n 	→ n5/2+ε

σ 2
n

‖ψ1 
0
1 ψ1‖L2(μ), (ii) n 	→ n1+ε

σ 2
n

‖ψ2 
0
2 ψ2‖L2(μ2),

(iii) n 	→ n3/2+ε

σ 2
n

‖ψ2 
1
2 ψ2‖L2(μ).

REMARK 3.6.

(i) By inspection of our proofs, one sees that Conditons (a) and (b) in Theorem 3.1 (resp.
conditions (a′) and (b′) in Theorem 3.4) are sufficient conditions for the convergence of the
finite-dimensional distributions of Wn towards those of Z, whereas Conditons (c) and (c′)
therein imply tightness. Condition (b′) in Theorem 3.4 implicitly appears in [18], Section 4
and Section 5, as an analytical sufficient condition ensuring that (in the notation of the present
paper) Wn(1) converges in distribution to a one-dimensional standard Gaussian random vari-
able. On the other hand, condition (b) in Theorem 3.1 is a substantial improvement of the
sufficient conditions for one-dimensional asymptotic normality that can be deduced from
[18], Theorem 5.2. The difference between the conditions emerging from [18], Theorem 5.2,
and those deduced in the present paper is explained by the fact that our findings use instead
Lemma 5.7 below, which is a refined version of [18], Lemma 5.1.

(ii) It will become clear from the discussion to follow that condition (a) in Theorem 3.1
and condition (a′) in Theorem 3.4 are equivalent for the same values of b2

k , that is: for every
k = 1, . . . , p, the limit limn→∞ n2p−k

σ 2
n

Var(gk(X1, . . . ,Xk)) exists and is finite if and only if

the same holds for limn→∞ n2p−k

σ 2
n

‖ψk‖2
L2(μk)

, and in this case the two limits coincide.

(iii) The proofs of Theorems 3.1 and 3.4 will show that conditions (b) and (c) in Theo-
rem 3.1 imply conditons (b′) and (c′) in Theorem 3.4, whereas the opposite implication does
not hold in general.

(iv) (Relaxing conditions (a) and (a′)) Suppose that all the assumptions of Theo-
rem 3.4 are verified, except for condition (a′). In such a situation, we can define b2

k(n) :=
n2p−k

σ 2
n

‖ψk‖2
L2(μk)

, k = 1, . . . , p, and observe that, for every k, the mapping n 	→ b2
k(n) is

bounded (by virtue of (2.8)). For every n ≥ 1, we set Zn to be the Gaussian process obtained
from (1.1) by replacing the coefficient α2

k,p with

α2
k,p(n) := b2

k(n)

k!(p − k)!2 , 1 ≤ k ≤ p.

A standard compactness argument now implies that, for every sequence {nm} ⊂ N diverging
to infinity, there exists a subsequence {n′

m} ⊂ {nm} such that α2
k,p(n′

m) converges to a finite

limit α̂2
k,p as n′

m → ∞ (the value of α̂2
k,p depending in general on the choice of the subse-

quence {n′
m}), so that Zn′

m
converges in distribution—as a random element with values in

D[0,1]—to the Gaussian process obtained from (1.1) by replacing the coefficient α2
k,p with

α̂2
k,p . Applying the triangle inequality together with Theorem 3.4 to each extracted subse-

quence n′
m, we infer the following conclusion: if ρ is any distance metrizing weak conver-

gence on D[0,1] (see, e.g., [19], Section 11.3), then for every sequence {nm} ⊂ N diverging
to infinity there exists a subsequence {n′

m} ⊂ {nm} such that

ρ(Wn′
m
,Zn′

m
) −→ 0 as n′

m → ∞,
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where ρ(Wn,Zn) is shorthand for the distance between the distributions of Wn and Zn, as
random elements with values in D[0,1]; one sees immediately that this conclusion is equiv-
alent to the asymptotic relation

(3.1) ρ(Wn,Zn) −→ 0 as n → ∞.

By virtue of Points (ii)–(iii) of the present remark, the exact same conclusion holds if one sup-
poses that all assumptions of Theorem 3.1 are verified, except for condition (a). In view of the
content of Point (i) above, it follows that Theorem 3.1 and Theorem 3.4 contain and substan-
tially extend the one-dimensional qualitative CLT stated in [18], Section 5. One should notice
that the techniques developed in [18] also allow one to deduce explicit rates of convergence,
and that such a feature does not extend to our infinite-dimensional results.

(v) In [41], Theorem 1, Miller and Sen have proved an invariance principle for the situ-
ation of a nondegenerate kernel ψ ∈ L2(μp) of order p that does not depend on the sample
size n. This in particular implies that b2

1 = (p − 1)!2 > 0 and bl = 0 for l = 2, . . . , p. More-
over, (2.9) implies that

σ 2
n ∼ n2p−1

(p − 1)!2 Var
(
g1(X1)

)
.

We now sketch an argument implying that this theorem can be deduced from our results
even though the norms of the involved contractions are in general only finite for kernels
in L4(μp). In order to cope with this technical issue, for K ∈ N we introduce the truncated
kernel ψ(K) := ψ1{|ψ |≤K} ∈ L4(μp). It then easily follows from dominated convergence that,

with obvious notation, one has that g
(K)
l converges to gl as K → ∞ μl-a.e. and in L2(μl),

l = 1, . . . , p. In particular, for large enough K , K ≥ K0 say, it also holds that (b
(K)
1 )2 =

(p−1)!2 > 0 and b
(K)
l = 0 for l = 2, . . . , p. Writing U

(K)
n = J

(nt�)
p (ψ(K)) for the U -process

induced by the kernel ψ(K) and

W(K)
n (t) := U

(K)
n (t) −E[U(K)

n (t)]
σ

(K)
n

for its normalized version, where (σ
(K)
n )2 = Var(U(K)

n (1)), we have

(3.2) Wn(t) = σ
(K)
n

σn

W(K)
n (t) + J

(nt�)
p (ρ(K))

σn

,

where ρ(K) = ψ1{|ψ |>K} − E[ψ(X1, . . . ,Xp)1{|ψ(X1,...,Xp)|>K}]. Note that ρ(K) converges
to 0 μp-a.e. and in L2(μp) as K → ∞.

We will apply [7], Theorem 3.2, to the decomposition (3.2) of Wn. First, since

(
σ (K)

n

)2 ∼ n2p−1

(p − 1)!2 Var
(
g

(K)
1 (X1)

)
, K ≥ K0,

it is straightforward to check that all terms appearing in Theorem 3.1(b) for W
(K)
n are

o(n−1/2). Hence, from Theorem 3.1 and Slutsky’s lemma we conclude that

W(K)
n

n→∞=⇒ Var(g(K)
1 (X1))

Var(g1(X1))
tp−1B

K→∞=⇒ tp−1B,

where B is a standard Brownian motion. For the remainder term

R(K)
n (t) := J

(nt�)
p (ρ(K))

σn
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observe that by Markov’s inequality, for fixed K ≥ K0 and ε > 0 and with d denoting the
Skorohod metric as well as r(K)(x) = E|ρ(K)(x,X2, . . . ,Xp)|, we have

P

(
d

(
Wn,

σ
(K)
n

σn

W(K)
n

)
> ε

)
≤ P

(∥∥R(K)
n

∥∥∞ > ε
)≤ P

(
σ−1

n J (n)
p

(|ρk|)> ε
)

≤ 1

ε2σ 2
n

Var
(
J (n)

p

(|ρk|))
≤ n2p−1

(p − 1)!2ε2σ 2
n

(
Var

(
r(K)(X1)

)+ O
(
np−2)).

Hence,

lim sup
n→∞

P

(
d

(
Wn,

σ
(K)
n

σn

W(K)
n

)
> ε

)
≤ Var(r(K)(X1))

ε2 Var(g1(X1))

K→∞−→ 0,

since r(K) converges to 0 in L2(μ) by the dominated convergence theorem. Thus, [7], Theo-
rem 3.2, implies that for a kernel ψ ∈ L2(μp) that does not depend on n, the corresponding
normalized U -process Wn converges weakly to tp−1B(t) if Var(g1(X1)) > 0 (for the ne-
cessity of the latter condition see also Remark 3.8 below). Selecting p = 1 in the previous
discussion allows one to recover a version of Donsker’s theorem [7], page 90. If ψ may
depend on n, the situation is more complicated, since the contraction norms are no longer
constant. This applies even to the case of a first Hoeffding projection that is asymptotically
dominant.

The following corollary deals with the (simpler) situation of a degenerate kernel.

COROLLARY 3.7 (Degenerate kernels). Let the assumptions and notation of Section 2
prevail, define the sequence Wn, n ∈ N, according to (2.7), and suppose in addition that the
kernel ψ is degenerate. Assume that, for all pairs (l, r) of integers such that 1 ≤ r ≤ p and
0 ≤ l ≤ r ∧ (2p − r − 1),

(3.3) lim
n→∞n

l−r
2

‖ψ 
l
r ψ‖L2(μ2p−r−l )

‖ψ‖2
L2(μp)

= 0

and that, for all 0 ≤ l ≤ p − 1 and for some ε > 0, the sequence

(3.4) n 	→ n
l−p

2 +ε
‖ψ 
l

p ψ‖L2(μp−l )

‖ψ‖2
L2(μp)

is bounded. Then, as n → ∞,

Wn =⇒ {
B
(
tp
) : t ∈ [0,1]},

where B := {B(t) : t ∈ [0,1]} denotes a standard Brownian motion.

REMARK 3.8. If p ≥ 2 and the degenerate kernel ψ does not depend on n, then condition
(3.3) is not satisfied for l = r = 1, since

lim
n→∞n

l−r
2

‖ψ 
l
r ψ‖L2(μ2p−r−l )

‖ψ‖2
L2(μp)

= ‖ψ 
1
1 ψ‖L2(μ2p−2)

‖ψ‖2
L2(μp)

> 0.

This phenomenon is consistent with the known non-Gaussian fluctuations of degenerate U -
processes of orders p ≥ 2 having a kernel ψ independent of the sample size—see [20, 28,
40, 42].
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3.2. Connection to changepoint analysis. The techniques developed in the present paper
can be used to characterize the weak convergence of families of processes that are more
general than the ones defined in (2.7) and, in particular, to deal with limit theorems related
to changepoint analysis (see, e.g., [13, 14, 21, 24, 26, 27, 29, 47]). In order to illustrate
such a connection, we will show how to suitably adapt our results in order to generalise
an influential invariance principle for order 2 symmetric U -statistics, originally proved by
Csörgő and Horvath in [13]. As explained, for example, in [14, 26, 47] such an invariance
principle has been the starting point of a fruitful line of research, focussing on changepoint
testing procedures based on generalisations of Wilcoxon–Mann–Whitney statistics. Further
possible extensions of the results of this section, involving in particular antisymmetric kernels
[13, 14, 24, 27] and rescaled U -processes [13, 21, 47], are outside the scope of the present
paper and will be investigated elsewhere.

As before, we start by fixing a sequence of i.i.d. random variables X1,X2, . . . with val-
ues in (E,E), and with common distribution μ. We also consider a sequence of kernels
{ψ(n) : n ≥ 1}, such that each mapping ψ(n) : E2 → R is symmetric and square-integrable
with respect to μ2. For applications, ψ(n) is typically chosen in such a way that the quan-
tity ψ(n)(x, y) is small whenever x, y are close, for example, ψ(n)(x, y) = ‖x − y‖β , β > 0
(assuming E is a normed space), but such a property has no impact on the convergence re-
sults discussed below. Here, to simplify the notation we assume from the start that each ψ(n)

is centered, that is, E[ψ(n)(X1,X2)] = 0 for every n. We are interested in the family of U -
processes {Yn : n ≥ 1} given by

Yn(t) := ∑
1≤i≤nt�<j≤n

ψ(n)(Xi,Xj ), t ∈ [0,1].

Defining ψ
(n)
u , u = 1,2, according to (2.3) and writing γ1(n) := ‖ψ(n)

1 ‖L2(μ) and γ2(n) :=
‖ψ(n)

2 ‖L2(μ2), one deduces immediately that, for 0 ≤ s ≤ t ≤ 1

(3.5)

Cov
(
Yn(s), Yn(t)

)
= γ2(n)2ns�(n − nt� + 1

)+ γ1(n)2{ns�(n − nt� + 1
)(

n − ns� + 1
)

+ ns�(n − nt� + 1
)(nt� − ns� + 1

)+ ns�nt�(n − nt� + 1
)}

.

We also set γ 2
n := Var(Yn(1/2)),1 and Ỹn := Yn/γn. The next statement corresponds to one

of the main findings in [13].

THEOREM 3.9 (Csörgő and Horvath [13]). Under the above assumptions, assume that
ψ(n) ≡ ψ does not depend on n, and write γ1 ≡ γ1(n), n ≥ 1. Then, as n → ∞, one has that
γn ∼ γ1n

3/4 and moreover Ỹn =⇒ 2A, where A = {A(t) : t ∈ [0,1]} is defined as

A(t) := (1 − t)B(t) + t
(
B(1) − B(t)

)
, t ∈ [0,1],

with B a standard Brownian motion.

The following statement (containing Theorem 3.9 as a special case) shows that, by allow-
ing the kernels ψ(n) to explicitly depend on n, one can obtain a larger class of functional
limit theorems. We recall that a centered continuous Gaussian process b = {b(t) : t ∈ [0,1]}
is called a (standard) Brownian bridge if E[b(t)b(s)] = s ∧ t − st , for all s, t ∈ [0,1].

1The choice of t = 1/2 is arbitrary; one could set γ 2
n := Var(Yn(a)) any number a ∈ (0,1) without changing

the substance of the subsequent results.
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THEOREM 3.10. Let the above assumptions and notation prevail, and assume moreover
that: (I) the kernels ψ

(n)
1 , ψ(n)

2 verify the asymptotic relations expressed in conditions (b′) and
(c′) of Theorem 3.4 for p = 2, and (II) as n → ∞,

n4−i γn(i)
2

γ 2
n

−→ c2
i ∈ [0,∞), i = 1,2.

Then, γ 2
n ∼ (c2

1 + c2
2)

−1(n3γn(1)2 + n2γn(2)2), and moreover Ỹn =⇒ c1A + c2b, where b is
a Brownian bridge independent of A.

Theorem 3.10 is proved in Section 5.5. An alternate class of FCLTs displaying Brownian
bridges as limits can be found in [27]. In the forthcoming Corollary 4.4, we will present a
direct application of Theorem 3.10 to edge counting in random geometric graphs.

3.3. Extension to vectors of U -processes. In this subsection we state multivariate ex-
tensions of Theorems 3.1 and 3.4. We first introduce the setup and some notation. Fix
a dimension d ≥ 1 and, for 1 ≤ i ≤ d , let pi be a positive integer and suppose that
ψ(i) = ψ(n)(i) ∈ L2(μpi ) is a symmetric kernel (that may again depend on the sample
size n). Define the corresponding kernels gk(i) and ψs(i) (which may also depend on n)
for all 0 ≤ k ≤ pi and 1 ≤ s ≤ pi in the obvious way. Without loss of generality we may
assume that 1 ≤ p1 ≤ p2 ≤ · · · ≤ pd . Moreover, for 1 ≤ i ≤ d , t ∈ [0,1] and n ≥ pd , let
Ui(t) := J

(nt�)
pi (ψ(i)),

Wi(t) := W
(n)
i (t) := Ui(t) −E[Ui(t)]√

Var(Ui(1))

and Wi := (Wi(t))t∈[0,1]. Then, with obvious notation we have that

W := W(n) := (W1, . . . ,Wd)T ∈ D
([0,1];Rd).

