Thèse de doctorat (Mémoires et thèses)
Dynamical Modeling Techniques for Biological Time Series Data
MOMBAERTS, Laurent
2019
 

Documents


Texte intégral
LaurentMombaerts_PhDThesis.pdf
Postprint Auteur (11.53 MB)
PhD Thesis
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Modeling; Dynamical Systems; Machine Learning; Time Series; Big Data; Data Sciences; Systems Control; Systems Biology; Gene Regulatory Network Inference; Epileptic Seizures
Résumé :
[en] The present thesis is articulated over two main topics which have in common the modeling of the dynamical properties of complex biological systems from large-scale time-series data. On one hand, this thesis analyzes the inverse problem of reconstructing Gene Regulatory Networks (GRN) from gene expression data. This first topic seeks to reverse-engineer the transcriptional regulatory mechanisms involved in few biological systems of interest, vital to understand the specificities of their different responses. In the light of recent mathematical developments, a novel, flexible and interpretable modeling strategy is proposed to reconstruct the dynamical dependencies between genes from short-time series data. In addition, experimental trade-offs and optimal modeling strategies are investigated for given data availability. Consistent literature on these topics was previously surprisingly lacking. The proposed methodology is applied to the study of circadian rhythms, which consists in complex GRN driving most of daily biological activity across many species. On the other hand, this manuscript covers the characterization of dynamically differentiable brain states in Zebrafish in the context of epilepsy and epileptogenesis. Zebrafish larvae represent a valuable animal model for the study of epilepsy due to both their genetic and dynamical resemblance with humans. The fundamental premise of this research is the early apparition of subtle functional changes preceding the clinical symptoms of seizures. More generally, this idea, based on bifurcation theory, can be described by a progressive loss of resilience of the brain and ultimately, its transition from a healthy state to another characterizing the disease. First, the morphological signatures of seizures generated by distinct pathological mechanisms are investigated. For this purpose, a range of mathematical biomarkers that characterizes relevant dynamical aspects of the neurophysiological signals are considered. Such mathematical markers are later used to address the subtle manifestations of early epileptogenic activity. Finally, the feasibility of a probabilistic prediction model that indicates the susceptibility of seizure emergence over time is investigated. The existence of alternative stable system states and their sudden and dramatic changes have notably been observed in a wide range of complex systems such as in ecosystems, climate or financial markets.
Centre de recherche :
Luxembourg Center for Systems Biomedicine (LCSB) : Systems Control (Goncalves Group)
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
MOMBAERTS, Laurent ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Langue du document :
Anglais
Titre :
Dynamical Modeling Techniques for Biological Time Series Data
Date de soutenance :
11 septembre 2019
Nombre de pages :
214
Institution :
Unilu - University of Luxembourg, Luxembourg
Intitulé du diplôme :
Docteur de l'Université de Luxembourg en Sciences de l'Ingenieur
Promoteur :
Président du jury :
Membre du jury :
SKUPIN, Alexander  
Webb, Alexander
Mauroy, Alexandre
Focus Area :
Systems Biomedicine
Disponible sur ORBilu :
depuis le 24 octobre 2019

Statistiques


Nombre de vues
219 (dont 37 Unilu)
Nombre de téléchargements
335 (dont 27 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu