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SUMMARY

We present an error-controlled mesh refinement procedure for needle insertion simulation and apply it to the
simulation of electrode implantation for deep brain stimulation, including brain shift.
Our approach enables to control the error in the computation of the displacement and stress fields around the
needle tip and needle shaft by suitably refining the mesh, whilst maintaining a coarser mesh in other parts of
the domain.
We demonstrate through academic and practical examples that our approach increases the accuracy of the
displacement and stress fields around the needle without increasing the computational expense. This enables
real-time simulations.
The proposed methodology has direct implications to increase the accuracy and control the computational
expense of the simulation of percutaneous procedures such as biopsy, brachytherapy, regional anesthesia, or
cryotherapy and can be essential to the development of robotic guidance.

KEY WORDS: real-time simulation; a posteriori error estimate; finite element method; adaptive
refinement; deep brain stimulation; brain shift

1. INTRODUCTION

Real-time simulations are increasingly frequent for many applications, from physically based
animation [1, 2] to medical simulation [3]. Within the medical context, simulations involving
interactions between an interventional radiologist or a surgeon with soft, deformable organs, are
helpful. Indeed, these simulations do not only have the potential to help surgeons train or plan
complex operations but they can also guide them during the intervention itself. In spite of the obvious
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importance of quality control in such safety-critical advanced numerical tools, no approach is known
to evaluate and control the error committed by simulations. If this were possible, not only would the
user be provided with useful information regarding the quality of the results, but the computational
cost could be focused on where the error is large and decreased where it is small, thus leading to
computational savings.

Yet, whilst the literature in error estimation is rich within the computational mechanics community,
little or no work has been done in the context of medical simulation, in particular for real-time
applications [4]. The error in numerical simulation comes in three guises. First, the user writes a
mathematical model of the system of interest. For example, they may choose a corotational model
to represent the tissue, or a hyper-elastic model with a number of parameters. The inability of the
model to represent the physical reality is measured by the model error.

Second, the mathematical model must be solved numerically, since analytical solutions are rarely
available. For example, a user might wish to use the finite element method (FEM), or meshfree
methods, or the boundary element method. The inability of a numerical method to exactly solve the
mathematical model leads to the discretisation error.

Third, the set of linear equations provided by the discretised model must be solved numerically.
The associated error is known as the numerical error and incorporates, e.g. round-off errors.

In this paper, we tackle only discretisation error. Our assumption is that the mathematical model
used (here the corotational formulation), properly represents the behaviour of the organ in question,
in our case the brain. This is a strong assumption which is most likely not verified in general, as it
was shown that brain matter behaves hyper-visco-elastically [5].

Yet, the tools we develop in this paper are directly applicable to any model which can be described
in the form of partial differential equations, which is the case of most models of soft tissues. The aim
of this paper is therefore to demonstrate that error estimation techniques can be effectively used, even
in real-time scenario, to control the discretisation error and drive local refinement of the discretisation.
We focus on the problem of needle insertion because of the particular challenges it poses, due to the
localisation of deformations and stresses close to the needle shaft.

In modern clinical interventions such as biopsy, brachytherapy, cryotherapy, regional anesthesia, or
drug delivery, needle-based percutaneous procedures play an important role, thanks to their minimally
invasive character. Good training and careful planning to optimise the path to the target, while avoiding
critical internal structures, directly influence the desired achievement of these procedures [6]. In
some instances, robotic devices can be used to assist these procedures [7]. Unfortunately, natural
tissue motion before or during the intervention, and organ deformation due to interactions with the
needle during insertion, generally lead to inefficient or incorrect planning [6]. An accurate simulation
of needle insertion can address these issues, possibly in a manner complemented by imaging in
intraoperative scenarios. In addition to the simulation accuracy, the computational speed is vital, for
most problems, since the biomechanical simulation is a kernel part of an optimised algorithm for the
needle trajectory or for a robotic control loop.

In needle insertion simulations, one has to deal with three main models: a model for the soft tissue,
a model for the flexible needle, and a model described the needle-tissue interaction. Needle and
tissue models can rely on linear or non-linear constitutive laws (see the survey in [8]). A nonlinear
viscoelastic Kelvin model is used for the needle in [9]. The model describing the interaction between
the needle and the tissue remains a main challenge. It consists of a number of different physical
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aspects, such as frictional contact on tissue surface, puncturing, cutting, sliding with friction, and
the Poynting’s effect. Dehghan et al. [10] propose an ultrasound-based motion estimation to model
needle-tissue interaction. To avoid obstacles while steering the needle during insertion, different kind
of needles have been proposed, for example, a symmetric tip [11], a flexible bevel tip [12–14], as
well as a compliant needle model [15].

FEM is the most commonly used numerical method for needle insertion simulations, see e.g.
[16–18]. In order to numerically solve the equilibrium equations of mathematical models, FEM uses
the concept of discretisation, in which the volume of an object/organ is decomposed into elements
(such as tetrahedra or hexahedra). The arrangement of these elements defines the mesh, and the
continuous mathematical problem, in this case biomechanical deformation, can be established on this
mesh. The resulting discrete problem (refer to Section 2.2), with the number of unknowns directly
proportional to the number of elements in the mesh, can then be easily solved on a computer. It
is noted that the computational cost (time) is also directly proportional (with cubic power) to the
number of unknowns, i.e., the CPU time is of the order of N3, where N denotes the number of
unknowns of the problem [19].

Using a uniform coarse mesh (involving few elements of the same shape) is undermined by the
limitation that discontinuities engendered by cuts, singularities or stress concentrations can not be
captured. On the other hand, it is uneconomical, or in a strict sense, prohibitively expensive, to use
a uniformly fine mesh (involving same shaped elements but many more as compared to a coarse
mesh). Therefore, in the context of real-time simulations, an economical hybrid mesh should be used
to deliver fast simulation response while still enabling accurate simulation results.

Our aim is to model the interactions between the needle and the tissue employing an adaptive
meshing technique, which is guided by an a posteriori error estimate. An a posteriori error estimation
approach obtains the actual error bounds using the computed solution (instead of the asymptotic
bounds on the solution of the original mathematical problem). In this paper we use an a posteriori
error estimation technique called super-convergent patch recovery (SPR). The SPR technique was
proposed by Zienkiewicz and Zhu [20], and the asymptotic convergence of this technique is studied in
[21,22]. By solving the discrete problem on a computer, we obtain the numerical solution (henceforth
called the raw solution as in [23]). In the SPR (see Section 2.3 for details), we post-process the raw
solution to obtain an improved solution, to which the raw solution is compared. The key idea is that,
in certain regions, where the approximated error (i.e. the difference between the raw solution and the
improved solution) is greater than a certain threshold, the mesh should be refined locally there, and
where the error is small (these two solutions are close together), the mesh can be kept unchanged or
coarsened. Note that the mesh refinement is only introduced as a measure to improve the simulation
accuracy of the interactions between the needle and the tissue. Similar to the approach used in [24],
we do not require the mesh used for the tissue to conform to the needle path.

The efficiency of our method will be studied through a heuristic needle insertion scenario, and
also through a more complex simulation of the insertion of an electrode lead which is used in
Deep Brain Stimulation (DBS). The latter is a surgical procedure being able to treat a number of
disabling neurological symptoms, e.g. Parkinson’s disease (PD). DBS consists of inserting a long
needle-shaped electrode (or electrode lead) through a small opening in the skull into the brain to reach
the target area which for PD is the subthalamic nucleus (STN). Subsequently, a neurostimulator sends
therapeutic electrical impulses to this target implanted with electrodes. The success of the therapy
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largely depends on the exact implantation of the electrode lead [25], although increasingly, DBS
targeting benefits from knowledge of afferent and efferent white matter tracts [26]. This procedure
necessitates a pre-operative planning step for determining the target coordinates to implant the
electrodes, as well as a trajectory to deliver the insertion cannula, through which then one determines
the electrode insertion path. A pre-operative magnetic resonance imaging (MRI) of the patient is
employed to identify and locate the target within the brain. However, during the DBS procedure,
as a burr hole is drilled in the skull to access the brain tissue, brain shift occurs due to the leak of
cerebro-spinal fluid [27, 28]. This includes an error in the planning, that can at best make the therapy
ineffective, and at worst cause complications, such as psychiatric complications [29]. Therefore,
brain shift prior to electrode insertion will be taken into account in our simulations.

The remaining of the paper is organised as follows. In Section 2, we describe the problem being
solved. The interaction model between needle and tissue is formulated, and it is described how the
elements are marked for refinement during simulation by employing an error estimate. It is then
followed by the discussion on solving the system equations with constraints. Numerical results
are presented in Section 3, which shows the efficiency of the proposed approach through a simple
needle insertion scenario, as well as through more complex DBS lead insertion simulation. Finally,
conclusions are drawn in Section 4.

2. METHODS

We first outline the mathematical model we choose to represent the brain and its interaction with the
cannula/needle/lead. We then describe the approach we follow to solve this problem numerically.

We use corotational elasticity, which implicitly assumes that the deformations of the brain are small.
We develop a frictional needle-tissue interaction model. The problem is solved using hexahedral
finite elements implemented in the open-source Simulation Open Framework Architecture (SOFA,
www.sofa-framework.org). The local h-refinement strategy is based upon simple SPR-based
a posteriori error estimation method.

2.1. Problem statement

Within the context of needle (or cannula/lead) insertion into soft tissue, both the needle and the tissue
are modeled as dynamic deformable objects. Let Ω represent the volume of an object (e.g. the tissue).
Undergoing external force t̄, which is applied on the boundary part Γt on the object boundary Γ,
and bearing a prescribed displacement ū on its boundary part Γu in Γ, see Figure 1, the dynamic
equilibrium motion equation of the object is expressed by, see [30, 31],

divσ + b + λ = ρü in Ω. (1)

Here σ is the Cauchy stress tensor (accounting for internal forces), b is the body force vector (e.g.
gravity), λ is the interaction force with another object (e.g. a needle), ρ denotes the mass density,
u stands for the displacement field of the object, and ẍ is the second partial derivative of x with
respect to time. In physical terms, the divergence term (divσ) is the sum of the derivatives of the
stress tensor components with respect to each axis direction. The compatibility conditions on the

www.sofa-framework.org


CONTROLLING THE ERROR ON TARGET MOTION THROUGH MESH ADAPTATION 5

boundaries Γt and Γu read

σ · n = t̄ on Γt (2a)

u = ū on Γu. (2b)

Equations (2a) and (2b) are known as Neumann and Dirichlet boundary conditions, respectively.

Γu

Γ t

t̄

Ω

u=ū

b

Γ

λ
−λ

Figure 1. An object Ω undergone a traction force t̄, a body force b, a prescribed displacement ū, and is in
contact with another object through interaction forces λ.

The strain in the object, which is a measure of the object deformation, can be expressed from the
gradient of the displacement as

ε =
1

2

(
grad u + (grad u)T

)
. (3)

The constitutive law, that expresses the relation between stress and strain tensors (through a function
f ) of the object via the model internal (intrinsic) variables ν = (ν1, ν2, . . . , νn), reads

σ = f(ε,ν). (4)

Equations (1) to (4) constitute the governing equations that describe the behaviour of the object in
the sense of continuum mechanics.

The interaction force λ is defined from the law describing the needle-tissue interaction. During the
needle insertion, we prescribe three different types of constraints between the needle and the tissue
as in [32], see Figure 2. The Coulomb’s friction law is employed to describe the frictional contact

Figure 2. As in [32], three types of constraints between the needle and soft tissue are defined: surface puncture
(denoted by λts, illustrated in red), needle tip constraint (denoted by λnt, illustrated in green) and needle
shaft constraints (denoted by λns, illustrated in blue). To express the constraint directions, we define, at each

constraint point, a local coordinate system n-t.

within these three types of constraints. First, we define a puncture constraint between the needle tip
and the tissue surface. This constraint follows the Kuhn-Tucker conditions. The latter describes the
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fact that the contact force only exists when the needle tip is in contact with the tissue surface. In the
direction n (normal to the tissue surface), this condition reads

δn ≥ 0, λtsn ≥ 0, δn · λtsn = 0, (5)

where, the superscript ts stands for the constraints on the tissue surface, δn is the distance between
the needle tip and the tissue surface in the direction n, and λtsn is the contact force in the normal (to
the tissue surface) direction. Let λp0 express the puncture strength of the tissue. When the interaction
force is greater than the puncture strength of the tissue

λtsn > λp0 , (6)

the needle can penetrate into the tissue. And while the needle tip is in contact with the tissue surface
but has not penetrated into it yet, the relative motion between them can be described by a frictional
law. The Coulomb’s friction law is employed to take into account the stick/slip between the needle
tip and the tissue surface

λtst < µλtsn (stick); λtst = µλtsn (slip), (7)

in which the subscript t denotes the tangent component of the contact force, µ is the friction
coefficient.

Second, as soon as the needle penetrates into the tissue, we define a constraint between the needle
tip and the tissue. The fact that the needle tip is stuck or can cut and advance in the tissue depends on
the relationship between the normal component (in the direction n, along the needle shaft) and the
tangent component (in the direction t) of the contact forces (see Figure 2), defined by

λntn < µλntt + λc0 (stick); λntn ≥ µλntt + λc0 (cut and slip), (8)

where, the superscript nt stands for the constraints at the needle tip, and λc0 denotes the cutting
strength of the tissue.

Finally, we define the needle shaft constraints (denoted by the superscript ns) along the needle
shaft. These constraints help to enforce the needle shaft to follow the insertion trajectory created by
the advancing needle tip. Again, we employ the Coulomb’s friction law to describe the stick and
slide contacts between the tissue and the needle shaft, expressed as

λnsn < µλnst (stick); λnsn = µλnst (slide). (9)

Note that these three types of constraints describe different kinds of physical interactions between
the needle and the tissue. However, we depict three of them as interaction constraint vector,
collectively denoted by λ in the following, which can be solved numerically.



CONTROLLING THE ERROR ON TARGET MOTION THROUGH MESH ADAPTATION 7

t̄

Ω

Γ

Ωe

i

Figure 3. Simplified illustration of FEM discretisation in two dimensions.

2.2. Weak form

Since the partial differential equation (1), which states the equilibrium of the system, involves both
spatial and temporal derivatives, it can be solved numerically by discretising that equation in both
space (the volume representing the object) and time.

Using Nn nodes, the domain Ω, which represents tissue or needle, is spatially discretised into
Ne finite elements Ωe, e = 1, 2, . . . , Ne, see Figure 3. By integrating the equilibrium equation on
each element volume, and assembling for the whole volume, we obtain the discrete problem as
(see, e.g., [30, 31])

Mü + Cu̇ + Ku = fext + HTλ, (10)

with M the mass matrix, K the stiffness matrix, C the damping matrix, and fext the external force
vector. The interaction force constraints λ, between the needle and the tissue, are computed using
Lagrange multipliers (in numerical methods, the constraints λ are called Lagrange multipliers, and
thus we use the same notation), where HT provides the direction of the constraints.

Equation (10) can be rewritten as

Ma = f(x,v) + HTλ, (11)

where a = ü, v = u̇, x are the acceleration, velocity and position vectors, respectively, and
f(x,v) = fext − Ku − Cv is the net force (the difference between the external and internal forces)
applied to the object. Note that the displacement vector u is expressed through the current and initial
position vectors, x and x0, respectively, as u = x − x0.

For temporal discretisation, i.e. to numerically solve the problem in time, we use an implicit
backward Euler scheme [33], which is described as follows

üt+τ =
u̇t+τ − u̇t

τ
; u̇t+τ =

ut+τ − ut
τ

, (12)

where τ stands for the time step. Inserting Equation (12) into Equation (11) yields the final discrete
system

(M − τC − τ2K)︸ ︷︷ ︸
A

dv = τ f(xt,vt) + τ2Kvt︸ ︷︷ ︸
b

+HTλ (13)
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or simply Adv = b + HTλ, where dv = vt+τ − vt. After solving (13) for dv, the position and
velocity are updated for needle and tissue as

vt+τ = dv + vt; xt+τ = xt + τvt+τ . (14)

In this contribution, a lumped mass matrix, in which a diagonal mass matrix (from the mass
density ρ) is integrated over the volume of each element is employed. The stiffness matrix K is
computed based on the corotational FEM, in which the rigid body motion from total finite element
displacements is extracted (since it does not contribute to element deformations, see [34]). Note that
the corotational FEM formulation makes it possible to handle large rotations for both, needle as well
as tissue. For higher accuracy of the computed strain field and less sensitivity to locking phenomena,
the soft tissue domain is discretised using hexahedral elements having 3 translational degrees of
freedom per node†. We use a mesh that does not conform to the boundary of the domain, similar to
the approach of Immersed Boundary Method [38] or unfitted finite elements [39, 40], to avoid the
complex issue of generating an exact hexahedral mesh of the domain. The needle, on the other hand,
is modeled using Euler-Bernoulli beam elements having 6 degrees of freedom (3 translations and 3

rotations) per node.

2.3. Error estimate and adaptive refinement

The accuracy of the outcome of surgical simulators depends on a number of factors. The latter can
mainly be divided into two sources: modelling error and discretisation error. The first error source
arises when we formulate a mathematical model for a physical problem, prompting the question: does
the resulting model correctly describe the physical phenomenon? The second error source comes
from the discretisation approach used by numerical methods such as the Finite Element (FE) method
[41], or meshfree methods [42, 43] to solve the mathematical model. In this paper, we assume the
mathematical model to be correctly representing reality and focus only on the discretisation error.

By discretising the physical domain in order to solve numerically the mathematical model, the FE
method introduces naturally a discretisation error in the solution. We estimate this error source by the
superconvergent patch recovery (SPR) procedure [20]. This information is then used to adaptively
refine elements where the error is high.

The SPR is based on the following simple idea. The displacement field is obtained from solving
the equilibrium equation, and the stress field is then computed by differentiating the polynomial
approximation of the displacement field. In doing so, one looses numerical accuracy of the stress field
(the differentiation reduces the polynomial degree by one). The stress field, obtained by the FEM,
is possibly discontinuous across element boundaries. However, assuming that the original problem
of the continuum has a smooth (continuous) solution, one can post-process the FEM solution to
obtain higher accuracy. This post-processing is done on a collection of neighboring elements, which
is called a patch. Using SPR, the post-processed (smoothed) stress field σs is recovered from the
stresses computed at the element centre. The idea of this technique is based on the fact that the stress
and strain are more accurate at the superconvergent points (for the case of linear hexahedral elements
used in this study, these points are at the centre point of elements), than anywhere else in the element.

†It is also possible to use smoothed tetrahedral elements, which do not lock, see, e.g. [35–37].
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Using the least squares approach, the values of stress and strain at the superconvergent points are
then employed to recover the nodal stress and strain.

The approximate error of an element Ωe is defined as the energy norm

ηe =

√∫
Ωe

(εh − εs)T (σh − σs)dΩ, (15)

in which ε and σ are strain and stress tensors, respectively. This error norm is indeed the difference
between the FEM solution, denoted by superscript h, and an improved (recovered) solution, denoted
by superscript s. An element is marked for refinement if

ηe ≥ θηM , 0 < θ < 1, where ηM = max
e
ηe. (16)

Based on a predefined template which is a set of nodes and an associated topology defining
template elements, an element being marked for refinement is then replaced by the finer template
elements using the mapped mesh method [32, 44]. The template nodes are added by using their
natural coordinates (i.e. the coordinates defined on the reference coordinate system with respect to
the template). The position xj , in Cartesian coordinates, of the template node j is computed as

xj =

8∑
i=1

xiξ
j
i , (17)

where the summation is applied on the eight nodes i of the removed hexahedron element. The term ξji
in the interpolating polynomial (known as the shape function in the FEM context) can be seen as the
relative position of the node j with respect to the node i. A two dimensional schematic presentation
of the refinement can be seen in Figure 4. Note that the predefined template is not limited to regular
elements, but can be as heterogeneous as desired (i.e. the template with different element sizes).
However, to have a good performance in FEM simulation, ill-shaped elements (i.e. elements where
one or more edges are much smaller than the largest) should be avoided in defining the template.
Note also that we are not limited by the regularity of the mesh, and can start from any (reasonable)
heterogeneous mesh as a starting point prior to refinement. Also, using this refinement technique,
elements can be refined recursively, see Figure 4d.

(a) (b) (c) (d)

Figure 4. Schematic presentation of template-based refinement: (a) A template for refinement can be defined
prior to simulation; (b) first element is refined; (c) second element is refined; (d) the refinement can be nested.

Since elements are refined according to the predefined templates, regardless of their neighbourhood,
some nonconforming nodes (also known as hanging nodes) are generated. In FEM words, a
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nonconforming node is a node which is not shared by all elements around it, see Figure 5. These
nodes are also called T-junctions since they form a T-shaped junction in the mesh. Solving the FEM
problem without any treatment at T-junctions, displacement discontinuities at these nodes occur. To
avoid that, Lagrange multipliers can be used to enforce the continuity at T-junctions, see Section 2.4.

Figure 5. Schematic representation of a hanging node (shown by the unfilled circle) in two dimensions.

