Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Neuro-Inspired Reward-Based Tracking Control for Robotic Manipulators with Unknown Dynamics
KLECKER, Sophie; HICHRI, Bassem; PLAPPER, Peter
2017In Proceedings of the 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE)
Peer reviewed
 

Documents


Texte intégral
2017-IEEE.pdf
Postprint Éditeur (1.8 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
unknown robot dynamics; intelligent control; adaptive control; robust control; biomimetics; neural networks; BELBIC; switching constraints; trajectory tracking; industrial automation
Résumé :
[en] Tracking control for robotic manipulators is required for numerous automation tasks in manufacturing engineering. For this purpose, model-free PD-controllers are largely implemented by default in commercially available robot arms and provide satisfactory performance for simple path following applications. Ever more complex automation tasks however ask for novel intelligent and adaptive tracking control strategies. In surface finishing processes, discontinuous freeform paths as well as changing constraints between the robotic end-effector and its surrounding environment affect the tracking control by undermining the stable system performance. The lacking knowledge of industrial robot dynamic parameters presents an additional challenge for the tracking control algorithms. In this paper the control problem of robotic manipulators with unknown dynamics and varying constraints is addressed. A robust sliding mode controller is combined with an RBF (Radial Basis Function) Neural Network-estimator and an intelligent, biomimetic BELBIC (Brain Emotional Learning-Based Intelligent Control) term to approximate the nonlinear robot dynamics function and achieve a robust and adaptive tracking performance.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
KLECKER, Sophie ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
HICHRI, Bassem ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
PLAPPER, Peter ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Neuro-Inspired Reward-Based Tracking Control for Robotic Manipulators with Unknown Dynamics
Date de publication/diffusion :
décembre 2017
Nom de la manifestation :
2017 2nd International Conference on Robotics and Automation Engineering (ICRAE)
Lieu de la manifestation :
Shanghai, Chine
Date de la manifestation :
from 29-12-2017 to 31-12-2017
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE)
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 12 février 2018

Statistiques


Nombre de vues
150 (dont 15 Unilu)
Nombre de téléchargements
3 (dont 3 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
3

Bibliographie


Publications similaires



Contacter ORBilu