Abstract :
[en] Making personal data anonymous is crucial to ensure the adoption of connected vehicles. One of the privacy-sensitive information is location, which once revealed can be used by adversaries to track drivers during their journey. Vehicular Location Privacy Zones (VLPZs) is a promising approach to ensure unlinkability. These logical zones can be easily deployed over roadside infrastructures (RIs) such as gas station or electric charging stations. However, the placement optimization problem of VLPZs is NP-hard and thus an efficient allocation of VLPZs to these RIs is needed to avoid their overload and the degradation of the QoS provided within theses RIs. This work considers the optimal placement of the VLPZs and proposes a genetic-based algorithm in a software defined vehicular network to ensure minimized trajectory cost of involved vehicles and hence less consumption of their pseudonyms. The analytical evaluation shows that the proposed approach is cost-efficient and ensures a shorter response time.
Scopus citations®
without self-citations
1