2.4. Solving system equations with constraints

Based on Equation (13), the interaction between the needle (denoted by subscript 1) and the tissue
(denoted by subscript 2) can be expressed by the following equation set

A1 0 HT
1

0 A2 HT
2

H1 H2 0



dv1

dv2

λi

 =


b1

b2

0

 , (18)

where λi is the Lagrange multiplier representing the interaction between the needle and the tissue.
When refinement takes place in the tissue model, T-junctions (as explained above) can be handled

by using constraints in the following form(
A2 TT

T 0

){
dv2

λt

}
=

{
b2

0

}
. (19)

where λt stands for Lagrange multipliers used for T-junctions, and T expresses the dependence
between the T-junction nodes (slave nodes) with respect to their parent nodes (master nodes).

We can see that Equations (18) and (19) have the same general form(
A JT

J 0

){
x

λ

}
=

{
b

0

}
. (20)

Equation (20) can be reformulated as

x = A−1b︸ ︷︷ ︸
xfree

−A−1JTλ, (21a)

JA−1JTλ = J A−1b︸ ︷︷ ︸
xfree

, (21b)

in which, xfree can be seen as the solution of the unconstrained system Ax = b. Therefore,
Equation (20) can be solved in three steps as
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Step 1. Factorize the matrix A to have its inverse A−1, and solve for xfree,

Step 2. Solve Lagrange multipliers λ from Equation (21b),

Step 3. Once λ is available, x can be obtained from Equation (21a) by using xfree.

3. RESULTS

In this section, we present several numerical studies in order to demonstrate the efficiency of our
method. To show the benefits of employing adaptive refinement controlled by error estimates, we
first study the simulation of needle insertion into a phantom tissue of simple geometry. Then, we
study a more complex simulation of deep-brain stimulation (DBS) lead insertion. In DBS, a cannula
is inserted into the brain tissue in order to reach an STN target. Leaving an electrode inside the brain,
the cannula is then pulled back until completely outside of the brain. By these studies, we provide
insight into the mechanical behaviour of the brain tissue in response to the lead insertion, and analyse
the effect of mesh adaptivity on the solution.

DBS is an effective approach to alleviate the symptoms of neuro-degenerative diseases such as
Parkinson’s disease. During most DBS interventions, the craniotomy leads to a shift of the brain
within the skull, because of the cerebrospinal fluid which is drained out of the skull cavity and ceases
to provide buoyancy to the brain. Once the electrode has been inserted, the brain regains its original
position.

One of the difficulties during DBS interventions is that the electrode displaces as the brain comes
back to its original position, before brain shift. Therefore, it is possible that the electrode tip displaces,
so that the electrode does not stimulate the proper target anymore, which requires a new operation.

Simulations of the type that we are presenting here have the potential to help surgeons prepare
for interventions by investigating where the electrode tip should be located, so that it stimulates the
target after the brain shifts back to the configuration it had prior to craniotomy-induced brain shift.

3.1. Impact of local mesh refinement on displacement field

The effect of adaptive refinement on the compromise between the computational time and the solution
accuracy is studied through a needle insertion simulation into a phantom tissue. In this study, the
mechanical properties are taken as follows. The Young’s modulus is set to 50 MPa for the needle, and
10 MPa for the tissue, whereas 0.4 and 0.3 are set for the Poisson’s ratio of the tissue and the needle,
respectively. It is noted that, for this heuristic study, these parameters are chosen arbitrarily (but are
physically meaningful for a needle-tissue interaction problem). Figure 6 shows an illustration of the
needle insertion problem.

As mentioned above, we employ a linear elastic model based on corotational formulation to
model the behaviour of the needle as well as the tissue. The tissue geometry has the dimension of
4 × 2 × 2 cm. The length of the needle and its radius are of 3.2 cm and 0.1 cm, respectively.

The mesh is subsequently refined in a uniform manner (8 × 4 × 4, 16 × 8 × 8, 32 × 16 × 16

elements), as well as in an adaptive manner. By the adaptive refinement scheme, we start simulations
with the coarse mesh (8 × 4 × 4 nodes) and adaptively refine the mesh during the simulation thanks
to the error estimate, see Section 2. During needle insertion, we measure the displacement of the
points defined in Figure 7.
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x

y
z

Figure 6. Schematic illustration of the needle insertion problem into the tissue with a simple geometry being
clamped at the right end surface as the boundary condition.

1 2 3 4 5 6 7
1A
1B
1C
1D
1E

1
1A
1B
1C
1D

1E

insertion point

Figure 7. The displacement during insertion is measured at the predefined points, namely, 1, 2, 3, 4, 5, 6, 7
which are distributed in the direction of the needle shaft, and 1A, 1B, 1C, 1D, 1E that lie in the direction

normal to the needle shaft.

Note that the displacements of all points is not shown here. Figure 8 shows the displacement of
some points distributed in the direction of the needle shaft, and Figure 9 shows the displacement of
some points distributed in the direction normal to the needle shaft (i.e. radial). These results reveal
two distinct features. Firstly, the displacement solution of the adaptive refinement scheme agrees
well with that of fine mesh when the adaptivity criterion is appropriately chosen (here θ = 0.3).
Secondly, it is observed that after puncture, the finer the mesh is used, the smaller the displacements
at those points are. This observation is explained by two phenomena. First, a finer mesh produces
softer behaviour for the tissue, i.e. the displacement does not “propagate” as easily from the needle
shaft to the point where we measure the displacement (refer to [32] for details). Second, needle
insertion leads to localisation of displacements, strains and stresses, due to the small size of the
needle compared to the organ.

