Pas de texte intégral
Article (Périodiques scientifiques)
Minimum energy multiple crack propagation Part I: Theory.
SUTULA, Danas; BORDAS, Stéphane
n.d.In Engineering Fracture Mechanics
Peer reviewed
 

Documents


Texte intégral
Aucun document disponible.
Parties de texte intégral
main-p1-theory.pdf
Preprint Auteur (602.01 kB)
Télécharger
highlights-p1.txt
Preprint Auteur (1.45 kB)
Télécharger
Annexes
XFEM - biaxial splitting (lite).mp4
(1.69 MB)
Télécharger
XFEM - horizontal splitting.mp4
(2.71 MB)
Télécharger
XFEM - fracturing XFEM.mp4
(551.88 kB)
Télécharger
XFEM_Fracture2D.zip
(37.61 MB)
Demander un accès
competing_cracks.zip
(437.55 kB)
Demander un accès
all_sources.zip
(25.62 MB)
Demander un accès
efm-2017-minimum_energy-p1.zip
(13.72 MB)
Demander un accès
XFEM_Fracture2D-20170807.zip
(104.83 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Griffiths crack; energy minimisation; variational fracture; stability of cracks; competing crack growth; stiffness derivative; comparison of crack growth criteria; extended finite element method; XFEM implementation; multiple cracks; crack intersections; linear elastic fracture
Résumé :
[en] The three-part paper deals with energy-minimal multiple crack propagation in a linear elastic solid under quasi-static conditions. The principle of minimum total energy, i.e. the sum of the potential and fracture energies, which stems directly from the Griffith's theory of cracks, is applied to the problem of arbitrary crack growth in 2D. The proposed formulation enables minimisation of the total energy of the mechanical system with respect to the crack extension directions and crack extension lengths to solve for the evolution of the mechanical system over time. The three parts focus, in turn, on (I) the theory of multiple crack growth including competing cracks, (II) the discrete solution by the extended finite element method using the minimum-energy formulation, and (III) the aspects of computer implementation within the Matlab programming language. The key contributions of Part-I of this three-part paper are: (1) formulation of the total energy functional governing multiple crack behaviour, (2) three solution methods to the problem of competing crack growth for different fracture front stabilities (e.g. stable, unstable, or a partially stable configuration of crack tips), and (3) the minimum energy criterion for a set of crack tip extensions is posed as the criterion of vanishing rotational dissipation rates with respect to the rotations of the crack extensions. The formulation lends itself to a straightforward application within a discrete framework for determining the crack extension directions of multiple finite-length crack tip increments, which is tackled in Part-II, using the extended finite element method. In Part-III, we discuss various applications and benchmark problems. The open-source Matlab code, documentation, benchmark/example cases are included as supplementary material.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
SUTULA, Danas ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Minimum energy multiple crack propagation Part I: Theory.
Date de publication/diffusion :
n.d.
Titre du périodique :
Engineering Fracture Mechanics
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 18 janvier 2017

Statistiques


Nombre de vues
5980 (dont 238 Unilu)
Nombre de téléchargements
1626 (dont 43 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu