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Abstract

The three-part paper deals with energy-minimal multiple crack propagation in a linear
elastic solid under quasi-static conditions. The principle of minimum total energy, i.e.
the sum of the potential and fracture energies, which stems directly from the Griffith’s
theory of cracks, is applied to the problem of arbitrary crack growth in 2D. The pro-
posed formulation enables minimisation of the total energy of the mechanical system
with respect to the crack extension directions and crack extension lengths to solve for
the evolution of the mechanical system over time. The three parts focus, in turn, on (I)
the theory of multiple crack growth including competing cracks, (II) the discrete solution
by the extended finite element method using the minimum-energy formulation, and (III)
the aspects of computer implementation within the Matlab programming language. The
key contributions of Part-I of this three-part paper are given as follows. (1) Formulation
of the total energy functional governing multiple crack behaviour. (2) Three solution
methods to the problem of competing crack growth for different fracture front stabilities,
e.g. stable, unstable, or partially stable crack tip configurations; we compare our ap-
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proach to [17] and demonstrate via example cases that the latter approach of resolving
competing crack growth is not energy minimal in some cases. Finally, (3), the minimum
energy criterion for a set of crack tip extensions is posed as the condition of vanishing ro-
tational dissipation rates with respect to the extension angles. The proposed formulation
lends itself to a straightforward application within a discrete framework involving mul-
tiple finite-length crack tip extensions. The open-source Matlab code, documentation,
benchmark/example cases are included as supplementary material.

1 Introduction

Modelling fracture initiation and propagation is key to engineering design and has im-
portance in a number of other fields, including biomechanics and surgical simulations
[19]. The full complexity of the mechanical phenomena taking place during the fracture
process is most commonly not taken into account and the vast majority of industrial
fracture mechanics simulations consider a single crack under the assumptions of linear
elastic fracture mechanics (LEFM) [10, 127, 128, 42, 44, 58]. Some notable problems of
industrial significance that involve large numbers of interacting cracks include: silicon
wafer splitting via the coalescence of multiple micro-cracks [28, 29, 37, 38], fatigue life-
time prediction of solder joints due to crack initiation and growth from thermal loading
[109, 64, 63, 62], development of micro-crack toughened ceramics and composites [24,
25, 26, 5, 106], structural integrity assessment of reactor pressure vessels [21]. However,
often-times in structural health monitoring the simpler (and more conservative) approach
of analysing many closely spaced cracks is to replace the cracks by an equivalent (longer)
crack [21] or apply simple superposition techniques, e.g. [47, 48, 49].

In spite of the clear importance of studying multi-crack problems, both crack initiation
and crack interaction in dense cracking scenarios are much less studied than the single
crack problem. The aim our three-part paper is to comprehensively deal with the case
of arbitrary multi-crack growth in linear elastic solids. Specifically, Part-I of our three-
part paper offers a detailed overview of the theoretical analysis of multi-crack growth
problems and formulates the solution methods for solving arbitrary crack growth prob-
lems following the principle of energy minimality; then, Part-II present the description
of the discrete solution methods; finally, Part-III describes our open-source computer
implementation and also presents many benchmark problems for verifying our proposed
solution strategies. The theory is directly applicable in the general three-dimensional
case but our write-up is restricted to the two-dimensional setting.

The present paper, Part-I, provides insight into competing crack growth behaviour as well
as several solution strategies for determining the relative growth rates of the competing
crack tips. The problem to be solved is effectively a constrained quadratic program-
ming problem with both equality and inequality constraints. We propose three solution
methods, where each is applied based on the local behaviour of the total energy func-
tional, which can be characterised in terms of the stability property of the fracture front
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configuration. The second aim of this paper is to formulate the criterion for the crack
growth direction based on the principle of minimum energy in a way that lends itself to
application within a discrete framework. The key property of the criterion is that it does
not depend on the crack tip field (e.g. the crack tip stress intensity factors). Thus, the
present contribution mainly serves as a stepping stone for gaining insight into multiple
crack propagation under minimum energy conditions and for, subsequently, formulating
the discrete problem of multiple crack growth and solving it.