Figure 10 shows the displacement at all predefined points during insertion when mesh 32 × 16 × 16

is employed. It is seen that the further the point from the tissue surface is (Figure 10a), or the further
the point from the needle shaft is (Figure 10b), the smaller the displacement of that point is. The
physical relevance of this observation is explained in the previous paragraph.

3.2. Electrode implantation in DBS

We study the simulation of DBS lead placement by inserting a cannula into a brain model until it
reaches the predefined STN target. Then, the cannula is retracted while keeping an electrode inside
the brain. As in [27], the Young’s modulus of 10 GPa is set for the cannula and for the electrode,
while the Young’s modulus of the brain tissue is set to 6 kPa. The Poisson’s ratio is set as 0.45 for the
brain tissue, and 0.3 for both the cannula and the electrode. The radii of the cross sections are set
to 3 mm and 0.7 mm for the cannula and electrode, respectively. The frictional coefficient between
the cannula and the brain tissue is established at 0.05. The adaptivity parameter θ is set to 0.6. From
our studies, we found that, with minimum DOFs, this choice of the adaptivity parameter gives the
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(c) Point 5.
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Figure 8. During needle insertion, the displacement of the points located in the direction of the needle shaft,
uniform and adaptive refinement schemes. The numbers of degrees of freedom for the meshes listed in
the graphs (in the label order) are 675, 4 131, 28 611, and 1 461 (for adaptive refinement scheme it is the
maximum at the end of insertion step). It is seen that the displacement solution of adaptive refinement scheme
agrees well with that of fine mesh when certain criterion of adaptivity is appropriately chosen (here θ = 0.3).

Moreover, it is observed that the finer the mesh is used, the smaller the displacements at those points are.

best results for DBS simulation of electrode placement. Since the brain tissue is very soft, we set the
penetration strength at the brain surface and the cutting strength to 0.01 N.

It is worth mentioning that, in this study, simple boundary conditions around the brain tissue
are taken into account. Indeed, we simply consider clamped bilateral constraints around the area
of the optic nerves and the brainstem. We believe that this choice of boundary conditions (for the
sake of simplicity) does not affect the efficiency of the adaptive refinement algorithm. However,
more complex boundary conditions for the brain with respect to the skull can be found in [27, 45].
We are currently investigating the effects of the choice of boundary conditions on the results for
this particular case. In general, for brain shift problems, it is now known that the type of boundary
conditions does not have a strong effect on the resulted brain shift, see, e.g., [46, 47]. However,
systematic studies are still missing from the literature for the problem of DBS simulation.
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(c) Point 1C.
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Figure 9. The displacement of the points located in the radial direction, uniform and adaptive refinement
schemes, during needle insertion. The numbers of degrees of freedom for the meshes listed in the graphs (in
the label order) are 675, 4 131, 28 611, and 1 461 (for adaptive refinement scheme it is the maximum at the

end of insertion step). The same observations can be made as in Figure 8.
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Figure 10. Displacement of the points during needle insertion, when the 32 × 16 × 16 mesh is employed. The
further the point from the tissue surface, or from the needle shaft, is found, the smaller the displacement of

that point is.
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Two strategies of mesh refinement are employed. The uniform refinement consists of refining each
hexahedron of the mesh into 8 smaller hexahedra. In the second strategy, called adaptive refinement,
we only refine the elements that fulfil the adaptivity condition Equation (16).

(a) (b)

Figure 11. Simulation of brain shift prior to insertion of the cannula for electrode implantation. Initial position
of the brain is shown by cyan colour (a). The position of the STN target after brain shift is shown by the green
sphere, while its initial position is shown by the red one (b). The displacement of the STN target due to brain

shift is about 6.5 mm.

In Figure 11, brain shift prior to insertion is shown. Figure 12 shows the distance between the
electrode tip and the STN target during insertion and retraction of the cannula. The vertical line
in Figure 12 indicates the point in time when the cannula has the trend to be pulled back. It is
observed that from that time, the distance between the electrode tip and the STN target still decreases.
This is justified by the fact that the brain tissue is unloaded from insertion forces and displaces
toward the direction from which the needle was inserted. The electrode, on the other hand keeps
moving forward due to inertial forces. When the cannula is being retracted, the brain tissue deforms
and moves backward, and thus increases the electrode-STN target distance accordingly. When the
cannula is completely outside the brain tissue, that distance is stabilised at around 2.9 mm.

Moreover, Figure 12 reveals that the distance from the electrode tip to the STN target obtained by
using our adaptive refinement scheme agrees well with that when a fine uniform mesh is employed.
However, an important gain in computational time can be observed, since the maximum number of
DOFs for the adaptive scenario is only 3 135 as compared to 12 528 DOFs of the fine uniform mesh.
This reduction in the problem size is approximately of the order of 4.