In this section, the vector-valued Gaussian limiting processes Z = (Z1, . . . ,Zd)T will have
zero mean, and a covariance structure that is given by

(3.6) Cov
(
Zi(s),Zj (t)

)=
pi∧pj∑
k=1

αk(i, j)(s ∧ t)kspi−ktpj−k,

where 1 ≤ i, j ≤ d , s, t ∈ [0,1] and the αk(i, j), 1 ≤ k ≤ pi ∧ pj , are real numbers such that
αk(i, i) ≥ 0. Specializing (3.6) to the case i = j , i = 1, . . . , d , one sees immediately that each
process Zi has the form (1.1), for p = pi and α2

k,p = αk(i, i), thus implying in particular that

Z takes a.s. values in C([0,1];Rd). For 1 ≤ i ≤ d , we further write

σ 2
n (i) := Var

(
Ui(1)

)
.

The next two statements are multidimensional counterparts to Theorem 3.1 and Theo-
rem 3.4.

THEOREM 3.11 (Functional convergence of vectors of general U -statistics, I). Let the
assumptions and notation of this subsection prevail, and assume that the following three
conditions are satisfied:

(a) For all 1 ≤ i ≤ j ≤ d and for all 1 ≤ k ≤ pi ∧ pj , the real limit

bk(i, j) := lim
n→∞

npi+pj−k

σn(i)σn(j)

(〈
gk(i), gk(j)

〉
L2(μk)

−E
[
ψ(i)(X1, . . . ,Xpi

)
] ·E[ψ(j)(X1, . . . ,Xpj

)
])

exists;
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(b) for all 1 ≤ i ≤ k ≤ d , all 1 ≤ v ≤ pi , all 1 ≤ u ≤ pk and all pairs (l, r) and quadruples
(j,m,a, b) of integers such that 1 ≤ r ≤ v ∧u, 0 ≤ l ≤ r ∧ (u+ v − r − 1) and (j,m,a, b) ∈
Q(v,u, r, l) one has that

lim
n→∞

npi+pk− u+v+r−l
2

σn(i)σn(k)

∥∥gj (i) 
b
a gm(k)

∥∥
L2(μj+m−a−b) = 0;

(c) there exists some ε > 0 such that, for all 1 ≤ i ≤ d , all 1 ≤ r ≤ pi , all 0 ≤ l ≤ r − 1
and all quadruples (j,m,a, b) ∈ Q(r, r, r, l), the sequence

n2pi−r− r−l
2 +ε

σn(i)2

∥∥gj (i) 
b
a gm(i)

∥∥
L2(μj+m−a−b)

is bounded.

Then, as n → ∞, one has that W(n) =⇒ Z, where Z = {Z(t) : t ∈ [0,1]} is the centered,
vector-valued Gaussian process defined by the covariance structure (3.6) and where, for 1 ≤
i, j ≤ d , we have

αk(i, j) = bk(i, j)

k!(pi − k)!(pj − k)! , 1 ≤ k ≤ pi ∧ pj .

THEOREM 3.12 (Functional convergence of vectors of general U -statistics, II). The con-
clusion of Theorem 3.11 continues to hold if the following three conditions (a′), (b′) and (c′)
replace conditions (a), (b) and (c):

(a′) For all 1 ≤ i ≤ j ≤ d and for all 1 ≤ k ≤ pi ∧ pj , the real limit

bk(i, j) := lim
n→∞

npi+pj−k

σn(i)σn(j)

〈
ψk(i),ψk(j)

〉
L2(μk)

exists;
(b′) for all 1 ≤ i ≤ k ≤ d , all 1 ≤ v ≤ pi , all 1 ≤ u ≤ pk and all pairs (l, r) of integers

such that 1 ≤ r ≤ v ∧ u, 0 ≤ l ≤ r ∧ (u + v − r − 1),

lim
n→∞

npi+pk− u+v+r−l
2

σn(i)σn(k)

∥∥ψv(i) 
l
r ψu(k)

∥∥
L2(μv+u−r−l ) = 0;

(c′) there exists some ε > 0 such that, for all 1 ≤ i ≤ d , all 1 ≤ r ≤ pi and all 0 ≤ l ≤
r − 1, the sequence

n2pi−r− r−l
2 +ε

σ 2
n (i)

∥∥ψr(i) 
l
r ψr(i)

∥∥
L2(μr−l )

is bounded.

4. Applications.

4.1. Subgraph counting in random geometric graphs. Random geometric graphs are
graphs whose vertices are random points scattered on some Euclidean domain, and whose
edges are determined by some explicit geometric rule; in view of their wide applicability (for
instance, to the modelling of telecommunication networks), these objects represent a very
popular alternative to the combinatorial Erdős–Rényi random graphs. We refer to the texts
[45, 46] for an introduction to this topic, and for an overview of related applications. Our aim
is to use our main findings (Theorem 3.1 and Theorem 3.4) in order to establish a new col-
lection of FCLTs for arbitrary subgraph counting statistics associated with generic sequences
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of random graphs. These FCLTs—whose statements appear in Theorem 4.2 below—hold
in full generality and with minimal restrictions with respect to the already existing one-
dimensional CLTs; as such, they substantially extend the one-dimensional CLTs proved in
[46], Section 3.5 and Section 3.4, as well as in [5, 18, 31].

We fix a dimension d ≥ 1 as well as a bounded and Lebesgue almost everywhere continu-
ous probability density function f on Rd . Let μ(dx) := f (x) dx be the corresponding prob-
ability measure on (Rd,B(Rd)) and suppose that X1,X2, . . . are i.i.d. with distribution μ.
Let X := {Xj : j ∈ N}. We denote by {tn : n ∈ N} a sequence of radii in (0,∞) such that
limn→∞ tn = 0. For each n ∈ N, we denote by G(X; tn) the random geometric graph obtained
as follows. The vertices of G(X; tn) are given by the set Vn := {X1, . . . ,Xn}, which P-a.s.
has cardinality n, and two vertices Xi , Xj are connected if and only if 0 < ‖Xi − Xj‖2 < tn.
Furthermore, let p ≥ 2 be a fixed integer and suppose that � is a fixed connected graph on p

vertices. For each n we denote by Gn(�) the number of induced subgraphs of G(X; tn) which
are isomorphic to �. Recall that an induced subgraph of G(X; tn) consists of a nonempty sub-
set V ′

n ⊆ Vn with an edge set precisely given by the set of edges of G(X; tn) whose endpoints
are both in V ′

n. We will also have to assume that � is feasible for every n ≥ p. This means
that the probability that the restriction of G(X; tn) to X1, . . . ,Xp is isomorphic to � is strictly
positive for n ≥ p. Note that feasibility depends on the common distribution μ of the points.
The quantity Gn(�) is a symmetric U -statistic of X1, . . . ,Xn, since

Gn(�) = ∑
1≤i1<···<ip≤n

ψ�,tn(Xi1, . . . ,Xip),

where ψ�,tn(x1, . . . , xp) equals 1 if the graph with vertices x1, . . . , xp and edge set {{xi, xj } :
0 < ‖xi −xj‖2 < tn} is isomorphic to �, and equals 0 otherwise. We denote the corresponding
normalized U -process by {Wn(t) : t ∈ [0,1]}, that is,

Wn(t) = Un(t) −E[Un(t)]
Var(Gn(�))1/2 ,

where

Un(t) := Gnt�(�) = ∑
1≤i1<···<ip≤nt�

ψ�,tn(Xi1, . . . ,Xip), 0 ≤ t ≤ 1.

For obtaining asymptotic normality one typically distinguishes between three different
asymptotic regimes:

(R1) ntdn → 0 and npt
d(p−1)
n → ∞ as n → ∞ (sparse regime)

(R2) ntdn → ∞ as n → ∞ (dense regime)
(R3) ntdn → ρ ∈ (0,∞) as n → ∞ (thermodynamic regime)

Note that we could rephrase the regimes (R1) and (R2) as follows:

(R1) ( 1
n
)

p
p−1 � tdn � 1

n

(R2) 1
n

� tdn ,

where, for positive sequence an and bn we write an � bn, n ∈ N, if and only if limn→∞ an/

bn = 0. It turns out that, under regime (R2) one also has to take into account whether the
common distribution μ of the Xj is the uniform distribution U(M) on some Borel subset
M ⊆ Rd , 0 < λd(M) < ∞ with density f (x) = λd(M)−11M(x), or not. To deal with this
peculiarity, we will therefore distinguish between the following four cases:

(C1) ntdn → 0 and npt
d(p−1)
n → ∞ as n → ∞.



FUNCTIONAL CONVERGENCE OF SEQUENTIAL U -PROCESSES 567

(C2) ntdn → ∞ as n → ∞ and μ = U(M) for some Borel subset M ⊆ Rd s.t. 0 <

λd(M) < ∞.
(C3) ntdn → ∞ as n → ∞, and μ is not a uniform distribution.
(C4) ntdn → ρ ∈ (0,∞) as n → ∞.

The following important variance estimates will be needed. Except for the case (C2), which
needs a special consideration, these have already been derived in the book [46]. Since it does
not make the argument much longer, we provide the whole proof.

PROPOSITION 4.1. Under all regimes (R1), (R2) and (R3) it holds that E[Gn(�)] ∼
cnpt

d(p−1)
n for a constant c ∈ (0,∞). Moreover, there exist constants c1, c2, c3, c4 ∈ (0,∞)

such that, as n → ∞,

(C1) Var(Gn(�)) ∼ c1 · npt
d(p−1)
n ,

(C2) Var(Gn(�)) ≥ c2 · n2p−2t
d(2p−3)
n for all n ∈N,

(C3) Var(Gn(�)) ∼ c3 · n2p−1t
d(2p−2)
n ,

(C4) Var(Gn(�)) ∼ c4 · n.

PROOF. For notational convenience, for k = 0,1, . . . , p we simply denote by gk the func-
tion

(x1, . . . , xk) 	→ E
[
ψ�,tn(x1, . . . , xk,X1, . . . ,Xp−k)

]
,

corresponding to the kernel ψ�,tn , that is, we suppress the dependence on n and on the
graph �. We will make use of formula (2.9). First note that, for 1 ≤ k ≤ p,

Var
(
gk(X1, . . . ,Xk)

)= ‖gk‖2
L2(μk)

− (
E
[
ψ(X1, . . . ,Xp)

])2
.

Hence, by (2.9), we have

(4.1)

Var
(
Gn(�)

)=
(
n

p

) p∑
k=1

(
p

k

)(
n − p

p − k

)(‖gk‖2
L2(μk)

− (
E
[
ψ(X1, . . . ,Xp)

])2)

∼
p∑

k=1

n2p−k

k!((p − k)!)2

(‖gk‖2
L2(μk)

− (
E
[
ψ(X1, . . . ,Xp)

])2)
.

For k = 1, . . . , p, we have that (e.g., by dominated convergence)

‖gk‖2
L2(μk)

=
∫
(Rd )k

gk(x1, . . . , xk)
2 dμk(x1, . . . , xk)

=
∫
(Rd )k

(∫
(Rd )p−k

ψ�,tn(x1, . . . , xk,

y1, . . . , yp−k) dμp−k(y1, . . . , yp−k)

)2
dμk(x1, . . . , xk)

=
∫
(Rd )k

∫
(Rd )p−k×(Rd )p−k

ψ�,tn(x1, . . . , xk, y1, . . . , yp−k)

· ψ�,tn(x1, . . . , xk, u1, . . . , up−k)

·
k∏

j=1

f (xj ) dxj

p−k∏
i=1

f (yj ) dyj

p−k∏
l=1

f (ul) dul
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=
∫
Rd

f (x1)

∫
(Rd )k−1

∫
(Rd )p−k×(Rd )p−k

ψ�,1(0,w2 . . . ,wk, z1, . . . , zp−k)(4.2)

· ψ�,1(0,w2, . . . ,wk, v1, . . . , vp−k)

· (tdn )2p−k−1
k∏

j=2

f (x1 + tnwj ) dwj

p−k∏
i=1

f (x1 + tnzi) dzi

·
p−k∏
l=1

f (x1 + tnul) dul dx1

∼ dk

(
tdn
)2p−k−1

,(4.3)

where, for 1 ≤ k ≤ p,

(4.4)

dk :=
∫
Rd

f (x1)
2p−k dx1

∫
(Rd )k−1

∫
(Rd )p−k×(Rd )p−k

ψ�,1(0,w2, . . . ,wk, z1, . . . , zp−k)

· ψ�,1(0,w2, . . . ,wk, v1, . . . , vp−k)

k∏
j=2

dwj

p−k∏
i=1

dzi

p−k∏
l=1

dul.

Also, from [46], Proposition 3.1, we know that

E
[
Gn(�)

]∼ np

p! t
d(p−1)
n ν,

where

(4.5) ν = ν(p,�) :=
∫
Rd

f (x)p dx

∫
(Rd )p−1

ψ�,1(0, y2, . . . , yp) dy2 · · · dyp > 0.

This implies that

(4.6)
(
E
[
ψ(X1, . . . ,Xp)

])2 ∼ ν2(tdn )2p−2
.

Since 0 < tn < 1, for 2 ≤ k ≤ p, this yields that

Var
(
gk(X1, . . . ,Xk)

)= ‖gk‖2
L2(μk)

− (
E
[
ψ(X1, . . . ,Xp)

])2
∼ dk

(
tdn
)2p−k−1

.

In order to discuss the case k = 1 we have to carefully compare d1 to ν. Note that we have

d1 =
∫
Rd

f (x)2p−1 dx

(∫
(Rd )p−1

ψ�,1(0, y2, . . . , yp) dy2 · · · dyp

)2

so that d1 > ν2 if and only if∫
Rd

f (x)2p−1 dx >

(∫
Rd

f (x)p dx

)2
.

By Jensen’s inequality we have(∫
Rd

f (x)p dx

)2
=
(∫

Rd
f (x)p−1 dμ(x)

)2
≤
∫
Rd

f (x)2p−2 dμ(x)

=
∫
Rd

f (x)2p−1 dx
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with equality, if and only if, f (x)p−1 is μ-a.s. constant, that is, if and only if μ is a uniform
distribution on some Borel subset M ⊆ Rd s.t. 0 < λd(M) < ∞. Thus, if μ is not a uniform
distribution we obtain that

Var
(
g1(X1)

)∼ (
d1 − ν2)(tdn )2p−2

,

whereas, if μ is a uniform distribution we can only conclude that

Var
(
g1(X1)

)
�
(
tdn
)2p−2

but, in general, we cannot give any lower asymptotic bound on Var(g1(X1)). Note that, for
1 ≤ k ≤ p − 1 we have

(4.7)
n2p−k(tdn )2p−k−1

n2p−k−1(tdn )2p−k−2 = ntdn
n→∞−→

⎧⎪⎪⎨⎪⎪⎩
0 under (R1),

∞ under (R2),

ρ under (R3).

This implies that there are positive constants c1, c3 and c4 such that

(4.8) Var
(
Gn(�)

)∼

⎧⎪⎪⎨⎪⎪⎩
c1n

p(tdn )p−1 in case (C1),

c3n
2p−1(tdn )2p−2 in case (C3),

c4n in case (C4),

whereas, in case (C2) we can conclude (as claimed) that there is a positive constant c2 such
that

(4.9)
Var

(
Gn(�)

)≥
(
p

2

)(
n − p

p − 2

)(‖g2‖2
L2(μ2)

− (
E
[
ψ(X1, . . . ,Xp)

])2)
∼ c2n

2p−2(tdn )2p−3
. �

The next collection of FCLTs, extending the one-dimensional CLT proved in [18, 46],
is the main result of the section. Note that, in view of the large number of parameters, in
the forthcoming Theorem 4.2 we choose to express the distribution of the limit process Z

directly in terms of its covariance function (1.3), rather than using the representation (1.1). We
will also need the following definition: For fixed ρ ∈ (0,∞), introduce the positive definite
function � : [0,1] × [0,1] → R : (s, t) 	→ �(s, t) given by

(4.10)

�(s, t) :=
( p∑

l=1

ρ2p−l−1(dl − δl,1ν
2)

l!(p − l)!(p − l)!
)−1 p∑

k=1

(s ∧ t)p(s ∨ t)p−k

k!(p − k)!(p − k)!ρ
2p−k−1(dk − δk,1ν

2),
where dk , 1 ≤ k ≤ p and ν have been defined in (4.4) and (4.5), respectively.

THEOREM 4.2 (FCLTs for subgraph counting in random geometric graphs). Let the
above assumptions and notation prevail. Then, in the cases (C3) and (C4), the sequence
Wn = {Wn(t)) : t ∈ [0,1]}, n ∈N is such that Wn =⇒ Z, n → ∞, for some continuous Gaus-
sian process Z. In the case (C1), this convergence holds if, additionally, there is a δ > 0 such

that ( 1
n
)

p
p−1 −δ � tdn � 1

n
and in the case (C2), this convergence holds if, additionally, there is

a δ > 0 such that 1
n

� tdn � n−1/2−δ and if the limits b2
1 and b2

2 do exist, where the parameters
b2

1 and b2
2 have been defined in Theorem 3.1). The covariance function � : [0,1]× [0,1] → R
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of Z is given by

�(s, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(s ∧ t)p under (C1),
(s ∧ t)p(s ∨ t)p−1

1 + λ−1 + (s ∧ t)p(s ∨ t)p−2

1 + λ
under (C2),

(s ∧ t)p(s ∨ t)p−1 under (C3),

�(s, t) under (C4),

where �(s, t) is defined in (4.10) and λ ∈ [0,+∞] is given in (4.13) below. In particular, in
the case (C1) one has that Wn =⇒ {B(tp) : t ∈ [0,1]}, where B denotes a standard Brownian
motion.

REMARK 4.3. Note that, interestingly, in the case (C4) the covariance function � of the
limiting process depends not only on ρ but also on the difference d1 − ν2. In particular, the
analytic properties of � depend on whether μ is a uniform distribution or not.

PROOF OF THEOREM 4.2. Let us first disregard the case (C2). Then, by Proposition 4.1,
(4.2) and (4.6) we have

n2p−k

σ 2
n

(‖gk‖2
L2(μk)

− (
E
[
ψ(X1, . . . ,Xp)

])2)
∼ n2p−k(dk(t

d
n )2p−k−1 − ν2(tdn )2p−2)∑p

l=1
n2p−l

l!(p−l)!(p−l)!(dl(tdn )2p−l−1 − ν2(tdn )2p−2)
.

By relation (4.7) this implies that

(4.11)

b2
k = lim

n→∞
n2p−k

σ 2
n

(‖gk‖2
L2(μk)

− (
E
[
ψ(X1, . . . ,Xp)

])2)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p!δk,p, in case (C1),

(p − 1)!(p − 1)!δk,1 in case (C3),
ρ2p−k−1(dk − δk,1ν

2)∑p
l=1

ρ2p−l−1(dl−δl,1ν
2)

l!(p−l)!(p−l)!
in case (C4).

In the case (C2), in general we only know that

σ 2
n ∼ n2p−1

(p − 1)!(p − 1)! Var
(
g1(X1)

)+ d2
n2p−2(tdn )2p−3

2(p − 2)!(p − 2)! ,

where

Var
(
g1(X1)

)
�
(
tdn
)2p−2

.

Thus, using (4.7) we can conclude that

(4.12) b2
k = lim

n→∞
n2p−k

σ 2
n

(‖gk‖2
L2(μk)

− (
E
[
ψ(X1, . . . ,Xp)

])2)= 0, 3 ≤ k ≤ p.

Hence, if both limits b2
1 and b2

2 do exist, depending on the precise order of Var(g1(X1)), the
three scenarios:

(a) b2
1 = (p − 1)!(p − 1)! and b2

2 = 0
(b) b2

1 = 0 and b2
2 = 2(p − 2)!(p − 2)! and
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(c) b2
1 = (p − 1)!(p − 1)!(1 + λ−1)−1 and b2

2 = 2(p − 2)!(p − 2)!(λ + 1)−1 for some
λ ∈ (0,∞)

are possible, where

(4.13) λ = lim
n→∞

n2p−1

(p − 1)!(p − 1)! Var
(
g1(X1)

) ·
(
d2

n2p−2(tdn )2p−3

2(p − 2)!(p − 2)!
)−1

.

Note that (c) contains (a) and (b) if we allow for λ = 0 and λ = +∞ by adopting the conven-
tions that a/0 := ∞ and a/∞ := 0 for a ∈ (0,∞).

In particular, (4.11) and (4.12) make sure that condition (a) of Theorem 3.1 is always
satisfied in this example and that the covariance function � of the potential limiting process
given by

�(s, t) =
p∑

k=1

(s ∧ t)p(s ∨ t)p−k

k!(p − k)!(p − k)!b
2
k

coincides with the one in the statement. Now fix integers 1 ≤ v ≤ u ≤ p and l, r such that
1 ≤ r ≤ v and 0 ≤ l ≤ r ∧ (u + v − r − 1). The computations on pages 4196–4197 of [35]
show that for all

(j,m,a, b) ∈ P := ({
(j,m,a, b) : 1 ≤ b ≤ a ≤ j ≤ m and b < m

}
∪ {

(j,m,a, b) : j = m = a and b = 0
})∩ Q(v,u, r, l)

one has

(4.14)

∥∥gj 
b
a gm

∥∥2
L2(μj+m−a−b) = O

(
td(4p−(j+m+a−b)−1)
n

)
= O

(
td(4p−(u+v+r−l)−1)
n

)
,

where the second relation follows from 0 < tn < 1 and the inequality j + m + a − b ≤
v+u+r − l (we observe that the authors of [35] actually deal with the rescaled measure n ·μ,
which is why they obtain another power of n as a prefactor). Now suppose that (j,m,a, b) ∈
Q(v,u, r, l) ∩ P . We are going to repeatedly use (4.14) and Proposition 4.1 for the following
estimates: In case (C1) we have

n4p+l−r−v−u

σ 4
n

∥∥gj 
b
a gm

∥∥2
L2(μj+m−a−b) �

n4p+l−r−v−ut
d(4p−u−v−r+l−1)
n

n2pt
d(2p−2)
n

= n2p−(v+u+r−l)td(2p−(v+u+r−l)+1)
n

≤ (
ntdn

)2p−(v+u+r−l)
tdn

≤ (
nptd(p−1)

n

)−1
,

where we have used that v + u + r − l ≤ 3p for the second inequality and, hence, under the
assumptions of the theorem it follows that

n4p+l−r−v−u

σ 4
n

∥∥gj 
b
a gm

∥∥2
L2(μj+m−a−b) � n−δ(p−1).

In case (C2) we obtain

n4p+l−r−v−u

σ 4
n

∥∥gj 
b
a gm

∥∥2
L2(μj+m−a−b) �

n4p+l−r−v−ut
d(4p−u−v−r+l−1)
n

n4p−4t
d(4p−6)
n

= n4−(v+u+r−l)td(5−(v+u+r−l))
n

≤ nt2d
n ,
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where we have used that (v + u + r − l) ≥ 3. Hence, under the assumptions of the theorem it
follows that

n4p+l−r−v−u

σ 4
n

∥∥gj 
b
a gm

∥∥2
L2(μj+m−a−b) � n−2δ.

In case (C3) we similarly obtain

n4p+l−r−v−u

σ 4
n

∥∥gj 
b
a gm

∥∥2
L2(μj+m−a−b) �

n4p+l−r−v−ut
d(4p−u−v−r+l−1)
n

n4p−2t
d(4p−4)
n

= n2−(v+u+r−l)td(3−(v+u+r−l))
n

� n−1,

where we have again used that (v + u + r − l) ≥ 3. Finally, in case (C4) we have

n4p+l−r−v−u

σ 4
n

∥∥gj 
b
a gm

∥∥2
L2(μj+m−a−b) �

n4p+l−r−v−ut
d(4p−u−v−r+l−1)
n

n2

= n−1(ntdn
)4p+l−r−v−u−1 ∼ n−1ρ4p+l−r−v−u−1

= O
(
n−1).

Eventually, we have to deal with the quadruples (j,m,a, b) ∈ Q(v,u, r, l) \P . In order to do
this, we first remark that we have the asymptotic relations

‖gm‖2
L2(μm)

�
(
tdn
)2p−m−1

, 1 ≤ m ≤ p and(4.15)

μp(ψ�,tn) :=
∫
(Rd )p

ψ�,tn dμp �
(
tdn
)p−1

.(4.16)

Relation (4.15) follows from the computation

‖gm‖2
L2(μm)

=
∫
(Rd )m

g2
m(x1, . . . , xm)

m∏
j=1

f (xj ) dxj

=
∫
(Rd )m

m∏
j=1

f (xj ) dxj

∫
(Rd )2p−2m

ψ�,tn(x1, . . . , xp)

· ψ�,tn(x1, . . . , xm, zm+1, . . . , zp)

p∏
l=m+1

f (xl)f (zl) dxl dzl

=
∫
(Rd )m

m∏
j=1

f (xj ) dxj

∫
(Rd )2p−2m

ψ�,1
(
0, t−1

n (x1 − x2), . . . , t
−1
n (x1 − xp)

)
· ψ�,1

(
0, t−1

n (x1 − x2), . . . , t
−1
n (x1 − xm), t−1

n (x1 − zm+1), . . . , t
−1
n (x1 − zp)

)
·

p∏
l=m+1

f (xl)f (zl) dxl dzl

= (
tdn
)2p−m−1

∫
Rd

f (x1) dx1

∫
(Rd )m−1

m∏
j=2

f (x1 + tnyj ) dyj

·
∫
R2p−2m

p∏
l=m+1

f (x1 + tnul)f (x1 + tnvl) dul dvl
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· ψ�,1(0, y2, . . . , ym,um+1, . . . , up)ψ�,1(0, y2, . . . , ym, vm+1, . . . , vp)

∼ (
tdn
)2p−m−1

∫
Rd

f (x1)
2p−m dx1

∫
(Rd )m−1

m∏
j=2

dyj

∫
R2p−2m

p∏
l=m+1

dul dvl

· ψ�,1(0, y2, . . . , ym,um+1, . . . , up)ψ�,1(0, y2, . . . , ym, vm+1, . . . , vp)

�
(
tdn
)2p−m−1

,

where we made use of the translation invariance and scaling property of the kernel ψ�,tn as
well as of the a.e.-continuity of f . The derivation of (4.16) is similar but easier and is for this
reason omitted.

First, if a = b = 0 and j,m ≥ 1, then we have∥∥gj 
0
0 gm

∥∥2
L2(μj+m) = ‖gj‖2

L2(μj )
· ‖gm‖2

L2(μm)

�
(
tdn
)2p−j−1(

tdn
)2p−m−1 = (

tdn
)4p−(j+m)−2

.

Now note that by the definition of the set Q(v,u, r, l) we further have that

j + m = j + m − a − b ≤ u + v − r − l,

which implies that∥∥gj 
0
0 gm

∥∥
L2(μj+m) �

(
tdn
)4p−(u+v−r−l)−2 = (

tdn
)4p−(u+v+r−l)+2r−2

≤ (
tdn
)4p−(u+v+r−l)

,

since r ≥ 1. If a = b = j = m = 0, then we have∥∥g0 
0
0 g0

∥∥2
L2(μ0) = μp(ψ�,tn)

4 �
(
tdn
)4p−4

≤ (
tdn
)4p−(u+v+r−l)−1

,

which provides a bound of the same order as (4.14). If a = b = j = 0 and m ≥ 1, then using
m = j + m − a − b ≤ u + v − r − l and r ≥ 1,∥∥g0 
0

0 gm

∥∥2
L2(μm) = μp(ψ�,tn)

2‖gm‖2
L2(μm)

�
(
tdn
)2p−2(

tdn
)2p−m−1 = (

tdn
)4p−m−3

≤ (
tdn
)4p−(u+v−r−l)−3 = (

tdn
)4p−(u+v+r−l)−3+2r

≤ (
tdn
)4p−(u+v+r−l)−1

,

which again yields a bound of the same order as (4.14). The only remaining possibility is that
1 ≤ a = b = m = j ≤ p − 1. In this case, we first claim that

2j + 1 ≤ u + v + r − l.

Indeed, if j < u, then 2j < u + v ≤ u + v + r − l since j ≤ v. On the other hand, if j = u,
then j = v and we must also have r = j and l ≤ r − 1 = j − 1 since j = a ≤ r ≤ v = j and
0 ≤ l ≤ u + v − r − 1 = j − 1 = r − 1. Hence, u + v + r − l ≥ 2j + r − l ≥ 2j + 1. Thus,
we obtain that ∥∥gj 


j
j gj

∥∥2
L2(μ0) = ‖gj‖4

L2(μj )

�
(
tdn
)2p−j−1(

tdn
)2p−j−1 = (

tdn
)4p−(2j+1)−1

≤ (
tdn
)4p−(u+v+r−l)−1

,
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which is the same bound as in (4.14). Since all these bounds are at most the same as the
bound in (4.14) we conclude that the above estimates continue to hold for all (j,m,a, b) ∈
Q(v,u, r, l) \ P . Since the estimates just proven are independent of the variables v, u, l and
r , this implies that conditions (b) and (c) of Theorem 3.1 are satisfied in the asserted cases.

�

As announced, the following statement is a consequence of Theorem 3.10 and provides a
changepoint counterpart to the previous theorem, in the special case of edge counting.

COROLLARY 4.4. Under the above assumptions and notation, suppose that the sequence
{tn} verifies condition (C1) for p = 2, and write σ 2

n := Var(Gn(edge)). Then, if there is a
δ > 0 such that ( 1

n
)2−δ � tdn � 1

n
, the process Tn := {Tn(t) : t ∈ [0,1]} defined by

Tn(t) := 1

σn

∑
1≤i≤nt�<j≤n

(1{0<‖Xi−Xj‖<tn} − ηn),

= 1

σn

∑
1≤i≤nt�<j≤n

1{0<‖Xi−Xj‖<tn} − ηn

σn

nt�(n − nt� + 1
)
,

where ηn := P[0 < ‖X1 − X2‖ ≤ tn], is such that Tn =⇒ √
2b, where b is a standard Brown-

ian bridge.

The proof of Corollary 4.4 (whose details are left to the reader) follows from the fact that,
under the regime (C1) and in the notation of Theorem 3.10, one has that γ 2

n ∼ σ 2
n /2, and also

c1 = 0 and c2 = 2—in such a way that the limiting process
√

2b exclusively emerges from
the fluctuations of the second (degenerate) Hoeffding projections of the U -statistics Tn(t),
t ∈ [0,1]. Writing k := nt� for a fixed t , the sum

S(n, t) := ∑
1≤i≤nt�<j≤n

1{0<‖Xi−Xj‖≤tn}

counts the number of edges in G(X; tn) such that one endpoint belongs to the set
{X1, . . . ,Xk} and the other belongs to {Xk+1, . . . ,Xn}; a small value of S(n, t) implies
that most distances between the elements of the two blocks of variables are larger than tn.
The random variable S(n, t) is a special case of the family of U -statistics used for graph-
based changepoint detection defined, for example, in [12], formula (3.1), (for k = 0 and
G = G(X; tn)); we refer the reader to such a reference, as well as to the seminal contribu-
tion [9], for an overview of changepoint analysis techniques based on the use of random
geometric graphs. For testing procedures (see, e.g., [14, 24]), one is typically interested in
understanding the asymptotic distribution of quantities, such as

Mn := max
t∈[0,1]

(−Tn(t)
)

or An := argmax
t∈[0,1]

(−Tn(t)
)
,

where argmaxt∈[0,1] g(t) stands conventionally for the smallest maximizer of a function g

admitting a maximum.2 Corollary 4.4 implies that Mn and An converge in distribution to
m := √

2 maxbt and a := argmaxbt , respectively. It is a well-known fact (see, e.g., [14, 22])
that m/

√
2 is distributed according to the Kolmogorov–Smirnov law, whereas a is uniformly

distributed on [0,1].