The text is organised as follows. Section-2 describes the model problem which is that
of a 2D linear-elastic solid with multiple pre-existing cracks. Section-3 describes the
representation of cracks. Section-4 reviews Griffith’s crack growth law. Section-5 formu-
lates the total energy functional that governs the behaviour of the mechanical system
and explains how the minimisation of this functional leads to the equilibrium evolution
of the mechanical system over time. Then, section-6 tackles the problem of competing
crack growth. Section-7 formulates the crack growth direction criterion based on the
principle of minimum total energy. Finally, a summary and conclusions are given.

2 Overview of computational fracture mechanics

2.1 Discrete versus continuum

All materials, if observed at a sufficiently small scale, can be considered discrete. Fail-
ure in solids can be modelled using such discrete approaches as: the discrete element
method [75, 74, 76] or molecular dynamics [6, 129, 116, 16, 115, 114]. We focus here on
continuum description of solids and refer to [115] for a review of recent approaches to con-
tinuum fracture mechanics and open-source software for continuum/molecular-dynamics
coupling. The reader is referred to [117, 118] for quantum mechanical approaches.

2.2 Continuum approaches to fracture

Within the continuum context, there are two approaches to modelling failure processes.
The problem is approached either from the viewpoint of continuum damage mechanics
(CDM) [46, 98, 97, 77] or fracture mechanics (FM) [45, 122, 123, 2]. CDM considers
a smeared crack model: weakening of the structure and failure are captured by strain
localisation along the failure zone. FM, on the other hand, considers a discrete crack: a
crack is modelled as a strong discontinuity in the displacement field. A zero-thickness
discontinuity results in an infinitely sharp crack such that the state of stress exhibits a
square-root singularity at the crack tip [45, 122, 123], which is difficult to deal with nu-
merically. The accuracy of the tip fields is important because many classical crack growth
criteria rely on these fields to determine how a crack evolves in space and time [131, 12,
99]. Different criteria may be concerned with different aspects of crack behaviour but
a common denominator to all crack growth approaches is the requirement to determine
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if a crack grows, by how much, and in which direction. In a three-dimensional setting,
this problem has to be solved all along the entire crack front. More recent efforts have
been focused on bridging this divide between continuum (damage) and discrete cracks
through, for example, the variational theory of fracture [30, 13, 31, 20, 14, 30, 59, 65] or
phase field models [110, 67, 66, 11, 1, 68].

2.3 Crack initiation and propagation

In linear elastic fracture mechanics (LEFM), the most well known criteria are: the
maximum tangential stress (MTS) criterion [23, 15, 72, 71, 61] (also called the maximum
hoop-stress criterion), the maximum energy release rate (MERR) criterion[85, 43, 125,
126, 124, 52, 40, 78], and the minimum strain energy density (MSED) criterion [108,
107]. The aforementioned criteria can be used to determine both the direction and the
onset of crack growth. On the other hand, the criterion based on the principle of local
symmetry (PLS) [34, 51, 41] can only be used to determine the direction of crack growth.
A comparison of different criteria can be found in [103, 105, 12, 22, 99]. The reader may
also wish to refer to the 2010 review on crack propagation algorithms [96, 93].

Note that LEFM is valid if the non-linear material behaviour (e.g. plastic deformation)
is confined to a small region close to the crack tip. For materials that show considerable
plasticity prior to crack growth, LEFM is no longer a suitable model and the elastic-
plastic fracture mechanics (EPFM) approach should be used instead. Within the EPFM
framework, there are two parameters that can be used to characterise the crack tip
state: these are the J-integral [100] and the crack tip opening displacement (CTOD)
[121]. Either one can be used as a fracture criterion as they show little size-dependence
even for relatively large amounts of crack tip plasticity [119, 133]; furthermore, these
criteria remain significant within the LEFM framework. Since the elastic-plastic material
behaviour can be idealised as non-linearly elastic (assuming no unloading takes place),
the J-integral value uniquely characterises the crack tip state. The critical J-integral
value (JIc) is obtained at the point of failure of a specimen during an experiment.

