Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations
LIU, Kui; KOYUNCU, Anil; Dongsun, Kim et al.
2019In The 26th IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER-2019)
Peer reviewed
 

Documents


Texte intégral
saner-2019.pdf
Preprint Auteur (1.77 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Automated program repair; static analysis; fix pattern
Résumé :
[en] Fix pattern-based patch generation is a promising direction in Automated Program Repair (APR). Notably, it has been demonstrated to produce more acceptable and correct patches than the patches obtained with mutation operators through genetic programming. The performance of pattern-based APR systems, however, depends on the fix ingredients mined from fix changes in development histories. Unfortunately, collecting a reliable set of bug fixes in repositories can be challenging. In this paper, we propose to investigate the possibility in an APR scenario of leveraging code changes that address violations by static bug detection tools. To that end, we build the AVATAR APR system, which exploits fix patterns of static analysis violations as ingredients for patch generation. Evaluated on the Defects4J benchmark, we show that, assuming a perfect localization of faults, AVATAR can generate correct patches to fix 34/39 bugs. We further find that AVATAR yields performance metrics that are comparable to that of the closely-related approaches in the literature. While AVATAR outperforms many of the state-of-the-art pattern-based APR systems, it is mostly complementary to current approaches. Overall, our study highlights the relevance of static bug finding tools as indirect contributors of fix ingredients for addressing code defects identified with functional test cases.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Security Design and Validation Research Group (SerVal)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LIU, Kui ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
KOYUNCU, Anil ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Dongsun, Kim
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations
Date de publication/diffusion :
24 février 2019
Nom de la manifestation :
The 26th IEEE International Conference on Software Analysis, Evolution, and Reengineering
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Hangzhou, Chine
Date de la manifestation :
from 24-02-2019 to 27-02-2019
Manifestation à portée :
International
Titre de l'ouvrage principal :
The 26th IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER-2019)
Maison d'édition :
IEEE, Hangzhou, Chine
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR10449467 - Automatic Bug Fix Recommendation: Improving Software Repair And Reducing Time-to-fix Delays In Software Development Projects, 2015 (01/02/2016-31/01/2019) - Tegawendé François D'assise Bissyandé
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 22 décembre 2018

Statistiques


Nombre de vues
237 (dont 18 Unilu)
Nombre de téléchargements
262 (dont 16 Unilu)

citations Scopus®
 
154
citations Scopus®
sans auto-citations
126
citations OpenAlex
 
162

Bibliographie


Publications similaires



Contacter ORBilu