[en] This paper presents a strategy to reduce the
complexity and thus the computational burden in modelpredictive
control (MPC) by a flexible online input move
blocking algorithm. Model-predictive sampled-data control of
constrained, LTI plants is considered. Move blocking is an input
parameterisation in MPC where the control input is forced
to be constant over several prediction sample steps to reduce
the dimensionality of the underlying optimisation problem.
Typically, the prediction sample steps where the control input is
not allowed to vary (i. e. the block distribution) is predetermined
offline and is kept constant throughout the control operation.
However, the control performance and computational efficiency
can be improved if the block length is adjusted to the specific
operating conditions. In this work, a heuristic method to adjust
the block length online according to the initial state of the system,
reference signals, measured disturbances and constraints
is presented. A numerical example shows the effectiveness of
the approach.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SCHWICKART, Tim Klemens ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VOOS, Holger ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Darouach, Mohamed
BEZZAOUCHA, Souad ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Flexible Move Blocking Strategy to Speed up Model-Predictive Control while Retaining a High Tracking Performance
Date de publication/diffusion :
juin 2016
Nom de la manifestation :
2016 European Control Conference (ECC)
Lieu de la manifestation :
Aalborg, Danemark
Date de la manifestation :
June 2016
Manifestation à portée :
International
Titre de l'ouvrage principal :
2016 European Control Conference (ECC), Aalborg, Denmark
J. Maciejowski, Predictive Control With Constraints, Pearson Education, Prentice Hall, 2001.
D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, vol. 36, no. 6, Elsevier, pp. 789-814, 2000.
A. Bemporad, M. Morari, V. Dua, E. N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems, Automatica, vol. 38, no. 1, pp. 3 - 20, 2002.
N. L. Ricker, Use of quadratic programming for constrained internal model control, Industrial & Engineering Chemistry Process Design and Development, vol. 24, no. 4, pp. 925-936, ACS Publications, 1985.
S. J. Qin, T. A. Badgwell, A survey of industrial model predictive control technology, Control Engineering Practice, vol. 11, no. 7, pp. 733-764, Elsevier, 2003.
R. Cagienard, P. Grieder, E. C. Kerrigan, M. Morari, Move blocking strategies in receding horizon control, Journal of Process Control, vol. 17, no. 6, pp. 563-570, Elsevier, 2007.
G. Valencia-Palomo, J. A. Rossiter, C. N. Jones, R. Gondhalekar, B. Khan, Alternative parameterisations for predictive control: How and why?, American Control Conference (ACC), pp. 5175-5180, June 2011.
B. Khan, J. A. Rossiter, Alternative parameterisation within predictive control: a systematic selection, International Journal of Control, vol. 86, no. 8, SI, pp. 1397-1409, 2013.
R. Gondhalekar, J.-I. Imura, Least-Restrictive Move-Blocking Model Predictive Control, Automatica, vol. 46, no. 7, pp. 1234-1240, Elsevier, 2010.
R. C. Shekhar and C. Manzie, Optimal move blocking strategies for model predictive control, Automatica, vol. 61, pp. 27 -34, 2015.
C.-J. Ong and Z. Wang, Reducing variables in Model Predictive Control of linear system with disturbances using singular value decomposition, Systems & Control Letters, vol. 71, pp. 62 - 68, 2014.
D. Li, Y. Xi, Z. Lin, An improved design of aggregation-based model predictive control, Systems & Control Letters, vol. 62, no. 11, pp. 1082-1089, Elsevier, 2013.
G. Valencia-Palomo, M. Pelegrinis, J. A. Rossiter, R. Gondhalekar, A move-blocking strategy to improve tracking in predictive control, American Control Conference (ACC), pp. 6293-6298, June 2010.
S. Longo, E. C. Kerrigan, K. V. Ling, G. A. Constantinides, A parallel formulation for predictive control with nonuniform hold constraints, Annual Reviews in Control, vol. 35, no. 2, pp. 207-214, Elsevier, 2011.
T. Schwickart, H. Voos, J.-R. Hadji-Minaglou, M. Darouach, A. Rosich, Design and simulation of a real-time implementable energyefficient model-predictive cruise controller for electric vehicles, Journal of the Franklin Institute, vol. 352, no. 2, pp. 603-625, 2014.
P. Tøndel and T. A. Johansen, Complexity Reduction In Explicit Linear Model Predictive Control, Proc. of 15-th IFAC World Congress, 2002.
L. E. Ghaoui, Optimization Models and Applications, UC Berkeley, December 2014.