Some materials can exhibit an increase in the fracture resistance with crack extension
due to the expansion of the plastic region around the crack tip. A plot of the material’s
resistance to fracture versus crack length gives the material’s fracture resistance curve
(R-curve) [119, 133, 132]. For an ideally brittle material the R-curve is flat because the
surface energy is a fixed material property; on the other hand, the fracture resistance
of many tough materials tends to increase with crack length until a steady-state value
is reached. Ideally, the initial JIc and the R-curve are properties of the material and do
not depend on the size or shape of the cracked body. This is reasonably true when the
plastic deformation at the crack tip is small relative to the specimen size.
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2.4 Loss of material stability

Depending on the physics of the fracture problem, other criteria may be introduced
to determine when a new crack should be nucleated or when an existing crack should
bifurcate into multiple branches, e.g. using material stability analysis [82]. This has
been applied to dynamic crack growth [130, 111, 11, 91, 94, 9, 92, 95]. However, with
regard to crack nucleation, the classic linear-elastic theory of fracture mechanics predicts
that an infinite stress is required to create a new crack inside an elastic solid [35, 36, 59].
Crack nucleation within FM has been attempted by applying non-local criteria such as
maximum average stress [81, 104, 103] or maximum energy release [103, 54, 55]. For
a comparison of different crack initiation criteria refer to [103, 105, 131] and to the
2010 review [93]. Alternatively, crack nucleation can be addressed within the CDM
framework whereas FM can be applied to model sufficiently well developed smeared
cracks as discrete cracks [3, 92, 8, 120].

2.5 Variational theories

A method of bridging the gap between continuum damage mechanics and fracture me-
chanics is provided by the variational approach to fracture, which is based on the fun-
damental principles of minimum energy [18, 30, 39, 102, 101, 27], irreversibility of the
fracture path [57, 4, 39, 14], and energy conservation. The variational theory of brittle
fracture was set out in [18, 30, 31] where the basic idea was to consider the fracture
surface as an internal variable of the total energy functional whose variation induced an
energy dissipation. Numerical implementations of the variational approach to fracture
were presented in [13, 20, 14, 65] where a zero-width crack was replaced by a regularised
(diffusive) fracture zone. The regularisation was in a form of a gradient of the internal
variable. In principle, the fracture representation was similar to some early non-local
gradient-enhanced continuum damage models [88, 32, 89, 56, 79]; however, in the present
case, the regularised fracture zone converges to a discrete crack when the regularising
parameter tends to zero [60, 33, 20].

More recently, two notable fracture modelling strategies have emerged following the
variation principle and non-local continuum damage mechanics, namely: the phase-field
model (PFM) [110, 67, 66, 11, 1, 68] and the thick level set (TLS) model [90, 70, 112,
8]. In PFM, the fracture zone is described by a global fracture surface functional whose
minimum corresponds to an exponentially decaying damage function from where the
crack is localised (i.e. location of full damage). As the regularisation length-scale tends
to zero, the diffusive fracture surface converges to a sharp crack topology [60, 65]. The
main advantage of PFM is that the evolution of the system is entirely governed by a sin-
gle energy functional whose time-continuous minimisation in terms of the displacement
field and the internal fracture surface variable yields the solution to the fracture evolu-
tion problem. In TLS, a level set function [84, 83] is used to separate the undamaged
zone from the fully damaged zone by a characteristic width where the damage varies
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monotonically, i.e. the damage variable is an explicit function of the level set. The
propagation of the damage front is driven by the so-called configurational force [113, 39,
50] that corresponds to the vector of maximal energy dissipation with respect to the
(regularised) extension of the front of the level set. The numerical representation of the
fully damaged region can be enhanced by enriching the standard finite element approx-
imation with a ramped Heaviside function to completely decouple the opposite sides of
the fully damaged region [87, 7, 8]. Although the enrichment is not mandatory for TLS,
it is beneficial especially for coarser meshes as the enrichment effectively removes any
spurious cohesive tractions that may be transferred across the fully damaged zone by
those nodes whose support bridges the fully damaged zone [70, 8, 69, 73, 86].

The main advantages of TLS are similar to those of PFM in that the method can natu-
rally initiate cracks, propagate them, and handle crack merging and branching without
relying on ad hoc criteria, such as in discrete crack representation. Thus, TLS and PFM
are methods that effectively bridge the gap between continuum-damage mechanics and
fracture mechanics. A comparison between the methods is given by [53].

2.6 Discussion

Some of the drawbacks of PFM and TLS models are similar to those of CDM based
approaches; in particular, the methods share the high computational cost of the spatial
discretisation that is needed to approximate a brittle crack via strain localisation since
a crack is effectively modelled at the constitutive level via the degradation of material
stiffness. This cost can be prohibitive if it is required to simulate complex crack patterns
such as crack branching and merging with a high resolution. On the other hand, the main
difficulty with the FM approach is that a crack needs to be defined within the continuum
context at the level of the geometry, i.e. as a moving boundary of the solid, so that the
problem governing PDE’s make sense within the volume of the solid continuum. Hence,
within the FM approach, it is necessary to manually track each crack and manage crack
intersections as they occur. In addition, a crack growth criterion is required to determine
when, where and which cracks propagate. Nonetheless, FM is a very competitive choice
when it comes to modelling discrete cracks, despite the practical difficulties. The field of
(linear-elastic) fracture mechanics is well-established and the state of the art numerical
methods greatly facilitate the integration of arbitrary discontinuities within a continuum
discretisation such that accurate fracture solutions are possible.

3 Model problem

Consider a two-dimensional (2D) brittle linear-elastic body Ω ⊂ R2 in the (x, y)-plane,
as depicted in Figure 1. The body has a boundary Γ = Γu ∪ Γt ∪ Γc, where Γu is the
prescribed displacement (Dirichlet) boundary, Γt is the prescribed traction (Neumann)
boundary on the exterior of the domain, and Γc is the prescribed traction (Neumann)
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Figure 1: Diagram of a 2D model problem of a multiply cracked linear-elastic solid in
static-equilibrium with the external loading action.

boundary on the fracture surfaces; note that Γu 6= ∅ and that the boundaries are subdi-
vided such that Γu ∩Γt ∩Γc = ∅. Γc is assumed to constitute ncrk fracture surfaces such
that Γc = Γc1 ∪ Γc2 ∪ · · · ∪ Γcnc

. The 2D static-equilibrium equations (1) and boundary
conditions (2)-(3) can be summarised as follows (note, i, j = 1, 2):

σij,j = bi in Ω (1)

ui = ūi on Γu (2)

σij nj = ti on Γt (3)

σij nj = p on Γc (4)

where σij is the Cauchy stress tensor component; bi – body force; ui – displacement;
ni – unit (outward) normal to boundary Γ; ūi – prescribed displacement on Γu; ti –
prescribed traction on Γt; p – prescribed pressure normal to fracture surface Γc. The
stress-strain relationship for a linear-elastic solid can be given by Hooke’s law:

σij = Cijkl εkl i, j, k, l ∈ {1, 2} (5)

where Cijkl is the component of the symmetric 4th-order constitutive tensor for an
isotropic material, and εkl is the component of the small-deformation strain tensor:

εij =
1

2
(ui,j + uj,i) i, j ∈ {1, 2} (6)

The constitutive tensor C can also be given in matrix form, according to the type of a
2D problem at hand:
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C ≡

Cxxxx Cxxyy Cxxxy
Cyyxx Cyyyy Cyyxy
Cxyxx Cxyyy Cxyxy

 =


E

1−ν2

[
1 ν 0
ν 1 0
0 0 1−ν

2

]
Plane-stress

E
(1+ν)(1−2ν)

[
1−ν v 0
ν 1−ν 0
0 0 1−2ν

2

]
Plane-strain

(7)

where the two material constants E and ν are, respectively, the Young’s modulus of
elasticity and the Poisson’s ratio.

