
A Flexible Move Blocking Strategy to Speed up Model-Predictive
Control while Retaining a High Tracking Performance

Tim Schwickart1 and Holger Voos1 and Mohamed Darouach2 and Souad Bezzaoucha1

Abstract— This paper presents a strategy to reduce the
complexity and thus the computational burden in model-
predictive control (MPC) by a flexible online input move
blocking algorithm. Model-predictive sampled-data control of
constrained, LTI plants is considered. Move blocking is an input
parameterisation in MPC where the control input is forced
to be constant over several prediction sample steps to reduce
the dimensionality of the underlying optimisation problem.
Typically, the prediction sample steps where the control input is
not allowed to vary (i. e. the block distribution) is predetermined
offline and is kept constant throughout the control operation.
However, the control performance and computational efficiency
can be improved if the block length is adjusted to the specific
operating conditions. In this work, a heuristic method to adjust
the block length online according to the initial state of the sys-
tem, reference signals, measured disturbances and constraints
is presented. A numerical example shows the effectiveness of
the approach.

I. INTRODUCTION
Model-predictive control (MPC) is a control strategy that

determines the control action based on optimised predictions
of the dynamic system behaviour [1], [2]. Since the result
of this optimisation depends on the initial state of the
controlled system, the reference trajectory and optionally
known disturbance signals, only few application cases allow
to precompute the optimisation result offline by means of
multiparametric programming; [3].

In many cases, the calculation of the control input is
carried out online in real-time as a function of the current
state, reference and measured disturbances. The associated
high computational burden necessitates techniques to speed
up the computation especially for processes that require high
sample rates.

To reduce the computational complexity, input parame-
terisation techniques are widely used in MPC applications.
Here, the control input determined by the optimisation is
not allowed to vary freely at each sampling step of the
prediction horizon but only in predefined patterns. The most
classical technique of input parameterisation is the so-called
input move blocking or input blocking. Here, the control
input is forced to be constant over several prediction sample
steps. This technique was first described in [4] and has been
extensively used in industry to speed up the computation [5].
An overview on the common input move blocking techniques

1Tim Schwickart, Holger Voos and Souad Bezzaoucha are with
the Interdisciplinary Centre for Security, Reliabilty and Trust (SnT),
University of Luxembourg, L-1359 Luxembourg, Luxembourg
tim.schwickart@uni.lu, holger.voos@uni.lu and
souad.bezzaoucha@uni.lu

2Mohamed Darouach is with the Centre de la Recherche en Automatique
de Nancy (CRAN), Université de Lorraine, France modar@pt.lu

is given in [6]. More sophisticated input paramerisation
techniques like the use of polynomials whose coefficients
are determined by the MPC exist but are used less widely in
applications of classical MPC; [7], [8].

Even though input blocking can reduce the computational
burden and increase the sample rate, several problems can
arise consecutively. These are performance degradation of
the control, limited feasibility of the underlying optimisation
problem and a lack of stability guarantees. To deal with
the feasibility issues, a relaxation of the constraints on the
state trajectory has been proposed in [9]. Feasibility as well
as stability can also be assessed by the so-called Moving
Window Blocking proposed in [6]. More recently, a two-
step optimisation approach has been considered in [10] to
determine a blocking scheme with minimum input blocks
and a maximised region of attraction of the controller. [11]
addresses the challenge of retaining feasibility and a large
region of attraction by a more general subspace method.
Apart from the aforementioned points, the distribution of
the input blocks over the prediction horizon is essential to
achieve a good performance of the controller as well. Sta-
bility and performance for a standard MPC formulation with
input blocking (constant reference, no known disturbance)
has been investigated in [12]. An approach to determine a
suitable input parameterisation for reference tracking is taken
in [13] by including the weighted control input trajectory of
the previous MPC step into the optimisation. Move blocking
has also been used to enable parallel computing and thus
further decrease the sample time in [14].

