Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
You Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in Benchmarking Automated Program Repair Systems
LIU, Kui; KOYUNCU, Anil; BISSYANDE, Tegawendé François D Assise et al.
2019In The 12th IEEE International Conference on Software Testing, Verification and Validation (ICST-2019)
Peer reviewed
 

Documents


Texte intégral
icst-2019.pdf
Postprint Éditeur (926.04 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Automated Program Repair; Spectrum-based Fault Localization; Benchmarking; Empirical Assessment; Bias
Résumé :
[en] Properly benchmarking Automated Program Repair (APR) systems should contribute to the development and adoption of the research outputs by practitioners. To that end, the research community must ensure that it reaches significant milestones by reliably comparing state-of-the-art tools for a better understanding of their strengths and weaknesses. In this work, we identify and investigate a practical bias caused by the fault localization (FL) step in a repair pipeline. We propose to highlight the different fault localization configurations used in the literature, and their impact on APR systems when applied to the Defects4J benchmark. Then, we explore the performance variations that can be achieved by "tweaking'' the FL step. Eventually, we expect to create a new momentum for (1) full disclosure of APR experimental procedures with respect to FL, (2) realistic expectations of repairing bugs in Defects4J, as well as (3) reliable performance comparison among the state-of-the-art APR systems, and against the baseline performance results of our thoroughly assessed kPAR repair tool. Our main findings include: (a) only a subset of Defects4J bugs can be currently localized by commonly-used FL techniques; (b) current practice of comparing state-of-the-art APR systems (i.e., counting the number of fixed bugs) is potentially misleading due to the bias of FL configurations; and (c) APR authors do not properly qualify their performance achievement with respect to the different tuning parameters implemented in APR systems.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Security Design and Validation Research Group (SerVal)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LIU, Kui ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
KOYUNCU, Anil ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Kim, Dongsun
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Computer Science and Communications Research Unit (CSC)
LE TRAON, Yves ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
You Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in Benchmarking Automated Program Repair Systems
Date de publication/diffusion :
24 avril 2019
Nom de la manifestation :
The 12th IEEE International Conference on Software Testing, Verification and Validation
Lieu de la manifestation :
Xi'an, Chine
Date de la manifestation :
from 22-04-2019 to 27-04-2019
Titre de l'ouvrage principal :
The 12th IEEE International Conference on Software Testing, Verification and Validation (ICST-2019)
Maison d'édition :
IEEE, Xi'an, Chine
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR10449467 - Automatic Bug Fix Recommendation: Improving Software Repair And Reducing Time-to-fix Delays In Software Development Projects, 2015 (01/02/2016-31/01/2019) - Tegawendé François D'assise Bissyandé
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 21 janvier 2019

Statistiques


Nombre de vues
331 (dont 19 Unilu)
Nombre de téléchargements
176 (dont 9 Unilu)

citations Scopus®
 
132
citations Scopus®
sans auto-citations
110
citations OpenAlex
 
151

Bibliographie


Publications similaires



Contacter ORBilu