The principle of virtual work that governs the elasto-static equilibrium problem can be
stated as follows. Find u ∈ U such that for any virtual displacement δu ∈ U0 the equality
between the internal and the external virtual works is satisfied, i.e.

∀δu ∈ U0

∫
Ω
εij(δu)Cijklεkl(u) dV =

∫
Γt

δuiti dA+

∫
Γc

δJuiKnip dA (8)

The admissible trial space of displacements U and the test space of the virtual displace-
ments U0 are defined respectively as:

U = { u ∈ H1(Ω\Γc) : u|Γu = ū and JuiK · ni ≥ 0 on Γc} (9)

U0 = {δu ∈ H1(Ω\Γc) : δu|Γu = 0 and JδuiK · ni ≥ 0 on Γc} (10)

where H1 is the Sobolev space of real vector-valued continuous functions with first
square-integrable generalised derivatives on the part of the domain given by Ω\Γc. Note
that the admissible trial and test spaces are assumed to respect the constraint of no
crack surface interpenetration. As our implementation does not explicitly enforce this
constraint (e.g. by means of resolving the contact mechanics problem in the event contact
is detected) we focus on fracture problems driven by tensile loading.

4 Representation of cracks

In describing the evolution of multiple cracks it is practical to consider unique crack
branches that stem from the tips of each pre-existing crack. This, in turn, simplifies the
association of a particular crack tip branch i ∈ {1, 2, . . . , ntip} with its energy release
rate Gsi. We will denote the set of pre-existing cracks by Ic = {1, 2, . . . , nc} and the set
of crack tip branches by Itip = {1, 2, . . . , ntip}. It is assumed that the number of crack
tips can be related to the number of cracks via ntip = 2nc and that the beginning and
end of a particular crack i ∈ Ic corresponds to the crack tips 2i− 1 and 2i respectively.
In this reference frame (see Figure 2), a crack i ∈ Ic is considered to have a pre-existing
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fracture area a0i, whereas a crack tip branch i ∈ Itip is supposed to have a time-
dependent fracture area `i. Thus, prior to the start of the fracture process, the fracture
area of any branch is supposed to be zero, i.e. `i = 0∀i ∈ Itip, whereas upon the start
of the fracture process, the branch areas can be greater than zero, i.e. `i ≥ 0∀i ∈ Itip.

a01

`1
a02

`3

`4

a03`5

`6

Figure 2: The proposed crack representation scheme. A pre-existing crack is assumed to
have a fixed length a0i where i ∈ Ic. The length of a crack tip branch, which is assumed
to evolve over time, is `j where j ∈ Itip.

Within this crack representation, the total area ai of a crack i ∈ Ic is determined as the
sum of its initial area a0i and the areas of the two of its branches, `2i−1 and `2i:

i ∈ Ic ai = a0i + `2i−1 + `2i (11)

Similarly, the total cracked area is computed as:

a =

nc∑
i=1

ai =

nc∑
i=1

a0i +

ntip∑
i=1

`i (12)

The growth rate ˆ̀
i of a crack branch i ∈ Itip is defined as the increase in the area of the

branch (δ`i) relative to the increase in the total cracked area (δa =
∑

i∈Itip δ`i):

∀i ∈ Itip
ˆ̀
i =

d`i
da
≥ 0 (13)

Note that crack growth irreversibility is implied by the inequality sign. Consequently,
the space of admissible branch growth rates A (i.e. ˆ̀∈ A) can be defined as:

A =
{

ˆ̀ : ∀i ∈ Itip, ˆ̀
i ∈ [0, 1] subject to

∑
i∈Itip

ˆ̀
i = 1

}
(14)
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5 Griffith’s crack growth law

According to Griffith [35, 36], the energy release rate Gsi of a crack tip i ∈ Itip is
defined as the rate of strain energy release (−dUs/d`i) plus the rate of external work
done (dWext/d`i) with respect to the extension of the crack tip branch area `i:

Gsi = −dUs
d`i

+
dWext

d`i
(15)

Since the potential energy Π of an elastic solid is equal to the sum of the internal strain
energy Us and the external load potential (−V ), and given that for a constant external
load a decrease in the load potential is equal to an increase in the external work Wext,
the crack tip energy release rate must equal the rate of potential energy decrease:

Gsi = −dUs

d`i
− dV

d`i
(16)

Gsi = −dΠ

d`i
, (17)

In the general case of multi-crack growth, the mean energy release rate Gs with respect
to a set of given crack tip extension rates ˆ̀∈ A can be computed as follows:

Gs = −dΠ

da
(18)

Gs = Gsi
d`i
da

(19)

Gs = Gsi
ˆ̀
i (20)

If the fracture toughness of a material happens to vary spatially such that Gci 6= Gcj if
i 6= j for i, j ∈ Itip, the equivalent Gc (i.e. the equivalent resistance of the material with

respect to a particular fracture growth ˆ̀∈ A) is determined analogously to (20):

Gc = Gci
ˆ̀
i (21)

The onset of crack growth occurs at the instance the fracture driving force Gs overcomes
the material resistance Gc. Thus, the Griffith’s crack growth criterion is stated as:

∀ ˆ̀∈ A

{
(Gsi −Gci) ˆ̀

i < 0 (no growth)

(Gsi −Gci) ˆ̀
i = 0 (growth)

(22)
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where the driving energy release rate Gs = Gsi
ˆ̀
i is implicitly bounded (from above) by

the critical energy release rate Gc = Gci
ˆ̀
i to ensure the material state makes physical

sense, i.e. the material’s ability to resist fracture growth is not exceeded by the fracture
driving force. In other words, the physical constraint that is implied in (22) is:

∀i ∈ Itip Gsi ≤ Gci (23)

If a given crack growth ˆ̀
c ∈ A satisfies the growth condition in (22) then ˆ̀

c is a critical
solution that satisfies the following inequality condition with respect to any ˆ̀∈ A:

(Gsi −Gci) ˆ̀
c i ≥ (Gsi −Gci) ˆ̀

i (24)

It is implied by (24) that at the instance of crack growth the dissipation-like term:

D( ˆ̀) ≡ (Gsi −Gci) ˆ̀
i (25)

will be maximum (and, under energy conservation conditions, equal to zero). Conversely,
the critical crack growth solution will satisfy:

ˆ̀
c = arg max

ˆ̀∈A
D( ˆ̀), (26)

By extension, the critical fracture path: `c =
∫ a∞
a0

ˆ̀da will be one that maximises D( ˆ̀)

with respect to ˆ̀ ∈ A at every instance of the evolution of the total fractured area
a ∈ [a0, a∞], where a0 and a∞ are the initial and the final fractured areas.

6 The total energy function

Following from the fact that the critical fracture path produces maximal dissipation,
it is possible to write down a total energy function E = E(`) whose time-continuous
minimisation, in terms of the cracked area `, would give the solution to the critical
fracture path. The first step to obtaining E is to define the following relationship:

−dE
da

= D( ˆ̀), (27)
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which states that the decrease rate of E with respect to an increasing total cracked area
a is equal to the surplus energy per unit cracked area that is available for dissipation.
E(`) can then be obtained by integrating equation (27) with respect to a:

E(`) =

∫
(−Gsi +Gci) ˆ̀

i da (28)

E(`) =

∫ (
dΠ

d`i
+Gci

)
d`i (29)

E(`) = Π(u(`), `) +

∫
Gci(`) d`i (30)