In the work at hand, the classical wide-spread approach
of blocking the control input at certain samples resulting
in a piecewise constant signal is considered. In extension,
the samples where the input is blocked are determined
online before the real-time optimisation in order to adjust the
block distribution flexibly to the influencing variables initial
state, future (potentially varying) reference trajectory and
(potentially varying) known disturbance signals. This makes
the approach more flexible than the ones presented before
in terms of varying reference and disturbance trajectories.
The goal of this strategy is to allow the control variables to
vary where it is beneficial and to aggregate the input where
the benefit is small. By this, the unblocked control action of
the full-order MPC is approximated and a significantly better
tracking performance can be achieved compared to the use
of a fixed blocking scheme.

While it is often considered to be beneficial to shift all
degree of freedom in the control trajectory forward to the
beginning of the prediction horizon (see e.g. [5]), this is only

2016 European Control Conference (ECC)
June 29 - July 1, 2016. Aalborg, Denmark

978-1-5090-2591-6 ©2016 EUCA 764

valid when the reference signal is constant, changes in the
reference are not predictively known and there is no predic-
tively known disturbance trajectory. The control task is then
to drive the initially measured state to a constant reference
which requires flexible control actions at the beginning of the
prediction horizon and applies for the classical applications
of MPC. However, recent complex MPC applications like
automotive predictive cruise controllers, see e. g. [15], rely
on predictive actions based on anticipatory known future
changes in the reference and disturbance trajectory which
puts flexible move blocking schemes in favour.

The paper is organised as follows. Section II presents
the considered MPC formulation. This is followed by the
presentation of the proposed method to find a suitable input
blocking scheme in Section III and a numerical example to
show the effectiveness of the approach in Section IV. Section
V discusses the limitations of the approach and future work.

II. REGARDED MPC FORMULATION AND STANDARD
MOVE BLOCKING

In this section, the regarded type of MPC problem as
well as the most common type of input move blocking are
introduced.

A. Regarded MPC Formulation

The MPC control of a linear discrete time state space
system is considered.

xk+i+1|k = Axk+i|k +Buk+i|k + Edk+i|k (1)

Here, xk ∈ Rn is the system state at time k, uk ∈ Rm is the
control input and dk ∈ Rl is a known disturbance assumed
to be given beforehand for the complete prediction horizon.
A ∈ Rn×n is the system matrix, B ∈ Rn×m the input matrix
and E ∈ Rn×l the disturbance matrix. The prediction step
is is denoted by i.

To determine the control input to track the reference
xref,k (assumed to be known predictively throughout the
prediction horizon), the following optimisation problem is
solved repetitively.

min
U=̂{uk+i|k...uk+N−1|k}

||xk+N |k − xref,k+N |k||2P

+

N−1∑
i=0

(
||xk+i|k − xref,k+i|k||2Q + ||uk+i|k − uref,k+i|k||2R

)
(2)

subject to:

xk+i+1|k = Axk+i|k +Buk+i|k + Edk+i|k; i ≥ 0

yk+i|k = Cxk+i|k; i ≥ 0

ymin ≤ yk+i|k ≤ ymax; i = 1, . . . , N

umin ≤ uk+i|k ≤ umax; i = 0, 1, . . . , N − 1
(3)

The weighting matrices R > 0; Q ≥ 0; P > 0
are symmetric. When the controlled system is stable and
the prediction horizon N is sufficiently long, closed-loop

stability can be achieved by choosing P properly. uref (k)
is the control input necessary to keep the system steadily
at the related system state reference xref (k). After solving
the optimisation, the first control input sample u0 is fed
to the system, the measurements of the initial state, the
reference and measured disturbance signals are updated and
the optimisation procedure is repeated. For further details, it
can be referred to [2].

The system states can be eliminated from problem (2) by
using the system dynamics to express them as an explicit
function of the current state and the future control inputs
[1]. The problem can then be expressed only in terms of
the optimisation variables U = [uT0 , u

T
1 , . . . , u

T
N−1]

T and the
equality constraints and plant dynamics are reflected in the
cost function of the resulting quadratic program.

