Reference : Controlling the Error on Target Motion through Real-time Mesh Adaptation: Application... |
E-prints/Working papers : Already available on another site | |||
Engineering, computing & technology : Mechanical engineering | |||
Systems Biomedicine | |||
http://hdl.handle.net/10993/30937 | |||
Controlling the Error on Target Motion through Real-time Mesh Adaptation: Applications to Deep Brain Stimulation | |
English | |
Bui, Huu Phuoc ![]() | |
Tomar, Satyendra [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit >] | |
Courtecuisse, Hadrien [University of Strasbourg] | |
Audette, Michel [Old Dominion University] | |
Cotin, Stéphane [Inria] | |
Bordas, Stéphane [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit >] | |
Undated | |
Yes | |
[en] finite element method ; real-time error estimate ; adaptive refinement ; deep brain stimulation ; adaptivity ; brain shift | |
[en] We present an error-controlled mesh refinement procedure for needle insertion simulation and apply it to the simulation of electrode implantation for deep brain stimulation, including brain shift.
Our approach enables to control the error in the computation of the displacement and stress fields around the needle tip and needle shaft by suitably refining the mesh, whilst maintaining a coarser mesh in other parts of the domain. We demonstrate through academic and practical examples that our approach increases the accuracy of the displacement and stress fields around the needle without increasing the computational expense. This enables real-time simulations. The proposed methodology has direct implications to increase the accuracy and control the computational expense of the simulation of percutaneous procedures such as biopsy, brachytherapy, regional anesthesia, or cryotherapy and can be essential to the development of robotic guidance. | |
Fonds National de la Recherche - FnR ; ERC Stg grant agreement No. 279578 -- RealTCut | |
Researchers ; Professionals ; Students | |
http://hdl.handle.net/10993/30937 | |
https://arxiv.org/abs/1704.07636 | |
FP7 ; 279578 - REALTCUT - Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery | |
FnR ; FNR8813215 > Stephane Bordas > CBM > Computational Biomechanics for Medicine: Beyond the Frontiers of Mechanics > 01/03/2015 > 31/12/2016 > 2014 |
File(s) associated to this reference | ||||||||||||||
Fulltext file(s):
| ||||||||||||||
All documents in ORBilu are protected by a user license.