2The domain of the argmax operator can be extended to D[0,1]—see, e.g., [24], page 491.
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REMARK 4.5. The fact that An converges in distribution to argmaxbt is justified by the
observation that, according, for example, to [23], Example 1.2, b is a continuous Gaussian
process having a.s. a unique maximizer in [0,1], in such a way that the desired conclusion
can be deduced by an application of the continuous mapping theorem [7], Theorem 2.7,
analogous to [24], proof of Theorem 2.1.

More general limit theorems (involving in particular an independent process A, as in The-
orem 3.10) could be obtained by considering an adequately renormalized version of Tn under
the remaining regimes (C2)–(C4).

4.2. U -Statistics of order 2 with a dominant diagonal component.

4.2.1. General statements. In the paper [48], a remarkable collection of one-dimensional
CLTs was proved for sequences of U -statistics of order 2 displaying size-dependent ker-
nels, as well as dominant nonlinear Hoeffding components. The Gaussian fluctuations of the
U -statistics considered in [48] emerge asymptotically from the fact that the corresponding
kernels tend to concentrate around a diagonal, a phenomenon leading to Gaussianity if one
assumes some additional Lyapounov-type condition. The scope of the applications developed
in [48] covers, for example, the estimation of quadratic functionals of densities and regression
functions, as well as the estimation of mean responses with missing data (see Section 4.2.2
below, as well as [48], Section 3, and [6, 36–38]).

Our aim in this section is to use our Theorem 3.1 in order to prove a functional version
of the forthcoming Theorem 4.6, corresponding to a special (but fundamental) case of [48],
Theorem 2.1. Two explicit examples related to kernels based on wavelets and on Fourier
bases, respectively, are studied in full detail in Section 4.2.2.

In order to state the announced results, we adopt a notation similar to [48] and consider a
sequence of i.i.d. random variables {Xi : i ≥ 1} with values in the measurable space (E,E)

and with common distribution μ. We also consider a sequence {Kn : n ≥ 1} ⊂ L2(μ2) of
symmetric kernels

Kn : E × E →R : (x, y) 	→ Kn(x, y).

For every n, we define the constant σn and the processes Un = {Un(t) : t ∈ [0,1]} and Wn =
{Wn(t) : t ∈ [0,1]} according to (2.5)–(2.9), in the special case p = 2 and ψ = Kn, that is,

(4.17) Wn(t) =
∑

1≤1<i<j≤nt� Kn(Xi,Xj ) − nt�(nt� − 1)EKn(X1,X2)

σn

, t ∈ [0,1].

We write kn := EK2
n(X1,X2) = ‖Kn‖2

L2(μ2)
, and assume that

(4.18)
kn

n

n→∞−−−→ ∞,

and moreover

(4.19) sup
n

sup
‖f ‖

L2(μ)
=1

∫
E

(∫
E

f (v)Kn(x, v)μ(dv)

)2
μ(dx) = sup

n
‖Kn‖2

op < ∞,

where ‖ • ‖op denotes the operator norm of the Hilbert–Schmidt operator f 	→ ∫
E Kn(·, y)×

f (y)μ(dy), and

(4.20) ‖Kn‖∞ � kn.

Assumptions (4.18) and (4.19) are easily checkable conditions implying that the linear part
of the Hoeffding decomposition of Wn(1) vanishes in L2(P) as n → ∞. Assumption (4.20)
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can be relaxed (see, e.g., formula (10) and Lemma 2.1 in [48]), but we decided to avoid such
a level of generality—which is not needed for the examples developed below—in order to
keep our paper within bounds.

THEOREM 4.6 (Theorem 2.1 and Lemma 2.1 in [48]). Assume that there exists a se-
quence of finite measurable partitions Pn := {Xn,m : m = 1, . . . ,Mn}, n ≥ 1, of the set E

such that

1

kn

∑
m

∫
Xn,m

∫
Xn,m

K2
n dμdμ

n→∞−−−→ 1,(4.21)

1

kn

max
m

∫
Xn,m

∫
Xn,m

K2
n dμdμ

n→∞−−−→ 0,(4.22)

max
m

μ(Xn,m)
kn

n

n→∞−−−→ 0,(4.23)

lim inf
n→∞ nmin

m
μ(Xn,m) > 0.(4.24)

Then, as n → ∞, one has that σ 2
n ∼ n2kn

2 and

Wn(1)
Law−→ Z,

where Z is a standard Gaussian random variable.

The main abstract result of the present section is the following functional version of the
previous statement.

THEOREM 4.7. Let the setting and assumptions of Theorem 4.6 prevail. If, in addition,
one has that

sup
n

n1/2+ε1 max
m

μ(Xn,m) < ∞ for some ε1 > 0,(4.25) (
sup
n

max
m

μ(Xn,m)
kn

n1−ε2
< ∞ or

lim inf
n→∞ n1−ε2 min

m
μ(Xn,m) > 0 for some ε2 > 0

)
,

(4.26)

sup
n

n1+α1

kn

< ∞ for some α1 > 0,(4.27)

sup
n

nα2

kn

∫
E

∫
E

∣∣Kn(x, y)1{(x,y)∈⋂(Xn,m×Xn,m)c}
∣∣2μ(dx)μ(dy)

< ∞ for some α2 > 0,

(4.28)

then

Wn =⇒ {
B
(
t2) : t ∈ [0,1]}, n → ∞,

where B is a standard Brownian motion issued from zero.

As we will point out in Remark 4.8 below each of the four assumptions (4.25), (4.26),
(4.27) and (4.28) plays a substantially different role in the proof.
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PROOF OF THEOREM 4.7. Using the notation introduced in this section, for every n we
define

Qn :=
Mn⋃
m=1

Xm,n ×Xm,n ⊂ E2,

and write Qc
n = ⋂Mn

m=1(Xm,n × Xm,n)
c in order to denote the complement of Qn in E2. We

set An := Kn1Qn and Bn := Kn − An = Kn1Qc
n
, and define Tn := {Tn(t) : t ∈ [0,1]} and

Rn := {Rn(t) : t ∈ [0,1]} as

Tn(t) :=
∑

1≤1<i<j≤nt� An(Xi,Xj ) − nt�(nt� − 1)EAn(X1,X2)

σn

,

Rn(t) :=
∑

1≤1<i<j≤nt� Bn(Xi,Xj ) − nt�(nt� − 1)EBn(X1,X2)

σn

,

in such a way that Wn = Tn + Rn. Our first remark is that, for every f ∈ L2(μ) with unit
norm, one has that ∫

E

(∫
E

f (v)An(x, v)μ(dv)

)2
μ(dx)

=
Mn∑
m=1

∫
Xm,n

(∫
Xm,n

f (v)Kn(x, v)μ(dv)

)2
μ(dx)

≤
Mn∑
m=1

∫
E

(∫
Xm,n

f (v)Kn(x, v)μ(dv)

)2
μ(dx)

≤ ‖Kn‖op

Mn∑
m=1

∫
Xm,n

f (x)2μ(dx) = ‖Kn‖op,

from which we infer that

(4.29) sup
n

‖An‖op, sup
n

‖Bn‖op < ∞,

where we have applied (4.19) and the triangle inequality in order to deal with Bn. Using the
identity (2.9) (in the case ψ = Bn) together with (4.29), with the relations σ 2

n ∼ n2kn/2 and
n/kn → 0 and with (4.21), shows immediately that, as n → ∞, E[Rn(t)

2] = o(σ 2
n ) for every

t ∈ [0,1]. This in turn implies that σ 2
n ∼ Var(Tn(1)). We will now study Rn and Tn separately,

and prove that:

(i) the sequence {Rn : n ≥ 1} is tight in D[0,1], so that Rn =⇒ 0 (zero function of
D[0,1]);

(ii) the sequence {Tn : n ≥ 1} verifies the assumptions of Theorem 3.1 in the case p = 2,
with α1,2 = 0 and α2,2 = 1, and therefore Tn weakly converges to B(t2) in D[0,1].

PROOF OF (i). We first define the functions g0, g1, g2 according to (2.4), in the case
p = 2 and ψ = Bn, so that the Hoeffding decomposition of the U -statistic Rn(t), t ∈ [0,1],
is

Rn(t) = nt� − 1

σn

nt�∑
j=1

[
g1(Xj ) − g0

]+ 1

σn

∑
1≤i<j≤nt�

[
g2(Xi,Xj ) − g1(Xi) − g1(Xj ) + g0

]
:= R′

n(t) + R′′
n(t).
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Now fix 0 ≤ s < t ≤ 1. Then, writing g1 − g0 := ψ1, as before, and using as always the
symbol c in order to denote an absolute finite constant whose exact value might change from
line to line,

E
∣∣R′

n(t) − R′
n(s)

∣∣2
≤ c

σ 2
n

{
E

∣∣∣∣ns� ∑
ns�<j≤nt�

ψ1(Xj )

∣∣∣∣2 +E

∣∣∣∣(nt� − ns�) ∑
1≤j≤nt�

ψ1(Xj )

∣∣∣∣2}

:= c

σ 2
n

(Y1 + Y2).

We can assume without loss of generality that α1 ∈ (0,1]; we have that

(4.30)

Y1

σ 2
n

≤ c

kn

E

[ ∑
ns�<j≤nt�

ψ1(Xj )
2
]

≤ c

kn

(nt� − ns�)1+α1E
∣∣ψ1(X1)

∣∣2
≤ c

(nt� − ns�
n

)1+α1

,

where we have used (4.19) and (4.27) to deduce the last inequality. Analogously, one shows
that

(4.31)
Y2

σ 2
n

≤ c

(nt� − ns�
n

)2 n

kn

E
∣∣ψ1(Xj )

∣∣2 ≤ c

(nt� − ns�
n

)1+α1

,

where the last inequality follows again from (4.19) and from (4.18), as well as from the fact
that nt�−ns�

n
∈ [0,1].

In order to deal with R′′, we adopt as before the notation ψ2(Xi,Xj ) :=
g2(Xi,Xj ) − g1(Xi) − g1(Xj ) + g0, and observe that, for every a ≥ 1, E[|ψ2(Xi,Xj )|a] ≤
c
∫
E

∫
E |Bn|a dμ2, for some absolute constant c depending solely on a. For every n and every

0 ≤ s < t ≤ 1, we define the set of integers

Hn(s, t) := {
(i, j) : 0 ≤ i < j ≤ nt�}\{(i, j) : 0 ≤ i < j ≤ ns�}.

Clearly, |Hn(s, t)| = (nt�
2

)− (ns�
2

)= 1
2(nt�+ns�−1)(nt�−ns�). For fixed 0 ≤ s < t ≤

1, one has that

E
∣∣R′′

n(t) − R′′
n(s)

∣∣2 = 1

σ 2
n

E

∣∣∣∣ ∑
(i,j)∈Hn(s,t)

ψ2(Xi,Xj )

∣∣∣∣2.
In order to bound such a quantity, we use orthogonality of the summands in the above sum,
fix an α2 > 0 such that condition (4.28) is satisfied, and note that

(4.32)

E
∣∣R′′

n(t) − R′′
n(s)

∣∣2 = 1

σ 2
n

∑
(i1,i2)∈Hn(s,t)

E
[
ψ2(Xi1,Xi2)

2]
≤ c

σ 2
n

∣∣Hn(s, t)
∣∣ ∫

E

∫
E

B2
n dμ2

≤ c
∫
E

∫
E B2

n dμ2

kn

· nt� − ns�
n

≤ cnα2
∫
E

∫
E B2

n dμ2

kn

·
(nt� − ns�

n

)1+α2

.

We have therefore shown (in (4.30), (4.31) and (4.32)) that {Rn} satisfies the tightness crite-
rion of Lemma 1.1, for α = min(α1, α2) and β = 2, and the proof of Point (i) is concluded.
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PROOF OF (ii). In this part of the proof, we denote by g0, g1, g2 the functions obtained
from (2.4) by selecting p = 2 and ψ = An. Note that each of the three kernels gi implicitly
depends on n and that, by virtue of (4.29), one has

(4.33) sup
n

(
E
[
g1(X1)

2]+ |g0|)< ∞.

Since g2 = An, σ 2
n ∼ knn

2/2 and (4.21) is in order, we see immediately that the constants
b1 and b2 appearing at Point (a) of Theorem 3.1 are such that b1 = 0 and b2

2 = 2, yielding
α1,2 = 0 and α2,2 = 1. In order to conclude our proof, we have now to check that the quantities
appearing at Points 1.-6. of Remark 3.3 all converge to zero as n → ∞ and that the quantities
in points i)-iv) of the same remark are bounded for some ε > 0. This is immediately done for
the quantities at Points 1., i) and ii), by virtue of (4.33). To deal with the quantity at Point iii),
we note that, for some ε > 0,

n5/2+ε

σ 2
n

‖g1‖2
L4(μ)

∼ n1/2+ε

kn

[∫
E

(∫
E

Kn(x, y)1
[
(x, y) ∈⋃

m

Xn,m ×Xn,m

]
μ(dy)

)4
μ(dx)

]1/2

= n1/2+ε

kn

[∑
m

∫
Xn,m

(∫
Xn,m

Kn(x, y)μ(dy)

)4
μ(dx)

]1/2

≤ n1/2+ε

kn

[∑
m

∫
Xn,m

(∫
Xn,m

Kn(x, y)μ(dy)

)2(∫
Xn,m

knμ(dy)

)2
μ(dx)

]1/2
, by (4.21)

≤ n1/2+ε max
m

μ(Xn,m)

[∑
m

∫
Xn,m

(∫
Xn,m

Kn(x, y)μ(dy)

)2
μ(dx)

]1/2

� n1/2+ε max
m

μ(Xn,m), by (4.29),

which is bounded by (4.25). On the other hand,

n2

σ 2
n

∥∥g1 
0
1 g2

∥∥
L2 = n2

σ 2
n

(∫
E

∫
E

(
g1(x)g2(x, y)

)2
μ(dx)μ(dy)

)1/2

∼ 1

kn

{∫
E

∫
E

(∫
E

Kn(x, z)1
[
(x, z) ∈⋃

m

Xn,m ×Xn,m

]
μ(dz)

· Kn(x, y)1
[
(x, y) ∈⋃

m

Xn,m ×Xn,m

])2
μ(dx)μ(dy)

}1/2

= 1

kn

[∑
m

∫
Xn,m

∫
Xn,m

(∫
Xn,m

Kn(x, z)μ(dz)

)2
K2

n(x, y)μ(dx)μ(dy)

]1/2

(4.20)≤ 1

kn

[∑
m

∫
Xn,m

∫
Xn,m

(∫
Xn,m

Kn(x, z)μ(dz)

)2
k2
nμ(dx)μ(dy)

]1/2

≤√
max

m
μ(Xn,m)

[∑
m

∫
Xn,m

(∫
Xn,m

Kn(x, z)μ(dz)

)2
μ(dx)

]1/2
n→∞−−−→ 0,

by (4.25) and (4.29), showing that the quantity at Point 2. vanishes. We can deal at once
with the quantities at Point 3. and 5. by means of the following considerations. For a fixed
n, denote by {λj : j ≥ 1} and {ej : j ≥ 1}, respectively, the sequence of eigenvalues (taken
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in decreasing order) and eigenfunctions of the Hilbert–Schmidt operator on L2(μ) given
by f 	→ ∫

E An(·, y)f (y)μ(dy). Then, such eigenfunctions form an orthonormal system in
L2(μ), and one has that An = g2 =∑

i λiei ⊗ei , with convergence in L2(μ2). Such a relation
yields that ‖An‖op = λ1, g2 
1