Figure 13 shows the displacement of the STN target (with respect to its position after brain shift)
when inserting the cannula, leaving the electrode, and retracting the cannula. It can be seen that
at around the step 75, the cannula starts penetrating into the brain tissue, and thus provokes the
displacement of the STN target inside the brain. This displacement increases along with the insertion
of the cannula and the electrode into the brain, due to cutting of the brain tissue and friction on the
cannula shaft. At the step 166, when the cannula starts undergoing retraction, the brain tissue is then
unloaded, and this causes the STN target to move backward. This phenomenon is seen by the decrease
of the STN target displacement up to the step between 200 and around 225 (depending on the mesh
employed, refer to Figure 13). After that, since the cannula is bearing retraction, and because of
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Figure 12. The distance from the electrode tip to the STN target. An STN target is fixed inside the brain. The
cannula is inserted into the brain so that it can reach the STN target. Then the electrode is left while retracting
the cannula. The vertical line at step 166 indicates the moment when the cannula has the trend to be pulled
back. It is seen that using an adaptive refinement scheme, the distance obtained between the electrode tip and
the STN target is as good as using the fine uniform mesh. However, a significant gain in computational time
is observed. The maximum number of degrees of freedom for the adaptive refinement is 3,135. For a similar
solution profile, compared to a uniformly refined mesh, this represents a reduction in the problem size of

approximately 4.

friction, the brain tissue follows the cannula in the direction of the retraction. As a consequence, the
displacement of the STN target increases again. The closer to the brain surface the cannula tip is, the
smaller the magnitude of frictional force along the cannula shaft is, and therefore, at some stage, the
STN target displacement decreases again. And, that displacement continuously decreases when the
cannula is fully retracted from the brain tissue, as observed at the final stage of Figure 13.

Visualisation of the simulation of DBS lead implantation during insertion and retraction at some
stages can be seen in Figure 14. Figure 13 reveals that, during the insertion phase, the result of the
adaptive mesh does not closely agree with that of the uniform fine mesh. This is evidenced by the
fact that the refinement has begun but has not reached the STN target yet, as can be partly seen
in Figure 14b. However, from the stage when the cannula reaches the STN target, to the end of
the simulation when it is completely pulled out of the brain tissue, the result of the adaptive mesh
agrees well with that of the uniform fine mesh, thanks to the refinement occurring along the cannula
trajectory, as seen in Figure 14d.

It is again observed that the use of the proposed adaptive refinement scheme is very relevant
because it guarantees the solution accuracy close to the fine meshing schemes, with computational
time suitable for real-time simulation.

4. CONCLUSIONS

We have presented a structured study to answer the essential, but rarely addressed, question of
accuracy in surgical simulations. The original contribution of our paper is the use of an a posteriori
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Figure 13. Displacement of STN target (with respect to its position after brain shift) during cannula insertion
and retraction (the same simulations as in Figure 12). The vertical line, same as in Figure 12, shows the stage
when the cannula is going to be removed. The maximum number of DOFs for the adaptive refinement is

3135.

estimate of the discretisation error to automatically drive local adaptive mesh refinement during
needle insertion.

From the study on the displacement solution of two different problems (needle insertion into
a simple phantom geometry with stiff mechanical properties, and the simulation of electrode
implantation for deep brain stimulation (DBS) with softer mechanical properties for the brain),
two major conclusions can be drawn:

• The outcome of the proposed adaptive refinement scheme does not depend on the mechanical
parameters of the tissue, such as Young’s modulus and Poisson’s ratio.

• With a suitably chosen refinement criterion, the adaptive solution agrees well with the solution
on a fine uniform mesh, while saving computational time to make it feasible for real-time
simulations. The computational time savings in the particular case we tackled are of the order
of 10 (more details can be found in [32]).

Our work is limited in several ways which we are currently investigating:

• We tackled only the discretisation error, and avoided the difficult problem of “model error”.
For example, we assumed the brain to behave in a corotational manner. Although this is
corroborated by the literature, we do not have physical evidence that this assumption is true in
general, nor as to when it may break down.

• We assumed simple boundary conditions around the brain. This should be investigated in
more detail to assess the effect of both geometrical and boundary condition uncertainty on the
outcome of the simulations.

• Soft tissue properties vary from patient to patient by up to a few orders of magnitude. We have
been working on robust and systematic approaches to quantifying these uncertainties [48]. We
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(a) (b)

(c) (d)

Figure 14. Visualisation of the electrode implantation simulation of DBS (a). Brain shift occurs prior to
cannula insertion. The STN target during the simulation is shown at different stages by a green sphere in
(b,c,d). When the cannula tip is in contact with the brain tissue surface, it leads to element refinement guided
by error estimate, shown in (b), coloured by Von Mises stress magnitude. When the cannula has reached the
STN target, it undergoes a retraction. The cannula is being retracted while the electrode is left inside the brain,
shown in (c). The cannula is completely retracted, adaptive refinement has occurred along the trajectory of

the cannula, shown in (d).

will use these methods to quantify the effects of variability in the material parameters on the
motion of the target and of the electrode during DBS.
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Stéphane Bordas, Satyendra Tomar and Huu Phuoc Bui thank partial funding for their time
provided by the European Research Council Starting Independent Research Grant (ERC
Stg grant agreement No. 279578) RealTCut “Towards real time multiscale simulation of
cutting in non-linear materials with applications to surgical simulation and computer guided
surgery”. We also also grateful for the funding from the Luxembourg National Research Fund
(INTER/MOBILITY/14/8813215/CBM/Bordas and INTER/FWO/15/10318764).
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24. Duriez C, Guébert C, Marchal M, Cotin S, Grisoni L. Interactive simulation of flexible needle insertions based on
constraint models. Lecture Notes in Computer Science, vol. 5762, 2009; 291–299.

25. Breit S, Schulz JB, Benabid AL. Deep brain stimulation. Cell and Tissue Research 2004; 318(1):275–288, doi:
10.1007/s00441-004-0936-0.

26. Calabrese E. Diffusion Tractography in Deep Brain Stimulation Surgery: A Review. Frontiers in Neuroanatomy
2016; 10:45, doi:10.3389/fnana.2016.00045.