where the displacement field u is considered as a function of `. Fracture growth can
occur if E(`) can decrease or stay constant with increasing `. The critical fracture path is
obtained by minimising E(`) with respect to ` such that E(`) follows the path of steepest
descent with respect to `. Note that the present form of the total energy functional does
not distinguish between compressive and tensile cracks in so far as achieving total energy
minimality of the evolution of the mechanical system is concerned, i.e. the growth of both
types of crack is energetically equivalent. However, we make the assumption that the
growth of compressive cracks is unfavourable (for various reasons, e.g. the material may
be much tougher in compression). The reason behind this assumption is the limitation
of our model to account for cracks in compression as we do not explicitly enforce the
constraint of no crack surface interpenetration. Even though the energy functional (30)
can easily take into account crack surface loading (such as due to internal crack pressure),
the solution to the contact problem is beyond the aim of the present work. Thus, we
focus on fracture problems driven by tensile loading. In cases of multiple cracks, the
assumption of no crack surface interpenetration may be difficult to satisfy and, thus,
some crack surface interpenetration will inevitably occur. Our way of handling cracks
in compression is to simply deactivate them, i.e. if the (opening) mode-I stress intensity
factor is negative, the crack tip is frozen for the particular step in time.

6.1 Total energy minimisation

The evolution of cracks is determined by the time-continuous minimisation of the total
energy function E(`). So far, the problem of fracture growth has been considered without
invoking the equilibrium state of the solid. Now we consider the problem of crack
evolution such that it is consistent with the equations of static-equilibrium (8).

In the definition of E(`) in equation (30), the potential energy was written as Π(u(`), `).
The relationship between u and ` is imposed by the equations of static-equilibrium;
specifically, Π(u, `) is required to be minimised (stationary) with respect to u for a
given fracture boundary Γc, which can be parametrised in terms of `. The relationship
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u = u(`) is embedded in the solution to the variational form (8) of static-equilibrium,
which can be stated in terms of a stationary potential energy:

∂Π

∂u

∣∣∣∣
Γc(`)

= 0 (31)

Although a closed-form relationship between u and ` is not generally available, it is
possible to explicitly resolve the differential relationship du/d`. To this end, it is only
necessary to suppose that the condition of static-equilibrium is satisfied during an in-
finitesimal crack extension δ` = ˆ̀δa. Consequently, we have:

∀i ∈ Itip
d

d`i

(
∂Π

∂u

)
= 0

∂

∂`i

(
∂Π

∂u

)
+
∂2Π

∂u2

du

d`i

T

= 0

du

d`i
= − ∂

∂`i

(
∂Π

∂u

)T(∂2Π

∂u2

)−1

(32)

where u = [ux, uy],
∂
∂u =

[
∂
∂ux

, ∂
∂uy

]T
and ∂2

∂u2 = ∂
∂u

∂
∂u

T
. In assuming that the solid is in

a state of static-equilibrium, the computation of the rate of change of the total energy
function

(
−dE

da

∣∣
ˆ̀

)
can be made simpler; this specifically affects to the determination of the

fracture driving force Gs. Continuing from equation (17), the fundamental relationship
between Gsi and the rate of change of Π(u(`), `) in terms of the area `i of a specific
crack tip branch i ∈ Itip, can be revised as follows:

Gsi = −dΠ

d`i

Gsi = −∂Π

∂`i
− du

d`i

∂Π

∂u

Gsi = −∂Π

∂`i
(33)

The result of (33) is that the total derivative that appeared in equation (17) for Gsi

is now reduced to a partial derivative. Accordingly, Gs is determined based solely on
the geometrical variations of the fracture surface Γc(`) and the material domain Ω(`),
as affected by δ`. Combining the principles of maximal dissipation of the fracture path
(26) and minimum potential energy the solid (8) enables the complete description the
evolution of the mechanical system in terms of u and `. This is achieved by minimising
total energy function E(u, `) with respect to u and ` over the course of the evolution of
the total fractured area a ∈ [a0, a∞]. At any time in the fracture evolution process:
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1. the total energy of the solid E(u, `) needs to be minimised with respect to the
displacement field u for static-equilibrium to hold true, and

2. in the state of static-equilibrium, the evolution of the cracked areas ` is such that
the total energy E(u, `) follows the path of steepest descent,

Thus, the evolution of the mechanical system is determined by the time-continuous
minimisation of E(u, `) in terms of the variable pair {u, `}. Based on this formulation,
the fractures and the equilibrium material state can evolve naturally insofar as E(u, `)
can be minimised in terms of {u, `} for the given external load application.