J(U) = min
U

1

2
UTHU + fU

subject to: GU ≤W
(4)

B. Input Move Blocking

Without input move blocking, the value of the control
input is allowed to change at each sampling instant, i.e.
each component of the vector U = [uT0 , u

T
1 , . . . , u

T
N−1]

T is
a degree of freedom (i.e. a decision variable) in problem
(4). Move blocking as a form of input parameterisation
introduces a class of input trajectories with a lower degree
of freedom in order the reduce the dimensionality of the
optimisation problem. Specifically, the control input is fixed
to be constant over several sample steps. The sampling
instants where the control is not allowed to change (i.e.
the block distribution) are commonly predetermined. This
can be achieved by adding equality constraints to (2) to fix
the values of some elements in the vector of controls U to
those of the reduced order controls Û = [ûT0 , û

T
1 . . . , û

T
K−1]

T

where dim Û < dimU . This is specified using a blocking
matrix Tb consisting of zeros and ones with exactly one non-
zero element in each row [16].

The blocking constraints can be stated using the Kronecker
product of Tb with the identity matrix I and take the form:

U =
(
Tb ⊗ Im×m

)
Û . (5)

By adding the equality (5) to problem (2) with the deci-
sion variables Û instead of U , the number of optimisation
variables is reduced.

For example, if there are five prediction steps (N = 5) and
one control input (m = 1), the control for the 5 sample steps
can be parameterised as a two-degree-of freedom control
input where u0 = u1 and u2 = u3 = u4 (i.e. U =
[ûT0 , û

T
0 , û

T
1 , û

T
1 , û

T
1]

T by the blocking matrix

Tb =

[
1 1 0 0 0
0 0 1 1 1

]T
.

III. FLEXIBLE MOVE BLOCKING SCHEME

In the above-mentioned standard form of input blocking,
the blocking scheme (represented by the blocking matrix Tb),

765

Fig. 1. Example control inputs of a full degree of freedom MPC and a
setup with four input blocks. a) and b) show different block distributions
leading to different control inputs (and different control performance).

is predetermined and kept constant throughout the control
operation. The central idea in this work is to tune the block
distribution to get a closer approximation of the full-order
non-blocked MPC control input and thus a better closed-
loop performance. The blocking scheme is adapted online
to the influencing parameters each time before solving the
optimisation problem.

A. Motivation

Fig. 1 illustrates an example full-order control input and
the response in the case of input move blocking with two
different block distributions. Let the black curves in the
figure be the full-order control-input and the dashed red
lines be the reduced order input subject to move blocking
at a given block distribution. The control input subject to
move blocking is attempted be as close as possible to the
non-blocked input (especially at the very first sample of
the trajectory which is the most / the only relevant for
MPC control) in the proposed method to avoid a significant
performance degradation. In order to allow the move-blocked
control input to be similar to the full-order input, the block
lengths should be short where the non-blocked input shows a
lot of variation. In contrast, the block lengths may be larger
where the original input displays only little variations. This
illustrated in Fig. 1 with two different example blocking
schemes, both with four degrees of freedom.

Finding a suitable block distribution according to the idea
of achieving a close approximation of the full-order MPC
control input mainly consists of two challenges:

• Guessing the full-order MPC control input.
• Deriving a block distribution according to this guess.

Both issues must be addressed with reasonably small
computational effort in order not to give away the main
purpose of input move blocking, i.e. the reduction of the
computational burden. The solution strategies are presented
in the sequel. First, obtaining a guess of the full degree of

Fig. 2. Blocked control input U = TbÛ of the previous sample step (black
line) with the amplified sensitivities a · si of the full-order cost function
related to changes of single input samples uk+i|k illustrated as blue arrows.
The resulting guess for the non-blocked input is plotted as red dashed line.

freedom control input trajectory is regarded and then, finding
a suitable block distribution is addressed.

B. Guessing the Full-Order MPC Control Input

A close approximation of the full-order solution can be
obtained without having to solve the full-order problem.
To obtain a guess for the full-order solution, the following
approach is taken.

First, the (already) blocked MPC input of the previous
MPC step is taken as a guess for the current (blocked) MPC
input. Since the moving horizon only propagates one sample
step, the optimisation problem of the previous MPC step
is assumed to be similar to the current problem. This is
a common method also in warm-starting the optimisation
algorithm.