1 g2 =∑
i λ

2
i ei ⊗ei , g1 =∑

i λiμiei (where μi := ∫
E ei dμ) and

g1 
1
1 g2 =∑

i λ
2
i μiei . Since |μi | ≤ 1 (by Cauchy–Schwarz), we infer that∥∥g1 
1

1 g2
∥∥
L2(μ),

∥∥g2 
1
1 g2

∥∥
L2(μ2) ≤

√∑
i

λ4
i ≤ ‖An‖op‖An‖L2(μ2),

and the desired convergence to zero follows from (4.18), (4.21) and (4.29). The vanishing of
the quantity at Point 4. follows from

n3/2

σ 2
n

∥∥g2 
0
1 g2

∥∥
L2

∼ 1

n1/2kn

(∑
m

∫
Xn,m

∫
Xn,m

∫
Xn,m

K2
n(x, y)K2

n(x, z)μ(dx)μ(dy)μ(dz)

)1/2

≤ 1

n1/2kn

{∑
m

∫
Xn,m

∫
Xn,m

(∫
Xn,m

K4
n(x, y)μ(dx)

)1/2

·
(∫

Xn,m

K4
n(x, z)μ(dx)

)1/2
μ(dy)μ(dz)

}1/2

= 1

n1/2kn

{∑
m

(∫
Xn,m

(∫
Xn,m

K4
n(x, z)μ(dx)

)1/2
μ(dz)

)2}1/2

≤
{

1

k2
n

max
m

μ(Xm,n)

n

∑
m

∫
Xn,m

∫
Xn,m

K4
n(x, z)μ(dx)μ(dz)

}1/2
n→∞−−−→ 0,

where we have applied (4.20) and (4.23). One has also that, for some ε > 0,

n1+ε

σ 2
n

‖g2‖2
L4(μ)

∼ 1

n1−εkn

{∑
m

∫
Xn,m

∫
Xn,m

K4
n(x, y)μ(dx)μ(dy)

}1/2

= nε

{
1

k2
n

max
m

μ(Xn,m)

n

∑
m

∫
Xn,m

∫
Xn,m

K4
n(x, y)μ(dx)μ(dy)

}1/2

· 1

n1/2 maxm μ(Xn,m)1/2

is bounded, by (4.20), (4.21), (4.23), (4.24) and (4.26)—this yields the boundedness of the
sequence at Point iv). Finally, the convergence to zero of the quantity at Point 6. is a direct
consequence of (4.18) and (4.21). �

REMARK 4.8. By inspection of the previous proof, one sees that Assumptions (4.27)
and (4.28) imply that the off-diagonal part of the U -process Wn is tight in the space D[0,1].
On the other hand, Assumptions (4.25) and (4.26) are needed in order to ensure that the
(dominating) diagonal component of Wn meets the requirements of Theorem 3.1. Note that
Assumption (4.25) is such that (a) it does not appear in [48], and (b) it would be needed if
one wanted to prove a one-dimensional CLT for Wn(1) by using the techniques developed in
[18]. This slight discrepancy between the assumptions of [18] and [48] is explained by the
fact that the sufficient conditions discovered in [18] would imply not only a CLT for Wn(1),
but also that E[Wn(1)4] → 3, and consequently need to be stronger.
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4.2.2. Two examples. As an application of Theorem 4.7, we will consider two families
of kernels satisfying the set of sufficient conditions for functional convergence pointed out in
the previous section. As explained in [48], Section 3, both types of U -statistics can be used
in the nonparametric estimation of quadratic functionals of densities—see also [6, 38].

(I) (Wavelet-based kernels) Following [48], Section 4.1, we consider expansions of func-
tions f ∈ L2(R

d) on an orthonormal basis of compactly supported, bounded wavelets of the
form

f (x) = ∑
j∈Zd

∑
v∈{0,1}d

〈
f,ψv

0,j

〉
ψv

0,j (x) +
∞∑
i=0

∑
j∈Zd

∑
v∈{0,1}d\{0}

〈
f,ψv

i,j

〉
ψv

i,j (x).

The functions ψv
i,j are orthogonal for different indices (i, j, v) and given by scaled and trans-

lated versions of the 2d base functions ψv
0,0:

ψv
i,j (x) = 2id/2ψv

0,0
(
2ix − j

)
.

We concentrate on functions f with support in E = [0,1]d . As noted in [48], Section 4.1, for
each resolution level i and vector v, only the order 2id elements ψv

i,j are nonzero in E. We
denote the corresponding set of indices j by Ji . We then truncate the expansion at the level
of resolution i = I and look at the kernel

Kn(x, y) = ∑
j∈J0

∑
v∈{0,1}d

ψv
0,j (x)ψv

0,j (y) +
I∑

i=0

∑
j∈Ji

∑
v∈{0,1}d\{0}

ψv
i,j (x)ψv

i,j (y).

(II) (Kernels based on Fourier expansions) Any function f ∈ L2[−π,π ] can be repre-
sented through the Fourier series f =∑

j∈Z fjej for ej (x) = eijx/
√

2π and fj = ∫ π
−π f ejdλ,

where λ is the Lebesgue measure. We can write fk = ∑
|j |≤k fj ej to obtain an orthogonal

projection of f onto a 2k + 1-dimensional space. Assuming that k depends on n, we can also
write down the corresponding kernel as:

Kn(x, y) = ∑
|j |≤k

ej (x)ej (y) = sin((k + 1
2)(x − y))

2π sin(1
2(x − y))

and note that Kn(x, y) = Dk(x − y), where Dk is the well-known Dirichlet kernel.

THEOREM 4.9. Let the above assumption and notation prevail.

1. Let μ be any probability measure on [0,1]d with a Lebesgue density that is bounded
and bounded away from zero. The sequence of wavelet-based kernels {Kn : n ≥ 1} defined
at Point (I) above satisfies the assumptions of Theorem 4.6, with respect to μ, as soon as
n � kn � n2, for kn = 2Id . Moreover, a sufficient condition for such a sequence to satisfy the
assumptions of Theorem 4.7 is n1+γ1 � kn � n2−γ2 , for some γ1, γ2 > 0.

2. Let μ be any measure on R with a bounded Lebesgue density and kn = 2k + 1. The
sequence of Fourier-based kernels {Kn : n ≥ 1} defined at Point (II) above satisfies the as-
sumptions of Theorem 4.6 as soon as n � kn � n2. In addition, a sufficient condition for
such a sequence to meet the assumptions of Theorem 4.7 is n1+η1 � kn � n2−η2 , for some
η1, η2 > 0.

PROOF. 1. For n � kn � n2 and Kn defined in point (I) above, the assumptions of The-
orem 4.6 are verified in [48], Proposition 4.1. The authors note that, by assumption, each
function ψv

I,j is supported within a set of the form 2−I (C + j) for a given cube C that

depends on the type of the wavelet, for any v. They take Xn,m to be blocks (cubes) of ldn
adjacent cubes 2I (C + j), giving Mn = O(kn/ldn ) sets Xn,m. In order for the assumptions
(4.19)–(4.24) to be satisfied, the authors require that:
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(a) Mn → ∞,
(b) Mn � n,
(c) Mn

kn
→ 0,

(d) M−1
n kn/n → 0.

Now assume n1+γ1 � kn � n2−γ2 for some γ1, γ2 > 0. Condition (4.27) is then automatically
satisfied. As noted in the proof of [48], Proposition 4.1, μ(Xm,n) is of order 1

Mn
. Now, it

is also noted in the proof of [48], Proposition 4.1, that, if Kn(x1, x2) �= 0 then there exists
some j such that x1, x2 ∈ 2−I (C + j). Moreover, the set of (x1, x2) in the complement of⋃

mXn,m ×Xn,m where Kn(x1, x2) �= 0 is contained in the union U of all cubes 2−I (C + j)

that intersect the boundary of some Xn,m. It is also noted that the number of such cubes is
of order M

1/d
n k

1−1/d
n and that μ(2−I (C + j)) � 1

kn
. Therefore, using ‖Kn‖∞ � kn, we note

that, for any α2 > 0,

nα2

kn

∫ ∫ ∣∣∣Kn(x, y)1
[
(x, y) ∈⋂

(Xn,m ×Xn,m)c
]∣∣∣2μ(dx)μ(dy)

� nα2k2
n

kn

M1/d
n k1−1/d

n

(
1

kn

)2

= nα2

(
Mn

kn

)1/d

.

Condition (4.28) requires this quantity to be bounded for some α2 > 0. It will indeed be
bounded for α2 ≤ 1

2d
if we choose Mn = k

1/2
n . Moreover, for Mn = k

1/2
n , Mn

kn
→ 0. Also,

kn

Mnn
= k

1/2
n

n
→ 0, as kn � n2. Under the same assumption, Mn → ∞ and n1/2+γ1/2 � Mn �

n1−γ2/2 � n and so conditions (4.25) and (4.26) are also satisfied (as μ(Xm,n) is of order 1
Mn

).
Therefore all the conditions (a), (b), (c), (d) from above, as well as conditions (4.25)–(4.28),
are satisfied. This finishes the proof.

2. For n � kn � n2, the assumptions (4.19)–(4.24) for kernel Kn of Point (II) are verified
in [48], Proposition 4.2. The authors take a partition (−π,π ] = ⋃

mXn,m in Mn = 2π
δ

inter-
vals of length δ for δ → 0 for 1√

kn
� δ � n

kn
and introduce an ε > 0 such that 1√

kn
� ε � δ.

Now, assume that n1+η1 � kn � n2−η2 , for some η1, η2 > 0. This makes condition (4.27)
readily satisfied. In order for condition (4.25) to be satisfied, we require that n1/2+ε1δ is
bounded for some ε1 > 0. Moreover, condition (4.26) will be satisfied if δ � n1−ε2

kn
for some

ε2 > 0.
The authors of [48] note that the complement of

⋃
mXn,m ×Xn,m is contained in {(x1, x2) :

|x1 − x2| > ε} except for the set of 2(Mn − 1) triangles indicated in [48], Figure 3. Now, by
the argument of the proof of [48], Proposition 4.2, for any α2 > 0,

nα2

kn

∫ π

−π

∫ π

−π
1
[|x − y| > ε

]∣∣Kn(x, y)
∣∣2μ(dx)μ(dy) � εnα2 + nα2

ε2kn

,

which is bounded, if nα2/2

k
1/2
n

� ε � n−α2 . Each of the remaining triangles in the complement of⋃
mXn,m ×Xn,m has sides of length of order ε. Hence, for a typical triangle � and an interval

I of length of the order ε,

(4.34)
nα2

kn

∫ ∫
�

∣∣Kn(x, y)
∣∣2 dx dy

v=y

�
u=x−y

nα2

kn

∫
I

∫ ε

0

∣∣Dn(u)
∣∣2 dudv � nα2

kn

εkn = εnα2 .

There are 2(Mn −1) such triangles. Therefore, condition (4.27) will be satisfied if, in addition
to nα2/2

k
1/2
n

� ε � n−α2 , Mnεn
α2 = 2πεnα2

δ
is bounded, that is, εnα2 � δ.
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Summing up, conditions (4.19)–(4.28) are satisfied if, for some δ, ε, ε1, ε2, α2 > 0,

n3α2/2

k
1/2
n

� εnα2 � δ � min
(

1

n1/2+ε1
,
n1−ε2

kn

)
.

Such choices of δ, ε, ε1, ε2, α2 > 0 exist. Indeed, let α2 = min(η1,η2)
6 , ε1 = 1

2(η1 − min(η1,η2)
2 ),

ε2 = 1
2(η2 − min(η1,η2)

2 ). Then, under the assumption n1+η1 � kn � n2−η2 , we have that
n3α2/2

k
1/2
n

� min( 1
n1/2+ε1

, n1−ε2

kn
) and it suffices to choose δ = n3α2/2

k
1/2
n

and ε = nα2/2

k
1/2
n

. This finishes

the proof. �

5. Technical results and proofs of main statements. Unless otherwise specified, for
the rest of the section we adopt the conventions and notation put forward in Section 2.

5.1. A new product formula. We start by proving a new product formula for symmetric
U -statistics with arguments of possibly different sizes. In order to state it, we need to recall
the Hoeffding decomposition of not necessarily symmetric kernel functions: Let f ∈ L1(μp).
Then, f can be decomposed as follows: For all (x1, . . . , xp) ∈ Ep one has

(5.1) f (x1, . . . , xp) = ∑
J⊆[p]

fJ

(
(xi)i∈J

)
,

where we follow the convention that in (xi)i∈J the coordinates i appear in increasing or-
der, that is, if J = {i1, . . . , ik} with k = |J | and 1 ≤ i1 < · · · < ik ≤ p, then (xi)i∈J =
(xi1, . . . , xik ). The kernels fJ , J ⊆ [p], are given by

(5.2) fJ

(
(xi)i∈J

)= ∑
K⊆J

(−1)|J |−|K|
∫
Ep−|K|

f (x1, . . . , xp) dμp−|K|((xi)i∈[p]\K
)

and they are canonical with respect to μ in the sense that for each ∅ �= J ⊆ p with |J | = k,
each j ∈ J and all (xi)i∈J\{j} ∈ E|J |−1 one has that

(5.3)
∫
E

fJ (xi1, . . . , xil−1, y, xil+1, . . . , xik ) dμ(y) = 0,

where we again suppose that J = {i1, . . . , ik}, 1 ≤ i1 < · · · < ik ≤ p and where il = j . For a
detailed discussion and proofs of these facts we refer the reader to [39], Chapter 9. Note that,
if the kernel f is symmetric as in Section 2, then we can define the (symmetric) functions gk ,
0 ≤ k ≤ p by

gk(y1, . . . , yk) =
∫
Ep−k

f (y1, . . . , yk, x1, . . . , xp−k) dμp−k(x1, . . . , xp−k)

as before and we obtain that, for every subset J ⊆ [p] with 1 ≤ k := |J | ≤ p,

fJ (x1, . . . , xk) =
s∑

l=0

(−1)k−l
∑

1≤i1<···<il≤k

gl(xi1, . . . , xil ) = fk(x1, . . . , xk),

where the symmetric and degenerate kernel fk has been defined in (2.3).
For the statement of our product formula we have to fix some more notation: Let us fix two

positive integers p and q . Then, for nonnegative integers l, n, m, r such that n ≤ m, r ≤ p∧q ,
l ≥ p + q − 2r and sets L ⊆ [m] with |L| = l, we denote by �r,n,m(L) the collection of all
triples

(A,B,C) ∈ D2r+l−p−q(n) ×Dp−r (n) ×Dq−r (m)

such that L is the disjoint union of A, B and C.
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PROPOSITION 5.1 (Product formula). Let p,q ≥ 1 be positive integers and assume that
ψ ∈ L2(μp) and ϕ ∈ L2(μq) are degenerate, symmetric kernels of orders p and q respec-
tively. Moreover, let n ≥ p and m ≥ q be positive integers with m ≥ n. Then, whenever
n ≥ p + q we have the Hoeffding decomposition:

J (n)
p (ψ)J (m)

q (ϕ) = ∑
M⊆[m]:

|M|≤p+q

UM =
p+q∑

k=|p−q|

q∧k∧(m−n)∑
s=0

∑
M⊆[m]:
|M|=k,

|M∩{n+1,...,m}|=s

UM,

where, for a set M ⊆ [m] with 0 ≤ k := |M| ≤ p + q and 0 ≤ s := |M ∩ {n + 1, . . . ,m}| ≤
q ∧ k ∧ (m − n), the Hoeffding component UM is given by

(5.4)

UM =
p∧(q−s)∧(p+q−k)∑

r=�p+q−k
2 �

(
n − k + s

p + q − r − k

)

· ∑
(A,B,C)∈�r,n,m(M)

(
ψ 
p+q−r−k

r ϕ
)
M

(
(Xi)i∈A, (Xi)i∈B, (Xi)i∈C

)
.

Moreover, for such an M , we further have the bound

(5.5)

√
Var(UM)

≤
p∧(q−s)∧(p+q−k)∑

r=�p+q−k
2 �

(
n − k + s

p + q − r − k

)(
k − s

2r + k − p − q,p − r, q − r − s

)

· ∥∥ψ 
p+q−r−k
r ϕ

∥∥
L2(μk).

REMARK 5.2. The above product formula is an extension of the one proved in
[18], Proposition 2.6, for symmetric and degenerate U -statistics based on the same range
X1, . . . ,Xn of data. Indeed, suppose that n = m. Then, if |M| = k and (necessarily) s = 0 it
is not hard to verify that∑

(A,B,C)∈�r,n,m(M)

(
ψ 
p+q−r−k

r ϕ
)
M

(
(Xi)i∈A, (Xi)i∈B, (Xi)i∈C

)

= k!
(2r + k − p − q)!(p − r)!(q − r)!

( ˜
ψ 


p+q−r−k
r ϕ

)
k(Xi, i ∈ M)

and the product formula reduces to the one in [18], Proposition 2.6. The main difference in
general is that, in the situation of Proposition 5.1 and for n �= m, the product is no longer
(in general) a finite sum of degenerate and symmetric U -statistics. However, its Hoeffding
decomposition (in the sense of not necessarily symmetric statistics—see, e.g., [17, 33]) is
still completely explicit and hence suitable for providing useful bounds.

PROOF OF PROPOSITION 5.1. Write

W := J (n)
p (ψ) = ∑

J∈Dp(n)

WJ and V := J (m)
q (ϕ) = ∑

K∈Dq (m)

VK

for the respective Hoeffding decompositions of W and V , that is,

WJ = ψ(Xj , j ∈ J ), J ∈ Dp(n) and VK = ϕ(Xi, i ∈ K), K ∈ Dq(m).
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From Theorem 2.6 in [17] we know that the Hoeffding decomposition of V W is given by

V W = ∑
M⊆[m]:

|M|≤p+q

UM,

where, for M ⊆ [m] with |M| ≤ p + q , we have

(5.6) UM = ∑
L⊆M

(−1)|M|−|L| ∑
J∈Dp(n),K∈Dq (m):

J�K⊆L,
M⊆J∪K

E[WJ VK |FL],

where FL := σ(Xj , j ∈ L). Note that UM = 0 whenever |M| < |p − q| because |J�K| ≥
|p − q| for all J ∈ Dp(n) and K ∈ Dq(m). Moreover, UM = 0 if |M ∩ {n + 1, . . . ,m}| > q

since M ∩ {n + 1, . . . ,m} ⊆ K and |K| = q . Hence, we have

(5.7) V W = ∑
M⊆[m]:

|M|≤p+q,
|M∩{n+1,...,m}|≤q

UM =
p+q∑

k=|p−q|

q∧k∑
s=0

∑
M⊆[m]:
|M|=k,

|M∩{n+1,...,m}|=s

UM.

Since K ∩ {n + 1, . . . ,m} ⊆ J�K ⊆ L ⊆ M and M ∩ {n + 1, . . . ,m} ⊆ K ∩ {n + 1, . . . ,m}
this also implies that we can restrict our attention to sets M and L that satisfy

M ∩ {n + 1, . . . ,m} = L ∩ {n + 1, . . . ,m} = K ∩ {n + 1, . . . ,m}.
Writing k := |M|, r := |J ∩ K|, l := |L| and s := |M ∩ {n + 1, . . . ,m}| it follows that r ≤
p ∧ (q − s) and, since

(5.8) |J ∩ K| = |J | + |K| − |J ∪ K| = p + q − |J ∪ K|,
it follows from M ⊆ J ∪K that r ≤ p + q − k. Moreover, since |J ∪K| = |J ∩K| + |J�K|
and J�K ⊆ L ⊆ M , it follows again from (5.8) that 2r ≥ p+q − l ≥ p+q −k. In particular,
we have l ≥ |p − q| ∨ (p + q − 2r) = p + q − 2r . Moreover, note that

|J ∩ K ∩ L| = |L| − ∣∣L ∩ (J�K)
∣∣= |L| − |J�K| = l − (p + q − 2r) = 2r + l − p − q,∣∣(J ∩ K) \ L

∣∣= ∣∣(J ∩ K)
∣∣− |J ∩ K ∩ L| = r − (2r + l − p − q) = p + q − r − l and∣∣L \ (J ∩ K)

∣∣= |L| − |J ∩ K ∩ L| = l − (2r + l − p − q) = p + q − 2r.

Note that we have

(5.9)
E
[
WJ VK |(Xi)i∈L

]= E
[
ψ(Xj , j ∈ J )ϕ(Xk, k ∈ K)|Xi, i ∈ L

]
= (

ψ 
p+q−r−l
r ϕ

)(
(Xi)i∈L∩J∩K, (Xj )j∈J\K, (Xk)k∈K\J

)
.

Let us now fix M and L. Then, for each (A,B,C) ∈ �r,n,m(L), there are precisely(
n − k + s

p + q − r − k

)
pairs (J,K) ∈ Dp(n) × Dq(m) such that M ⊆ J ∪ K , J ∩ K ∩ L = A, J \ K = B and
K \ J = C. Indeed, given these restrictions it only remains to choose the elements of (J ∩
K) \ L ⊆ [n] in such a way that

M \ L ⊆ (J ∩ K) \ L.

The claim now follows from the facts that |M ∩ [n]| = k − s,(
(J ∩ K) \ L

) \ (M \ L) = (J ∩ K) \ M
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and

∣∣(J ∩ K) \ L
∣∣− |M \ L| = p + q − r − l − (k − l) = p + q − r − k.

Thus we have proved that

(5.10)

UM =
k∑

l=|p−q|

∑
L⊆M:
|L|=l

(−1)|M|−|L|
p∧(q−s)∧(p+q−k)∑

r=�p+q−l
2 �

(
n − k + s

p + q − r − k

)

· ∑
(A,B,C)∈�r,n,m(L)

(
ψ 
p+q−r−l

r ϕ
)(

(Xi)i∈A, (Xi)i∈B, (Xi)i∈C

)

=
p∧(q−s)∧(p+q−k)∑

r=�p+q−k
2 �

(
n − k + s

p + q − r − k

) k∑
l=p+q−2r

∑
L⊆M:
|L|=l

(−1)|M|−|L|

· ∑
(A,B,C)∈�r,n,m(L)

(
ψ 
p+q−r−l

r ϕ
)(

(Xi)i∈A, (Xi)i∈B, (Xi)i∈C

)
.

Now, suppose that (A,B,C) ∈ �r,n,m(M), so that, in particular, |A| = 2r +k −p−q . More-
over, suppose that

TL(A,B,C) := E
[(

ψ 
p+q−r−k
r ϕ

)(
(Xi)i∈A, (Xi)i∈B, (Xi)i∈C

)|FL

] �= 0.

Then, it is easy to see that B ∪ C ⊆ L, that

TL(A,B,C) = (
ψ 
p+q−r−l

r ϕ
)(

(Xi)i∈A∩L, (Xi)i∈B, (Xi)i∈C

)
and that (A ∩ L,B,C) ∈ �r,n,m(L). Moreover, for each given (A,B,C) ∈ �r,n,m(L), there
is a unique (Â,B,C) ∈ �r,n,m(M) such that (Â ∩ L,B,C) = (A,B,C); namely one has to
take Â = A ∪ (M \ L). From these observations we infer that

(5.11)

∑
(A,B,C)∈�r,n,m(L)

(
ψ 
p+q−r−l

r ϕ
)(

(Xi)i∈A, (Xi)i∈B, (Xi)i∈C

)
= ∑

(Â,B,C)∈�r,n,m(M)

TL(Â,B,C).

Now, recall that by the Hoeffding decomposition for nonsymmetric kernels, for each
(A,B,C) ∈ �r,n,m(M) we have that

(5.12)

(
ψ 
p+q−r−k

r ϕ
)
M

(
(Xi)i∈A, (Xi)i∈B, (Xi)i∈C

)
= ∑

L⊆M

(−1)|M|−|L|E
[(

ψ 
p+q−r−k
r ϕ

)(
(Xi)i∈A, (Xi)i∈B, (Xi)i∈C

)|FL

]
= ∑

L⊆M

(−1)|M|−|L|TL(A,B,C).
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Thus, from (5.10), (5.11) and (5.12) we can conclude that

(5.13)

UM =
p∧(q−s)∧(p+q−k)∑

r=�p+q−k
2 �

(
n − k + s

p + q − r − k

)

·
k∑

l=p+q−2r

∑
L⊆M:
|L|=l

(−1)|M|−|L| ∑
(A,B,C)∈�r,n,m(M)

TL(A,B,C)

=
p∧(q−s)∧(p+q−k)∑

r=�p+q−k
2 �

(
n − k + s

p + q − r − k

)

· ∑
(A,B,C)∈�r,n,m(M)

∑
L⊆M

(−1)|M|−|L|TL(A,B,C)

=
p∧(q−s)∧(p+q−k)∑

r=�p+q−k
2 �

(
n − k + s

p + q − r − k

)

· ∑
(A,B,C)∈�r,n,m(M)

(
ψ 
p+q−r−k

r ϕ
)
M

(
(Xi)i∈A, (Xi)i∈B, (Xi)i∈C

)
,

as claimed. The bound (5.5) then follows immediately from∥∥(ψ 
p+q−r−k
r ϕ

)
M

∥∥
L2(μk) ≤ ∥∥ψ 
p+q−r−k

r ϕ
∥∥
L2(μk)

and from the fact that∣∣�r,n,m(M)
∣∣= (

k − s

2r + k − p − q,p − r, q − r − s

)
. �

In the next subsection, we focus on convergence of finite-dimensional distributions (f.d.d.)
for processes of the form (2.7). Our approach extends the general (quantitative) CLTs from
[18].

5.2. F.d.d. convergence.

5.2.1. A general qualitative multivariate CLT. Fix a positive integer d and, for 1 ≤ i ≤ d

and n ∈ N, let pi ≤ mn,i ≤ n be positive integers. We will always assume that the sequences
{mn,i : n ∈ N} diverge to ∞ as n → ∞, for each i = 1, . . . , d , in such a way that there are
positive constants 0 < ci ≤ 1 such that cin ≤ mn,i ≤ n for all n ∈ N, s.t. we have mn,i � n for
i = 1, . . . , d . Moreover, let ψ(i) = ψ(i,n) ∈ L4(μpi ) be degenerate kernels. Define

ϕ(i) = ϕ(i,n) := ψ(i)√(mn,i

pi

)
as well as

σn(i)
2 := Var

(
J

(mn,i )
pi

(
ϕ(i)))= ∥∥ψ(i)

∥∥2
L2(μpi ).

For i = 1, . . . , d write Y(i) := J
(mn,i )
pi (ϕ(i)) as well as

Y = Yn := (Y1, . . . , Yd)T .
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Then, Y is a centered random vector with components in L4(P). We will write V = Vn =
{vi,k : 1 ≤ i, k ≤ d} for its covariance matrix. Throughout the section, we denote by Z =
Zn = (Z1, . . . ,Zd)T ∼ Nd(0,V) a centered Gaussian vector with the same covariance matrix
as Y . Note that, due to degeneracy, we have vi,k = 0 unless pi = pk . The following finite-
dimensional CLT is one of our crucial tools.

PROPOSITION 5.3. With the above notation and definitions, assume that C :=
limn→∞ Vn ∈ Rd×d exists. Then, Yn converges in distribution to Nd(0,C), provided con-
ditions (i)–(iii) below hold for all 1 ≤ i ≤ k ≤ d:

(i) limn→∞ na/2−r‖ψ(i,n) 
a−r
r ψ(k,n)‖L2(μpi+pk−a) = 0 for all pairs (a, r) of integers

such that 1 ≤ a ≤ min(pi + pk − 1,2(pi ∧ pk)) and �a
2� ≤ r ≤ a ∧ pi ∧ pk ,

(ii) limn→∞ na/2−r‖ψ(i,n)‖L2(μpi )‖ψ(i,n) 
a−r
r ψ(i,n)‖L2(μ2pi−a) = 0 for all for all pairs

(a, r) of integers such that 1 ≤ a ≤ 2pi − 1 and �a
2� ≤ r ≤ a ∧ pi , and

(iii) limn→∞
‖ψ(i,n)‖3

L2(μpi )√
n

= 0.

PROOF. For 1 ≤ i, k ≤ d , we use the notation

Y(i)Y (k) = ∑
M⊆[n]:|M|≤pi+pk

UM(i, k)

to indicate the Hoeffding decomposition of Y(i)Y (k). The following bound is taken from
Lemma 4.1 in [18]: for h ∈ C3(Rd) whose partial derivatives up to order three are all
bounded, there exist constants M̃2(h),M3(h) ∈ (0,∞) such that

∣∣E[h(Y )
]−E

[
h(Z)

]∣∣≤ 1

4p1
M̃2(h)

d∑
i,k=1

(pi + pk)

( ∑
M⊆[n]:

|M|≤pi+pk−1

Var
(
UM(i, k)

))1/2

+ 2M3(h)
√

d

9p1

d∑
i=1

piσn(i)

( ∑
M⊆[n]:

|M|≤2pi−1

Var
(
UM(i, i)

))1/2

+
√

2dM3(h)

9p1
√

n

d∑
i=1

p
3/2
i σn(i)

3√κpi
,

and each finite constant κpi
only depends on pi , 1 ≤ i ≤ d . We now apply Proposition 5.1 in

order to bound ( ∑
M⊆[n]:

|M|≤pi+pk−1

Var
(
UM(i, k)

))1/2

for 1 ≤ i ≤ k ≤ d . We will, for notational convenience, assume that mn,i ≤ mn,k . Moreover,
for integers p,q ≥ 0 we will write M(p,q) := min(2(p ∧ q),p + q − 1). From (5.5) we
know that for M ⊆ [mn,k] such that |M| = pi + pk − a for some a ∈ {1, . . . ,M(pi,pk)}
and |M ∩ {mn,i + 1, . . . ,mn,k}| = s ∈ {0,1, . . . , pk ∧ (pi + pk − a) ∧ (mn,k − mn,i)} we
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have √
Var

(
UM(i, k)

)
≤

a∧pi∧(pk−s)∑
r=� a

2 �

(
mn,i − pi − pk + a + s

a − r

)(
pi + pk − a

pi − r,pk − r,2r − a

)

· ∥∥ϕ(i) 
a−r
r ϕ(k)

∥∥
L2(μpi+pk−a)

=: bi,k(a, s).

(5.14)

Then, we have∑
M⊆[n]:

|M|≤pi+pk−1

Var
(
UM(i, k)

)

=
M(pi,pk)∑

a=1

pk∧(pi+pk−a)∧(mn,k−mn,i )∑
s=0

∑
M⊆[mn,k]:|M|=pi+pk−a,

|M∩{mn,i+1,...,mn,k}|=s

Var
(
UM(i, k)

)

≤
M(pi,pk)∑

a=1

pk∧(pi+pk−a)∧(mn,k−mn,i )∑
s=0

∑
M⊆[mn,k]:|M|=pi+pk−a,

|M∩{mn,i+1,...,mn,k}|=s

b2
i,k(a, s)

=
M(pi,pk)∑

a=1

pk∧(pi+pk−a)∧(mn,k−mn,i )∑
s=0

(
mn,k − mn,i

s

)(
mn,i

pi + pk − a − s

)
b2
i,k(a, s)

≤
M(pi,pk)∑

a=1

(
mn,k

pi + pk − a

)pk∧(pi+pk−a)∧(mn,k−mn,i )∑
s=0

b2
i,k(a, s).

Now, writing

K(pi,pk, a, r) :=
(

pi + pk − a

pi − r,pk − r,2r − a

)
and using the inequality (5.14), we obtain( ∑

M⊆[n]:
|M|≤pi+pk−1

Var
(
UM(i, k)

))1/2

≤
M(pi,pk)∑

a=1

√(
mn,k

pi + pk − a

)

·
pk∧(pi+pk−a)∧(mn,k−mn,i )∑

s=0

a∧pi∧(pk−s)∑
r=� a

2 �

(
mn,i − pi − pk + a + s

a − r

)

· K(pi,pk, a, r)
∥∥ϕ(i) 
a−r

r ϕ(k)
∥∥
L2(μpi+pk−a)

≤ pk + 1√(mn,i

pi

)√(mn,k

pk

) M(pi,pk)∑
a=1

m
(pi+pk−a)/2
n,k
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·
a∧pi∧(pk−s)∑

r=� a
2 �

ma−r
n,i K(pi,pk, a, r)

∥∥ψ(i) 
a−r
r ψ(k)

∥∥
L2(μpi+pk−a)

≤ C(pi,pk)

M(pi,pk)∑
a=1

m
(pi−a)/2
n,k

a∧pi∧pk∑
r=� a

2 �
m

a−r−pi/2
n,i

∥∥ψ(i) 
a−r
r ψ(k)

∥∥
L2(μpi+pk−a)

≤ C(pi,pk)

M(pi,pk)∑
a=1

(
mn,k

mn,i

)pi/2
m

a/2−r
n,k

a∧pi∧pk∑
r=� a

2 �

∥∥ψ(i) 
a−r
r ψ(k)

∥∥
L2(μpi+pk−a),

where the finite constant C(pi,pk) only depends on pi and pk , as mn,i ≤ mn,k . Since we
also have that cin ≤ mn,i ≤ mn,k ≤ n we can further bound( ∑

M⊆[n]:
|M|≤pi+pk−1

Var
(
UM(i, k)

))1/2

≤ c
−pi/2
i C(pi,pk)

M(pi,pk)∑
a=1

a∧pi∧pk∑
r=� a

2 �
na/2−r

∥∥ψ(i) 
a−r
r ψ(k)

∥∥
L2(μpi+pk−a),

and the desired conclusion follows immediately. �

REMARK 5.4. Note that the conditions (i)–(iii) in Proposition 5.3 are the same as those
we would obtain in the case mn,i = n for i = 1, . . . , d . In particular they make sure that the
vector

V := (
J (n)

p1

(
ϕ(1)), . . . , J (n)

pd

(
ϕ(d)))T

converges in distribution to Nd(0,�), whenever � := limn→∞E[V V T ] exists.

REMARK 5.5. Let the integers {mn,i} and kernels {ϕ(i,n)} be defined as above. For each
i = 1, . . . , d and n ≥ 1 consider sets of pairs of integers of the type

A(i, n) ⊂ {
(k1, . . . , kpi

) : 1 ≤ k1 < · · · < kpi
≤ n

}
,

and assume that, as n → ∞ and for every i = 1, . . . , d , |A(i, n)| ∼ (mn,i

pi

)
. For every i =

1, . . . , d now set

H(i, n) := ∑
(k1,...,kpi

)∈A(i,n)

ϕ(i,n)(Xk1, . . . ,Xkpi
),

and write Kn, n ≥ 1, to denote the covariance matrix of the vector Hn = (H(1, n), . . . ,

H(d,n)). Then, the proof of Proposition 5.3 can be straightforwardly adapted to show that,
if Kn converges to a positive definite matrix K
 and conditions (i)–(iii) in Proposition 5.3 are
veirified, then Hn converges in distribution to Z ∼ Nd(0,K
). Such a conclusion plays a role
in the proof of Theorem 3.10.

5.2.2. F.d.d. convergence for general symmetric U -processes. Let ψ : Ep → R be a
symmetric kernel of order p which is not necessarily degenerate and which might explic-
itly depend on the sample size n. Fix time points 0 ≤ t1 < · · · < tm ≤ 1. Then, for each

j = 1, . . . ,m, the random variable Fj := J
(ntj �)
p (ψ) has the Hoeffding decomposition

Fj = E[Fj ] +
p∑

k=1

(ntj� − k

p − k

)
J

(ntj �)
k (ψk),
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where the symmetric and degenerate kernels ψk : Ek →R of order k are given by

ψk(x1, . . . , xk) =
k∑

l=0

(−1)k−l
∑

1≤i1<···<il≤k

gl(xi1, . . . , xil )

and the symmetric functions gl : El →R are defined by

gl(y1, . . . , yl) := E
[
ψ(y1, . . . , yl,X1, . . . ,Xp−l)

]
.

Without loss of generality, we can thus assume that t1 > 0 and also that 0 < ‖ψ‖L2(μp) < +∞
which implies that

0 < σ 2
n := Var

(
J (n)

p (ψ)
)=

p∑
k=1

(
n − k

p − k

)2 (
n

k

)
‖ψk‖2

L2(μk)
< +∞

for all n ≥ p. We will further write

Wj := Fj −E[Fj ]
σn

for j = 1, . . . ,m. Our goal is to use Proposition 5.3 in order to find conditions ensuring that
the vector W := Wn := (W1, . . . ,Wm)T converges to some multivariate normal distribution
Nm(0,D), which requires in particular that the limit D := limn→∞E[WWT ] ∈ Rm×m exists.
Let us write d := mp and for i = 1, . . . , d let i = kip + si , where ki ∈ {0,1, . . . ,m − 1}
and si ∈ {1, . . . , p} as well as mn,i := ntki+1�. Moreover, similarly as in [18], Section 5, we
define

ϕ(i) := ϕ(n,i) :=
(mn,i−si

p−si

)
ψsi

σn

and

ψ(i) := ψ(n,i) :=
√(mn,i

si

)
ϕ(i).

With this notation at hand, we define the random vector Y := (Y1, . . . , Yd)T , where Yi :=
J

(mn,i )
si (ϕ(i)), 1 ≤ i ≤ d . In this way, our notation is fitted to the framework of Section 5.2.1.

We are going to reformulate the conditions from Proposition 5.3. First note that E[YiYj ] = 0
whenever si �= sj , due to the degeneracy of the involved kernels. On the other hand, if si =
sj = s, then

E[YiYj ] =
(mn,i∧mn,j

s

)(mn,i−s
p−s

)(mn,j−s
p−s

)
σ 2

n

‖ψs‖2
L2(μs)

.

Since mn,i = nti� for 1 ≤ i ≤ d , the covariance matrix of Y thus converges to some limit
� ∈ Rd×d if and only if the real limit

(5.15) lim
n→∞

n2p−s

σ 2
n

‖ψs‖2
L2(μs)

exists for s = 1, . . . , p. Moreover, for 1 ≤ i, k ≤ d we have

na/2−r
∥∥ψ(i,n) 
a−r

r ψ(k,n)
∥∥
L2(μsi+sk−a)

= na/2−r

√(mn,i

si

)√(mn,k

sk

)(mn,i−si
p−si

)(mn,k−sk
p−sk

)
σ 2

n

∥∥ψsi 
a−r
r ψsk

∥∥
L2(μsi+sk−a).
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Thus, limn→∞ na/2−r‖ψ(i,n) 
a−r
r ψ(k,n)‖L2(μsi+sk−a) = 0 if and only if

lim
n→∞

n2p+ a−si−sk
2 −r

σ 2
n

∥∥ψsi 
a−r
r ψsk

∥∥
L2(μsi+sk−a) = 0.

Further, for i = 1, . . . , d , we have

‖ψ(i,n)‖3
L2(μsi )√
n

=
(mn,i

si

)3/2(mn,i−si
p−si

)3/2

√
nσ 3

n

‖ψsi‖3
L2(μsi )

.

Hence, limn→∞
‖ψ(i,n)‖3

L2(μsi )√
n

= 0 if and only if

lim
n→∞

n3p− 3si+1
2

σ 3
n

‖ψsi‖3
L2(μsi )

=
(

lim
n→∞n−1/3 n2p−si

σ 2
n

‖ψsi‖2
L2(μsi )

)3/2
= 0,

which is implied by (5.15). Taking into account that, for j = 1, . . . ,m,

1 = Var
(
J (n)

p (ψ/σn)
)≥ Var(Wj ) =

jp∑
i=(j−1)p+1

∥∥ψ(i,n)
∥∥2
L2(μsi )

and that (W1, . . . ,Wm)T is obtained from (Y1, . . . , Yd)T by applying a linear functional, from
Proposition 5.3 we thus deduce the following result. Note that we also apply the reindexing
l := a − r .

THEOREM 5.6. With the above notation and definitions, the vector (W1, . . . ,Wm)T con-
verges, as n → ∞, to a multivariate normal distribution, whenever the following conditions
hold for all 1 ≤ v ≤ u ≤ p:

(a) The real limit limn→∞ n2p−v

σ 2
n

‖ψv‖2
L2(μv)

does exist and

(b) limn→∞ n
2p− u+v+r−l

2

σ 2
n

‖ψv 
l
r ψu‖L2(μv+u−r−l ) = 0 for all pairs (l, r) of integers such that

1 ≤ r ≤ v and 0 ≤ l ≤ r ∧ (u + v − r − 1).

Due to the complicated expressions of the kernels ψs , the following result, which is a
rectified version of Lemma 5.1 of [18], is often useful for bounding the contraction norms
appearing in Theorem 5.6. Recall the definition of the set Q(i, k, r, l) given before Theo-
rem 3.1.

LEMMA 5.7. For positive integers 1 ≤ r , i, k ≤ p and 0 ≤ l ≤ p such that 0 ≤ l ≤ r ≤
i ∧ k there exists a constant K(i, k, r, l) ∈ (0,∞) which only depends on i, k, r and l such
that ∥∥ψi 
l

r ψk

∥∥
L2(μi+k−r−l ) ≤ K(i, k, r, l) max

(j,m,a,b)∈Q(i,k,r,l)

∥∥gj 
b
a gm

∥∥
L2(μj+m−a−b).

PROOF OF LEMMA 5.7. Recall that we have

(5.16)

(
ψi 
l

r ψk

)
(x1, . . . , xk+i−2r , yl+1, . . . , yr)

=
∫
El

ψi(y1, . . . , yr , x1, . . . , xi−r )

· ψk(y1, . . . , yr , xi−r+1, . . . , xk+i−2r ) dμ⊗l(y1, . . . , yl).
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Recall also the expression (2.3) of the kernels ψi and ψk , respectively, and the fact that μ is
a probability measure, as well as that, for k ≥ s, the functions gk from (2.4) satsify

(5.17)
∫
Ek−s

gk(x1, . . . , xk) dμ⊗k−s(xs+1, . . . , xk) = gs(x1, . . . , xs).

By virtue of Fubini’s theorem, we see that (ψi 

l
r ψk)(x1, . . . , xk+i−2r , yl+1, . . . , yr) is a linear

combination, with coefficients only depending on i, k, r and l but not on n, of expressions of
the form

G(a,b,j,m)(xi1, . . . , xij−b−d
, yq1, . . . , yqc , xk1, . . . , xkm−b−e

)

:=
∫
Et

gj (u1, . . . , ub, ym1, . . . , ymd
, xi1, . . . , xij−b−d

)

· gm(u1, . . . , ub, yn1, . . . , yne , xk1, . . . , xkm−b−e
) dμ⊗b(u1, . . . , ub)

= (
gj 
b

a gm

)
(xi1, . . . , xij−b−d

, yq1, . . . , yqc , xk1, . . . , xkm−b−e
),

where 0 ≤ j ≤ i, 0 ≤ m ≤ k, 0 ≤ b ≤ l, 0 ≤ b ≤ a ≤ r , 1 ≤ i1 < · · · < ij−b−d ≤ i − r ,
i − r + 1 ≤ k1 < · · · < kl−b−e ≤ k + i − 2r , so that, in particular, the sets {i1, . . . , ij−t−a} and
{k1, . . . , km−t−b} are disjoint. Furthermore, we have l +1 ≤ m1 < · · · < md ≤ r , l +1 ≤ n1 <

· · · < ne ≤ r , l + 1 ≤ q1 < · · · < qc ≤ r such that {q1, . . . , qc} = {m1, . . . ,md} ∪ {n1, . . . , ne},
d ≤ j − b, e ≤ m− b and a := b +|{m1, . . . ,md} ∩ {n1, . . . , ne}| ≤ b + c. Note that c ≤ r − l

and, hence, also a − b ≤ c ≤ r − l as well as a ≤ (b + d) ∧ (b + e) ≤ j ∧ m. Moreover,
the number j + m − a − b of arguments of the function gj 
b

a gm is at most as large as the
number i + k − r − l of arguments of the function ψi 
l

r ψk . Finally, if j = m = p, then
i = k = p and gj = gm = ψ . This also implies that b = l and a = r . Hence, we conclude that
(j,m,a, b) ∈ Q(i, k, r, l).

Now, using the fact that μ is a probability measure, we obtain that

(5.18)

∫
Ek+i−r−l

G2
(a,b,j,m)(xi1, . . . , xij−b−d

, yq1, . . . , yqc ,

xk1, . . . , xkm−b−e
) dμ⊗i+k−l−r (x1, . . . , xk+i−2r , yl+1, . . . , yr)

=
∫
Ej+m−a−b

(
gj 
b

a gm

)2
dμ⊗j+m−a−b = ∥∥gj 
b

a gm

∥∥2
L2(μ⊗j+m−a−b).

Since ψi 
l
r ψk is a finite linear combination with coefficients depending uniquely on i, k, r

and l of the G(a,b,j,m), the claim thus follows from (5.18) and Minkowski’s inequality. �

The next result is a direct consequence of Theorem 5.6, of Lemma 5.7 and of the fact that,
for all 1 ≤ v ≤ p, we have

‖ψv‖2
L2(μv)

=
v∑

l=1

(
v

l

)
(−1)v−l‖ĝl‖2

L2(μl)
,

where ĝl := gl −E[ψ(X1, . . . ,Xp)], 1 ≤ l ≤ p (see, e.g., [50], Theorem 4.3).

COROLLARY 5.8. With the above notation and definitions, the vector (W1, . . . ,Wm)T

converges, as n → ∞, to a multivariate normal distribution if the following conditions hold
for all 1 ≤ v ≤ u ≤ p:

(a) the real limit limn→∞ n2p−v

σ 2
n

(‖gv‖2
L2(μv)

− (E[ψ(X1, . . . ,Xp)])2) exists, and
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(b) limn→∞ n
2p− u+v+r−l

2

σ 2
n

‖gj 
k
i gm‖L2(μj+m−i−k) = 0 for all pairs (l, r) and quadruples

(j,m, i, k) of integers such that 1 ≤ r ≤ v, 0 ≤ l ≤ r ∧ (u + v − r − 1) and (j,m, i, k) ∈
Q(v,u, r, l).

REMARK 5.9.

(i) The conditions given in Theorem 5.6 and in Corollary 5.8 do not depend on the fi-
nite sequence 0 < t1 < · · · < tm ≤ 1 used to define the vector (W1, . . . ,Wm)T . Hence, both
statements yield sufficient conditions for f.d.d. convergence of the sequence (Wn(t))t∈[0,1] of
processes.

(ii) Note that the respective conditions (b) of Theorem 5.6 and of Corollary 5.8 are the
same as those we would get to obtain the asymptotic normality of the single U -statistic
J

(n)
p (ψ/σn) (see [18], Section 5).

(iii) It is easy to see from the following computation that the respective conditions (a)
in Theorem 5.6 and in Corollary 5.8 imply that the covariance function of Wn converges
pointwise to an explicit limit. Such a condition was not necessary in the univariate case dealt
with in [18], Section 5, since there the U -statistic could simply be normalized to have variance
one. For s, t ∈ [0,1] we have

Cov
(
Wn(s),Wn(t)

)= E
[
Wn(s)Wn(t)

]
= σ−2

n

p∑
k,l=1

(ns� − k

p − k

)(nt� − l

p − l

)
E
[
J

(ns�)
k (ψk)J

(nt�)
l (ψl)

]

= σ−2
n

p∑
k=1

(ns� − k

p − k

)(nt� − k

p − k

)(ns� ∧ nt�
k

)
‖ψk‖2

L2(μk)

∼ σ−2
n

p∑
k=1

ns�p−k

(p − k)!
nt�p−k

(p − k)!
(ns� ∧ nt�)k

k! ‖ψk‖2
L2(μk)

∼
p∑

k=1

(s ∧ t)p(s ∨ t)p−k

k!(p − k)!(p − k)!
n2p−k

σ 2
n

‖ψk‖2
L2(μk)

.

Note further that, using (2.8), we can conclude that for fixed s, t ∈ [0,1], the sequence
Cov(Wn(s),Wn(t)), n ∈ N, is always bounded.

5.3. Criteria for tightness. We are going to establish tightness using Lemma 1.1 and, as
a result, obtain the following theorem:

THEOREM 5.10 (Tightness of general U -processes). Let p ∈ N and suppose that
ψ = ψ(n) ∈ L4(μp), n ≥ p, is a sequence of symmetric kernels. For t ∈ [0,1] let
U(t) := Un(t) := J

(nt�)
p (ψ) and define W(t) = Wn(t) by (2.7), where σ 2

n := Var(Un(1)) =
Var(J (n)

p (ψ)). Suppose that there is an a.s. continuous Gaussian process Z = (Z(t))t∈[0,1]
such that the finite-dimensional distributions of Wn, n ∈ N, converge to those of Z. Consider
the following conditions:

(i) There is an ε > 0 such that for all 1 ≤ r ≤ p and all 0 ≤ l ≤ r − 1, the sequence

n2p−r− r−l
2 +ε

σ 2
n

∥∥ψr 
l
r ψr

∥∥
L2(μr−l )

is bounded.
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(ii) There is an ε > 0 such that for all 1 ≤ r ≤ p, all 0 ≤ l ≤ r − 1 and for all quadruples
(j,m,a, b) ∈ Q(r, r, r, l) the sequence

n2p−r− r−l
2 +ε

σ 2
n

∥∥gj 
b
a gm

∥∥
L2(μj+m−a−b)

is bounded.

Then, one has that (ii) ⇒ (i), and also that (i) is sufficient in order for the sequence Wn,
n ∈N, to be tight in D[0,1].

The proof of Theorem 5.10 is detailed in the forthcoming Sections 5.3.1 and 5.3.2. There,
we are however not going to establish (1.6) directly, but will show that there is a finite constant
C1 > 0 such that, under the assumptions of Theorem 5.10, for all n ∈ N and all 0 ≤ s ≤ t ≤ 1
we have the inequality

(5.19) E
∣∣Wn(t) − Wn(s)

∣∣4 ≤ C1

(nt� − ns�
n

)1+ε

,

where ε is the same as in the statement of Theorem 5.10. This is sufficient by Lemma 1.1.

5.3.1. Proof of Theorem 5.10, I: Degenerate kernels. Throughout the present and subse-
quent section, we can assume without loss of generality that ε ∈ (0,1]. Let us first assume
that Wn is a U -process of order p based on a degenerate kernel ϕ, that is, for 0 ≤ t ≤ 1 we
have

W(t) := Wn(t) := J (nt�)
p (ϕ).

For 0 ≤ s ≤ t ≤ 1 let I (n, s, t) := {ns� + 1, . . . nt�} and for J ∈ Dp(nt�) write

VJ := 1{J∩I (n,s,t) �=∅}ϕ(Xi, i ∈ J ).

Then we have that

Wn(t) − Wn(s) = ∑
J∈Dp(nt�)

VJ

is a degenerate (nonsymmetric) U -statistic of order p, based on X1, . . . ,Xnt�. In [30], The-
orem 2, the following bounds are given:

(5.20)

A max
k=0,...,p

max
1≤j1<···<jk≤p

∑
1≤ij1<···<ijk ≤nt�

E

[( ∑
is :1≤s≤p,

s /∈{j1,...,jk},
1≤i1<···<ip≤nt�

E
[
V 2{i1,...,ip}|Xij1

, . . . ,Xij1

])2]

≤ E
∣∣Wn(t) − Wn(s)

∣∣4
≤ B max

k=0,...,p
max

1≤j1<···<jk≤p

∑
1≤ij1<···<ijk ≤nt�

E

[( ∑
is :1≤s≤p,

s /∈{j1,...,jk},
1≤i1<···<ip≤nt�

E
[
V 2{i1,...,ip}|Xij1

, . . . ,Xij1

])2]
,

where A and B are finite constants which only depend on p. We will now make use of the
upper bound in (5.20). Note that for each k = 0, . . . , p, each labelling 1 ≤ j1 < · · · < jk ≤ p
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and all choices 1 ≤ ij1 < · · · < ijk
≤ nt� we have that

(5.21)

E

[( ∑
is :1≤s≤p,

s /∈{j1,...,jk},
1≤i1<···<ip≤nt�

E
[
V 2{i1,...,ip}|Xij1

, . . . ,Xijk

])2]

≤ E

[( ∑
L∈Dp−k(nt�):

L∩{ij1 ,...,ijk }=∅

E
[
V 2{ij1 ,...,ijk }∪L|Xij1

, . . . ,Xijk

])2]

and, that for each set L ∈ Dp−k(nt�) such that L ∩ {ij1, . . . , ijk
} = ∅ and (L ∪ {ij1, . . . ,

ijk
}) ∩ I (n, s, t) �=∅ we have

E
[
V 2{ij1 ,...,ijk }∪L|Xij1

, . . . ,Xij1

]= (
ϕ 
p−k

p ϕ
)
(Xij1

, . . . ,Xijk
).

Thus, we can further bound

E
∣∣Wn(t) − Wn(s)

∣∣4
≤ B max

k=0,...,p

∑
K∈Dk(nt�)

E

[( ∑
L∈Dp−k(nt�):

L∩K=∅,
(L∪K)∩I (n,s,t) �=∅

E
[
V 2

K∪L|FK

])2]
(5.22)

= B max
k=0,...,p

( ∑
K∈Dk(nt�):

K∩I (n,s,t)=∅

E

[((nt� − k

p − k

)
−
(ns� − k

p − k

))2(
ϕ 
p−k

p ϕ
)2

(Xi, i ∈ K)

]

+ ∑
K∈Dk(nt�):

K∩I (n,s,t) �=∅

E

[(nt� − k

p − k

)2 (
ϕ 
p−k

p ϕ
)2

(Xi, i ∈ K)

])

≤ B max
k=0,...,p−1

(ns�
k

)((nt� − k

p − k

)
−
(ns� − k

p − k

))2

E
[(

ϕ 
p−k
p ϕ

)2
(Xi, i ∈ K)

]
+ B max

k=1,...,p

((nt�
k

)
−
(ns�

k

))(nt� − k

p − k

)2

E
[(

ϕ 
p−k
p ϕ

)2
(Xi, i ∈ K)

]
= B max

k=0,...,p−1

(
n − k

p − k

)2 (ns�
k

)(
n − k

p − k

)−2 ((nt� − k

p − k

)
−
(ns� − k

p − k

))2

· ∥∥ϕ 
p−k
p ϕ

∥∥2
L2(μk)

+ B max
k=1,...,p

(
n

k

)(
n

k

)−1 ((nt�
k

)
−
(ns�

k

))(nt� − k

p − k

)2 ∥∥ϕ 
p−k
p ϕ

∥∥2
L2(μk)

� max
k=0,...,p−1

(nt� − ns�
n

)2
n2p−k

∥∥ϕ 
p−k
p ϕ

∥∥2
L2(μk)

+ max
k=1,...,p

nt� − ns�
n

n2p−k
∥∥ϕ 
p−k

p ϕ
∥∥2
L2(μk)
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�
(nt� − ns�

n

)2
n2p‖ϕ‖4

L2(μp)
+ nt� − ns�

n
max

k=1,...,p
n2p−k

∥∥ϕ 
p−k
p ϕ

∥∥2
L2(μk)

�
(nt� − ns�

n

)1+ε(
n2p‖ϕ‖4

L2(μp)
+ max

k=1,...,p
n2p−k+ε

∥∥ϕ 
p−k
p ϕ

∥∥2
L2(μk)

)
,(5.23)

for each ε ∈ (0,1]. Now, if, for some ε ∈ (0,1], there is a C1 = C1(ε) ∈ (0,∞) such that for
all n ∈ N we have

(5.24) n2p‖ϕ‖4
L2(μp)

+ max
k=1,...,p

n2p−k+ε
∥∥ϕ 
p−k

p ϕ
∥∥2
L2(μk) ≤ C1

we conclude from (5.23) that (5.19) is satisfied. This concludes the argument in the case of
degenerate kernels.

REMARK 5.11. Incidentally, one can show that inequality (5.22) also holds in the oppo-
site direction when the constant B appearing there is replaced with a small enough positive
constant C, which only depends on p. Our way of bounding E|Wn(t) − Wn(s)|4 is therefore
optimal with respect to the order in n.

5.3.2. Proof of Theorem 5.10, II: General kernels. For t ∈ [0,1] recall the definition (2.7)
of Wn(t) and (2.8) of σ 2

n . Then, defining for 1 ≤ r ≤ p,

ϕ(r) := ϕ(n,r) :=
(n−r
p−r

)
ψr

σn

,

the ϕ(r) are degenerate kernels and, with the notation Vr(t) := J
(nt�)
r (ϕ(r)), we have

W(t) =
p∑

r=1

(nt�−r
p−r

)
(n−r
p−r

) Vr(t).

Since

lim
n→∞

(nt�−r
p−r

)
(n−r
p−r

) = t r

for each r = 1, . . . , p, by an application of Prohorov’s theorem, it follows that the sequence
(Wn(t))t∈[0,1], n ∈N, is tight whenever (Vr(t))t∈[0,1] is tight for every r = 1, . . . , p.

Sufficient conditions for this to hold were given in the previous subsection. Indeed,
(Vr(t))t∈[0,1] is tight if for some ε ∈ (0,1] the sequence

(5.25) n2r
∥∥ϕ(r)

∥∥4
L2(μr ) + max

k=1,...,r
n2r−k+ε

∥∥ϕ(r) 
r−k
r ϕ(r)

∥∥2
L2(μr )

is bounded from above by a constant. Now, first note that from (2.8) we see that there is a
finite constant Lr such that

(5.26) n2r
∥∥ϕ(r)

∥∥4
L2(μr ) = n2r

(
n − r

p − r

)4 ‖ψr‖4
L2(μr )

σ 4
n

≤ Lr

for all n ∈ N. Moreover, for k = 1, . . . , r we have that

n2r−k+ε
∥∥ϕ(r) 
r−k

r ϕ(r)
∥∥2
L2(μr ) = n2r−k+ε

(
n − r

p − r

)4 ‖ψr 
r−k
r ψr‖2

L2(μr )

σ 4
n

≤ Drn
4p−2r−k+ε

‖ψr 
r−k
r ψr‖2

L2(μr )

σ 4
n

,

where Dr is a finite constant only depending on r . The proof is concluded by letting l := r −k

and by applying Lemma 5.7.
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5.4. Proofs of Theorem 3.1, Theorem 3.4, Corollary 3.7, Theorem 3.11 and Theorem 3.12.
PROOF OF THEOREM 3.1. It is well known that f.d.d. convergence and tightness together
imply weak convergence in D[0,1] (see, e.g., [7], Section 13). F.d.d. convergence and Gaus-
sianity of the limit process Z now follow from Corollary 5.8. Moreover, the needed formula
for the covariance � of Z follows from Remark 5.9(iii) as

lim
n→∞ Cov

(
Wn(s),Wn(t)

)
= lim

n→∞σ−2
n

p∑
k=1

(s ∧ t)pn2p−k(s ∨ t)p−k

k!(p − k)!(p − k)! ‖ψk‖2
L2(μk)

=
p∑

k=1

(s ∧ t)p(s ∨ t)p−k

k!(p − k)!(p − k)!
k∑

l=1

(
k

l

)
(−1)k−l lim

n→∞
n2p−k

σ 2
n

(
‖gl‖2

L2(μl)
−
(∫

E
ψ dμ

)2)

=
p∑

k=1

(s ∧ t)p(s ∨ t)p−k

k!(p − k)!(p − k)!b
2
k .

Since this is the same covariance function as that of the process given in (1.1) (with α2
k,p as

given in the statement) we conclude that the limiting process Z may be chosen to have a.s.
continuous paths. Now, tightness is implied by Theorem 5.10(ii). �

PROOF OF THEOREM 3.4. The proof is similar to that of Theorem 3.1 and follows from
Theorems 5.6 and Theorem 5.10(i). �

PROOF OF COROLLARY 3.7. We directly use Theorem 3.1. In this case, we have gk = 0
for all 0 ≤ k ≤ p − 1 and gp = ψ . Moreover,

σ 2
n =

(
n

p

)
‖ψ‖2

L2(μp)
∼ np

p! ‖ψ‖2
L2(μp)

.

Hence, we have b2
k = 0 for all 1 ≤ k ≤ p − 1 and b2

p = p!. From this, we obtain that �(s, t) =
(s ∧ t)p , implying the result. �

OUTLINE OF THE PROOF OF THEOREM 3.12. Finite-dimensional convergence can
again be proved by means of Proposition 5.3 with the dimension d appearing there given
by m

∑d
j=1 pj , where m is the number of points 0 ≤ t1 < t2 < · · · < tm ≤ 1 under consid-

eration. The computation in the proof of Theorem 3.1 can be easily generalized to yield the
claimed limiting covariance structure. Hence, as already pointed out, the vector-valued limit-
ing process Z is an element of C([0,1];Rd). Next, computations very similar to those leading
to Theorem 5.6 yield conditions (a′) and (b′). Finally, condition (c′) is obtained by observing
that the laws of the family {W(n) : n ≥ 1} are tight whenever those of {W(n)(i) : n ≥ 1} are
tight for each 1 ≤ i ≤ d; this last point is established by means of Theorem 5.10. �

PROOF OF THEOREM 3.11. From the expresssion (2.3) it is a simple combinatorial ex-
ercise to deduce that

〈
ψk(i),ψk(j)

〉
L2(μk) =

k∑
q=0

(−1)k−q

(
k

q

) 〈
gq(i), gq(j)

〉
L2(μq)

=
k∑

q=1

(−1)k−q

(
k

q

) 〈
ĝq(i), ĝq(j)

〉
L2(μq),
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where ĝq(i) = gq(i)−E[ψ(i)(X1, . . . ,Xpi
)]. Thus, condition (a) is yielded by condition (a′)

of Theorem 3.12. Finally, conditions (b) and (c) are derived from conditions (b′) and (c′) of
Theorem 3.12 by an application of Lemma 5.7. �

5.5. Proof of Theorem 3.10. For every n, define πn : [n] → [n] to be the bijection given
by πn(i) := n − i + 1, i = 1, . . . , n, and also set β(n, t) := n − nt� + 1. We define, for
t ∈ [0,1],

Un(t) := ∑
1≤i<j≤nt�

ψ(n)(Xi,Xj ),

and

In(t) := ∑
(i,j):πn(j)<πn(i)<β(n,t)

ψ(n)(Xi,Xj ).

Then, one has that Yn(t) = Un(1) − Un(t) − In(t), in such a way that the tightness of {Ỹn} in
D[0,1] follows from a direct application of Theorem 5.10 first to Un/γn and then to In/γn.
The asymptotic Gaussianity of the finite-dimensional distributions of Y (n) now follows from
Remark 5.5, and one can check that the covariance function of Y (n) converges to that of
c1A + c2b by a direct computation.
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