27. Bilger A, Dequidt J, Duriez C, Cotin S. Biomechanical Simulation of Electrode Migration for Deep Brain Stimulation.
Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; 339–346, doi:10.1007/978-3-642-23623-5 43.

28. Hamz N, Bilger A, Duriez C, Cotin S, Essert C. Anticipation of brain shift in deep brain stimulation automatic
planning. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 2015; 3635–3638, doi:10.1109/EMBC.2015.7319180.

29. Piasecki SD, Jefferson JW. Psychiatric complications of deep brain stimulation for parkinson’s disease. The Journal
of clinical psychiatry 2004; 65(6):845–849.

30. Zienkiewicz O, Taylor R. The Finite Element Method: Solid mechanics. Referex collection.Mecánica y materiales,
Butterworth-Heinemann, 2000.

31. Liu GR, Quek SS. Chapter 3 - Fundamentals for Finite Element Method. The Finite Element Method (Second
Edition), Liu GR, , Quek SS (eds.). Second edition edn., Butterworth-Heinemann: Oxford, 2014; 43–79, doi:
http://dx.doi.org/10.1016/B978-0-08-098356-1.00003-5.

32. Bui HP, Tomar S, Courtecuisse H, Cotin S, Bordas S. Real-time error control for surgical simulation. IEEE
Transactions on Biomedical Engineering 2017; PP(99):1–1, doi:10.1109/TBME.2017.2695587.

33. Baraff D, Witkin A. Large steps in cloth simulation. Proceedings of SIGGRAPH, 1998; 43–54.
34. Felippa C, Haugen B. A unified formulation of small-strain corotational finite elements: I. theory. Computer Methods

in Applied Mechanics and Engineering 2005; 194(2124):2285 – 2335.
35. Nguyen-Xuan H, Rabczuk T, Nguyen-Thanh N, Nguyen-Thoi T, Bordas S. A node-based smoothed finite element

method with stabilized discrete shear gap technique for analysis of reissner–mindlin plates. Computational Mechanics
2010; 46(5):679–701, doi:10.1007/s00466-010-0509-x.

36. Lee CK, Mihai LA, Hale JS, Kerfriden P, Bordas SP. Strain smoothing for compressible and nearly-incompressible
finite elasticity. Computers & Structures 2017; 182:540 – 555, doi:http://doi.org/10.1016/j.compstruc.2016.05.004.

37. Mendizabal A, Bessard Duparc R, Bui HP, Paulus CJ, Peterlik I, Cotin S. Face-based smoothed finite element method
for real-time simulation of soft tissue 2017, doi:10.1117/12.2255064.

38. Pinelli A, Naqavi IZ, Piomelli U, Favier J. Immersed boundary method for generalised finite volume and finite
difference navier-stokes solvers. Journal of Computational Physics 2010; 229(24):9073–9091.

39. Belytschko T, Parimi C, Mos N, Sukumar N, Usui S. Structured extended finite element methods for solids
defined by implicit surfaces. International Journal for Numerical Methods in Engineering 2003; 56(4):609–635,
doi:10.1002/nme.686.

40. Burman E, Claus S, Hansbo P, Larson MG, Massing A. Cutfem: Discretizing geometry and partial differential
equations. International Journal for Numerical Methods in Engineering 2015; 104(7):472–501, doi:10.1002/nme.
4823.

41. Zienkiewicz O, Taylor R, Zhu J. The finite element method: Its basis and fundamentals, vol. 1. Elsevier, 2013.
42. Nguyen VP, Rabczuk T, Bordas S, Duflot M. Meshless methods: a review and computer implementation aspects.

Mathematics and computers in simulation 2008; 79(3):763–813.
43. Griebel M, Schweitzer MA. Meshfree Methods for Partial Differential Equations. Springer-Verlag Berlin Heidelberg,

2003.
44. Grosland NM, Bafna R, Magnotta VA. Automated hexahedral meshing of anatomic structures using deformable

registration. Computer Methods in Biomechanics and Biomedical Engineering 2009; 12(1):35–43, doi:10.1080/
10255840802136143. PMID: 18688764.

45. Wittek A, Miller K, Kikinis R, Warfield S. Patient-specific model of brain deformation: Application to medical
image registration. Journal of biomechanics 2007; .

46. Wittek A, Kikinis R, Warfield SK, Miller K. Brain Shift Computation Using a Fully Nonlinear Biomechanical Model.
Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; 583–590, doi:10.1007/11566489 72.

47. Joldes GR, Wittek A, Miller K. Computation of intra-operative brain shift using dynamic relaxation. Computer
Methods in Applied Mechanics and Engineering 2009; 198(4144):3313 – 3320, doi:http://doi.org/10.1016/j.cma.



CONTROLLING THE ERROR ON TARGET MOTION THROUGH MESH ADAPTATION 21

2009.06.012.
48. Hauseux P, Hale JS, Bordas SP. Accelerating monte carlo estimation with derivatives of high-level finite element

models. Computer Methods in Applied Mechanics and Engineering 2017; :–doi:http://dx.doi.org/10.1016/j.cma.
2017.01.041.


	1 Introduction
	2 Methods
	2.1 Problem statement
	2.2 Weak form
	2.3 Error estimate and adaptive refinement
	2.4 Solving system equations with constraints

	3 Results
	3.1 Impact of local mesh refinement on displacement field
	3.2 Electrode implantation in DBS

	4 Conclusions

