Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Distributed C++-Python embedding for fast predictions and fast prototyping
VARISTEAS, Georgios; AVANESOV, Tigran; STATE, Radu
2018In Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning
Peer reviewed
 

Documents


Texte intégral
didl18-final2.pdf
Preprint Auteur (835.36 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Python has evolved to become the most popular language for data science. It sports state-of-the-art libraries for analytics and machine learning, like Sci-Kit Learn. However, Python lacks the computational performance that a industrial system requires for high frequency real time predictions. Building upon a year long research project heavily based on SciKit Learn (sklearn), we faced performance issues in deploying to production. Replacing sklearn with a better performing framework would require re-evaluating and tuning hyperparameters from scratch. Instead we developed a python embedding in a C++ based server application that increased performance by up to 20x, achieving linear scalability up to a point of convergence. Our implementation was done for mainstream cost effective hardware, which means we observed similar performance gains on small as well as large systems, from a laptop to an Amazon EC2 instance to a high-end server.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
VARISTEAS, Georgios ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
AVANESOV, Tigran ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Distributed C++-Python embedding for fast predictions and fast prototyping
Date de publication/diffusion :
2018
Nom de la manifestation :
Second Workshop on Distributed Infrastructures for Deep Learning (DIDL) 2018
Date de la manifestation :
10-12-2018
Titre de l'ouvrage principal :
Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning
ISBN/EAN :
978-1-4503-6119-4
Peer reviewed :
Peer reviewed
Projet FnR :
FNR11822390 - Optimal Scalability And Performance In Programmatic Advertising Platforms, 2017 (01/09/2017-31/08/2019) - Georgios Varisteas
Disponible sur ORBilu :
depuis le 21 décembre 2018

Statistiques


Nombre de vues
205 (dont 8 Unilu)
Nombre de téléchargements
355 (dont 3 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
2

Bibliographie


Publications similaires



Contacter ORBilu