The blocked solution is not optimal with respect to the
full-order cost function of problem (4) where the control at
each sample step is allowed to move if the input blocking
constraints (5) are not considered. To identify to what extent
a move of one control input sample ui could lead to a
decrease in the full-order cost function value, the sensitivities
of the cost function J(U) of the optimisation problem in
the form (4) with respect to each sample of the blocked
control are computed. For simplicity, inequality constraints
are disregarded at this step. The sensitivities si are defined
here as the change of the full-order cost function value J(U)
of problem (4) with respect to a change in one single control
input sample ui (i.e. the partial derivative of J(U) with
respect to ui, evaluated at the current operating point U0).

si =
∣∣∣∂J(U)

∂ui

∣∣∣
U0

(6)

Since the cost function of (4) results in scalar quadratic
and linear terms, the partial derivatives can be derived
analytically to compute si.

Having the sensitivities of the full-order cost function
related to changes in each single component uk+i|k of the
input trajectory U , they are each multiplied by a gain factor
a and then added to the blocked input to obtain a guess for
the non-blocked full-order solution. This can be considered
as a gradient step towards the minimum. The amplified
sensitivities are illustrated in Fig. 2 as blue arrows.

766

u′guess,i = ui + a · si k = 0 . . . N − 1 (7)

Secondly, this guessed input trajectory is simply lim-
ited/saturated by the inequality constraints on the control
umin,i ≤ uguess,i ≤ umax,i, i.e.:

uguess,i =


umin,i if u′guess,i < umin,i

u′guess,i if umin,i ≤ u′guess,i ≤ umax,i

umax,i if u′guess,i > umax,i

(8)

This is necessary because even if the full-order cost
function is sensitive to changes at certain samples, there is no
use in facilitating these changes by unblocking the input if
the inequality constraints do not allow this change. The result
of this saturation is then finally taken as a guess for the non-
blocked full-order control input. The computational effort to
obtain the sensitivities with regard to each input sample are
(N ·m) evaluations of the cost function (once for each sample
step and each control variable). It should be noted, that
the sensitivities are available in most optimisation solvers
anyway and thus accessible without additional computational
effort in some solvers.

C. Adjusting the block distribution to the guessed input

With the guess of the full-order control input trajectory
Uguess = [uguess,0, uguess,1, . . . , uguess,N−1] obtained in the
previous section, the input block distribution must be found
such that the input blocks are short where the variations
in Uguess are high in order to give the freedom to vary
the control input especially in these samples. The fitting
error of a piecewise constant approximation Ũ with a given
predetermined block distribution is taken as a measure of the
variation.

Finding the best piecewise constant approximation Ũ
of the guess of the non-blocked control input Uguess with
a limited number K of blocks is in general a hard a
combinatorial optimisation problem; [17]. Since a solution
with low computational effort is required here, a heuristic
algorithm is applied to find a suboptimal piecewise-constant
approximation, instead.

However, it should be guaranteed that the obtained so-
lution gives a better or at least equal approximation of
the guessed non-blocked input than the ”standard” block
distribution with equal block lengths. To achieve this, an
algorithm is used that tries to vary the block distribution
with constant block lengths to gain a lower overall fitting
error as follows.

Evenly distributed input blocks are taken as the starting
point. Then, all possible piecewise constant fittings that can
be achieved by shifting only one block margin left or right
by only one sample step are computed (i.e. one input block
is enlargened and another one is shortened by one sample).
The specific one-sample move that leads to the piecewise
constant least-squares fit with the lowest fitting error is
then stored and the procedure is repeated starting with this
new distribution. By this, the algorithm will consecutively

Fig. 3. Working principle of the block size adjustment based on shifting
the block margins according to the fitting error of a piecewise-constant
approximation.

shift that specific block margin, where the highest gain in
the overall fitting quality can be achieved until no further
improvement is possible by shifting only one single margin.
This will lead to a locally optimum block distribution. The
described procedure is listed in the following and illustrated
in Fig. 3.

1) Start with an initial block distribution with K degrees
of freedom/blocks as the ”current working distribution”
and compute the related squared piecewise constant
least-squares fitting error of the guessed full degree of
freedom input: ||Uguess − Ũ ||22

2) For h=1, h++, h=K-1: If possible without violating
the margins of neighbouring blocks, shift the margin
of block h to the left by one sample and store the
resulting block distribution.

3) For j=1, j++, j=K-1: If possible without violating
the margins of neighbouring blocks, shift the margin
of block j to the right by one sample and store the
resulting block distribution.

4) For each of these new block distributions created in
steps 2) and 3), compute the related piecewise constant
squared least-squares fitting error of the guessed full
degree of freedom input: ||Uguess − Ũ ||22

5) Choose the new block distribution with the lowest
resulting fitting error.

6) If this new fitting error is lower than the lowest of
the previous iteration, assign the block distribution
with the lowest fitting error as the ”current working
distribution” and go to 2).

7) Else: Return and output the ”current working distribu-
tion” to be used as blocking scheme in the reduced-
order MPC.

Due to the computational simplicity of this procedure,
it can be run online several times at each MPC step with
different initial block distributions at each MPC step to
achieve a solution closer to the global optimum.

IV. NUMERICAL EXAMPLE

This section presents an application example for the pre-
sented method to illustrate the effectiveness of the approach.
In the presented example, a first-order model of the kinetic

767

TABLE I
PARAMETERS OF THE CONTROLLER SETUP.

symbol value symbol value symbol value

Ad 0.99 Bd 9.96 Ed

[
−9.52e4
−952.18

]T
a 5.5e-4 ekin,0 0 Ftr,lim 1000 N
c1 103.98 c2 1.04e4 c3 -8.09e-4

energy ekin of a moving car (as a measure of the driving
speed) is considered. The control input is the traction force
Ftrac. The measured / known disturbance dd is related to the
road slope angle αsl and assumed the be known beforehand
at each step of the prediction horizon.

The following linear discrete position state space model
of the kinetic energy is considered. For further details on
this model, it can be referred to [15]. All parameters can be
found in Tab. I.

[
ekin,k+i+1|k

]︸ ︷︷ ︸
xd,k+i+1|k

=
[
a11
]︸ ︷︷ ︸

Ad

·
[
ekin,k+i|k

]︸ ︷︷ ︸
xd,k+i|k

+
[
b11
]︸ ︷︷ ︸

Bd

·
[
Ftrac,k+i|k

]︸ ︷︷ ︸
ud,k+i|k

+
[
e11 e12

]︸ ︷︷ ︸
Ed

·
[
sin(αsl,k+i|k)
cos(αsl,k+i|k)

]
︸ ︷︷ ︸

dd,k+i|k

(9)

The only objective of the MPC cruise controller is to
track a kinetic energy reference ekin,ref . This makes the
control actions more intuitive to understand and facilitates the
comparison of different simulation results just by comparing
the absolute tracking error.

min
Ftrac

N∑
i=0

(
ekin,k+i|k − ekin,ref,k+i|k

)2
subject to the model of the system dynamics:

xd,k+i+1|k = Ad · xd,k+i|k +Bd · ud,k+i|k + Ed · dd,k+i|k

subject to the initial conditions:
ekin,k|k = ekin(k)

subject to the limitations of the traction force:
−Ftr,lim ≤ Ftrac,k+i|k ≤ Ftr,lim

subject to the input move blocking:

Ftrac = TbF̂trac

(10)

With this MPC setup, the tracking of a kinetic energy
reference (the related driving speed is plotted) in the presence
of a known disturbance (resulting from the road slope αsl)
is simulated with different input move blocking schemes
as displayed in Fig. 4. The prediction horizon consists of
40 sample steps of 10 m. For the sake of comparison,
the first simulation is performed without move blocking
(Tb = I(m·N)×(m·N)), i.e. the control may vary at each of the
40 sample steps (full degree of freedom). Then, the freedom
of the control is reduced from forty to only four input blocks

position [m]
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

tr
ac

tio
n

fo
rc

e
[N

]

-1000

0

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

sl
op

e
an

gl
e

[d
eg

]

0

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

sp
ee

d
[k

m
/h

]

20

40

60

80

100

reference
optimal non-blocked
4 constant blocks
4 blocks at the beginning
4 flexible blocks

b)

a)

c)

Fig. 4. Simulation results of a reference tracking scenario with different
input blocking strategies.

• of equal lengths,
• with maximum degree of freedom at the beginning of

the horizon,
• and determined using the proposed flexible blocking

scheme, respectively.

The related simulation results are compared in Fig. 4. The
fact that none of the controllers can follow the reference
more closely is due to the input limitations. As expected,
Fig. 4 shows that the controller with the full-order freedom
in the control tracks the reference best with a mean absolute
tracking error of 9.34 km/h. In comparison, the controllers
with four input blocks of equal length and with maximum
degree of freedom at the beginning of the horizon show a
considerable performance degradation and require longer dis-
tances to finally reach to the reference trajectory. The mean
absolute tracking error here amounts to approximately 10
km/h (+ 7 %). However, the accumulated computational time
to compute the control responses throughout the simulation
with the quadprog function in MATLAB can be reduced from
60 s to 30 s (-50 %). The flexible move blocking with
four degrees of freedeom achieves the same mean absolute
tracking error as the full degree of freedom solution at an
accumulated computational time of 33 s (-45 % compared
to the full-order solution). This demonstrates the potential of
flexible blocking schemes.

The simulation of the same scenario has then been re-
peated different with degrees of freedom. The control perfor-
mance is then evaluated with the closed-loop cost function
Jcl = 1

Nsim
·
∑Nsim

k=1

(
|xk − xref,k|

)
which computes the

arithmetic mean absolute tracking error of the real system,
measured at the control sample steps k where Nsim is the
number of simulation samples.

The accumulated computation time and the mean absolute

768

1 2 4 5 8 10 40

m
ea

n
ab

s.
 tr

ac
ki

ng
 e

rr
or

0

10

20
constant block length
max. freedom at the beginning
flexible block length

degrees of freedom / number of blocks
1 2 4 5 8 10 40

co
m

pu
ta

tio
n

tim
e

[s
]

0

50

100
constant block length
max. freedom at the beginning
flexible block length

Fig. 5. Mean absolute tracking error and accumulated computation time of
the MPC simulation with two constant and the flexible (proposed) blocking
scheme and different degrees of freedom.

tracking error of all simulation runs are compared in Fig. 5.
Fig. 5 shows that the flexible move blocking decreases

the mean absolute tracking error in all cases. However,
the computation time to determine a suitable input block
distribution increases with the degree of freedom. While
the computation of the sensitivities of the full-order cost
function is independent of the number of blocks (cf. Section
III-B), the determination of the block lengths requires more
time and iterations when the number of blocks increases (cf.
Section III-C). Having this in mind, the proposed algorithm
is consistent when using a low degree of freedom in the
control with a flexible adjustment to the conditions to achieve
a solution comparable to the full degree of freedom at a
lower computation time. In the above presented numerical
example, it is reasonable to replace the full degree of freedom
solution with two, four or five flexible input block sections
in order to achieve a better control performance and at
the same time a lower computation time than the solutions
with constant equal length input blocking. Higher degrees of
freedom do not lead to a lower tracking error but increase the
computational time required for the flexible parameterisation
considerably.

V. LIMITATIONS AND CONCLUSION

To apply the proposed method, the gain a in (7) must be
tuned properly to achieve good results. By now, this is done
based on simulation results. Here, further research should be
done to achieve a more sophisticated approach. It might even
be promising to consider different gain factors in different
regions of the state space. Further, oscillations in the control
input may occur since the input blocking scheme can vary
from MPC step to MPC step which leads to differing control
inputs. This also prohibits stability guarantees for the control.
For example, if the blocking scheme oscillates between
two different block distributions, the computed control input
will also vary and this might cause an oscillating system
state. The block distribution algorithms must consequently
be included in a stability proof of the control which will
be very hard. Moreover, the proposed method relies on a

gradient descent step which can be disadvantageous in the
case of ill-conditioned systems. Therefore, a preconditioning
of the optimisation problem and taking projected gradient
steps is a promising way to improve the method.

However, the gains in computational time and reference
tracking quality are very promising and outperform existing
methods. As the numerical example in this paper shows, a
four degree of freedom approach can achieve almost the same
performance as the full-order 40 degree of freedom control
at only a half of the computation time. This motivates further
research to improve the proposed algorithms to make them
faster, more accurate and to establish stability guarantees.

Finally, an extension of the results to nonlinear systems
would be very promising. Here, the computation time is an
even more critical issue while the computation of the flexible
input move blocking would not require more additional effort
than in the case of linear systems.

REFERENCES

[1] J. Maciejowski, Predictive Control With Constraints, Pearson Educa-
tion, Prentice Hall, 2001.

[2] D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert, Con-
strained model predictive control: Stability and optimality, Automatica,
vol. 36, no. 6, Elsevier, pp. 789-814, 2000.

[3] A. Bemporad, M. Morari, V. Dua, E. N. Pistikopoulos, The explicit
linear quadratic regulator for constrained systems, Automatica, vol.
38, no. 1, pp. 3 - 20, 2002.

[4] N. L. Ricker, Use of quadratic programming for constrained internal
model control, Industrial & Engineering Chemistry Process Design
and Development, vol. 24, no. 4, pp. 925-936, ACS Publications, 1985.

[5] S. J. Qin, T. A. Badgwell, A survey of industrial model predictive
control technology, Control Engineering Practice, vol. 11, no. 7, pp.
733-764, Elsevier, 2003.

[6] R. Cagienard, P. Grieder, E. C. Kerrigan, M. Morari, Move blocking
strategies in receding horizon control, Journal of Process Control, vol.
17, no. 6, pp. 563-570, Elsevier, 2007.

[7] G. Valencia-Palomo, J. A. Rossiter, C. N. Jones, R. Gondhalekar,
B. Khan, Alternative parameterisations for predictive control: How
and why?, American Control Conference (ACC), pp. 5175-5180, June
2011.

[8] B. Khan, J. A. Rossiter, Alternative parameterisation within predictive
control: a systematic selection, International Journal of Control, vol.
86, no. 8, SI, pp. 1397-1409, 2013.

[9] R. Gondhalekar, J.-I. Imura, Least-Restrictive Move-Blocking Model
Predictive Control, Automatica, vol. 46, no. 7, pp. 1234-1240, Elsevier,
2010.

[10] R. C. Shekhar and C. Manzie, Optimal move blocking strategies for
model predictive control, Automatica, vol. 61, pp. 27 -34, 2015.

[11] C.-J. Ong and Z. Wang, Reducing variables in Model Predictive
Control of linear system with disturbances using singular value de-
composition, Systems & Control Letters, vol. 71, pp. 62 - 68, 2014.

[12] D. Li, Y. Xi, Z. Lin, An improved design of aggregation-based model
predictive control, Systems & Control Letters, vol. 62, no. 11, pp.
1082-1089, Elsevier, 2013.

[13] G. Valencia-Palomo, M. Pelegrinis, J. A. Rossiter, R. Gondhalekar,
A move-blocking strategy to improve tracking in predictive control,
American Control Conference (ACC), pp. 6293-6298, June 2010.

[14] S. Longo, E. C. Kerrigan, K. V. Ling, G. A. Constantinides, A parallel
formulation for predictive control with nonuniform hold constraints,
Annual Reviews in Control, vol. 35, no. 2, pp. 207-214, Elsevier, 2011.

[15] T. Schwickart, H. Voos, J.-R. Hadji-Minaglou, M. Darouach, A.
Rosich, Design and simulation of a real-time implementable energy-
efficient model-predictive cruise controller for electric vehicles, Jour-
nal of the Franklin Institute, vol. 352, no. 2, pp. 603-625, 2014.

[16] P. Tøndel and T. A. Johansen, Complexity Reduction In Explicit Linear
Model Predictive Control, Proc. of 15-th IFAC World Congress, 2002.

[17] L. E. Ghaoui, Optimization Models and Applications, UC Berkeley,
December 2014.

769