6.2 Energy conservation

The crack growth formulation based on the total energy minimisation considers fixed
boundary conditions at every point in time in the evolution process. At a given instance,
crack growth is favourable provided that the total energy function can decrease or stay
constant. The former condition is not energy conserving because it implies that there is
more energy being liberated than is converted to fracture surface energy. On the contrary,
crack growth that is characterised by a constant total energy function upholds the energy
conservation principle such that the rate of energy liberation exactly matches the rate of
energy dissipation via fracture surface creation. Although energy conservation does not
affect the fracture path per se, in order to respect the energy conservation principle, the
external load is required to adapt appropriately such that the total energy stays constant
during the evolution of the mechanical system. Under these conditions, fracture growth
can be considered as just possible. For simplicity, it will be supposed that the external
load t is obtained by scaling a reference load t0 by a factor λt, i.e. t = λtt0. For a
linear-elastic solid, its potential energy is proportional to the square of the magnitude
of the applied load. The same holds for the crack tip energy release rates. Assuming
Gsi = Gsi(t0), the load-factor λt for a particular crack growth configuration ˆ̀∈ A under
energy conservation conditions is obtained as:

λt =

√
Gci

ˆ̀
i

Gsi
ˆ̀
i

, where i ∈ Itip (34)

7 Competing crack growth

Concerning the problem of multi-crack growth, it is possible that under certain geomet-
rical and loading conditions the maximum dissipation rate Di = Gsi−Gci is attained at
several crack tips Ic

tip ⊆ Itip simultaneously, i.e. Di = Dj ∀i, j ∈ Ic
tip. For this so-called

problem of competing crack growth (CCG), a unique crack growth solution based on the
maximum dissipation rate can not be determined because any admissible combination
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of the critical crack tip extension rates gives an equivalent energy dissipation rate, i.e.
D( ˆ̀) = const. ∀ ˆ̀∈ Ac, where Ac = A(Ic

tip) is the space of admissible crack tip extension
rates regarding the set of critical crack tips Ic

tip ⊆ Itip. For this reason, it is necessary to
consider the rate at which the dissipation rate changes with respect to the growth rates of
the critical crack tips. Say, if ˆ̀= {ˆ̀i}, where i ∈ Ic

tip, is a set of critical crack tip growth
rates, then the rate of change of the energy dissipation is computed as follows:

dD
da

∣∣∣∣
ˆ̀

= −∂
2E(`)

∂`i∂`j
ˆ̀
i
ˆ̀
j (35)

dD
da

∣∣∣∣
ˆ̀

=

(
−∂

2Π(`)

∂`i∂`j
+

dGci

d`j

)
ˆ̀
i
ˆ̀
j (36)

The solution to the CCG problem in terms of the critical crack tip growth rates ˆ̀
c ∈ Ac, is

determined as the one that maximises the rate at which the dissipation rate changes:

ˆ̀
c = arg max

ˆ̀∈Ac

dD
da

∣∣∣∣
ˆ̀

(37)

Before the solution methods to the CCG problem are described, it is useful to address
the concept of fracture stability, which is characterised by the sign of dD

da , as it plays an
important part in the solution approach to be used to solve a CCG problem.

7.1 Stability of cracks

The term dD/da defined in (36) describes the property of stability of a fracture extension.
The concept of fracture growth stability refers two possible fracture growth regimes,
namely: one that is stable and one that is unstable. The terms are respectively used to
describe a decreasing and an increasing (or an otherwise constant) dissipation rate:

stable growth :
dD
da

∣∣∣∣
ˆ̀
< 0 (38)

unstable growth :
dD
da

∣∣∣∣
ˆ̀
≥ 0 (39)

The significance of fracture stability, for a crack tip near the threshold of satisfying the
fracture growth criterion is as follows. If fracture growth is stable (38) then given a
small load increment there exists an equilibrium fracture front position that the crack
tip will advance to and subsequently arrest. Conversely, if fracture growth is unstable
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E(u, ` = const.)

`

u

d2E
d`2

> 0

(a) Stable crack growth: dD
d` < 0

E(u, ` = const.)

`

u

d2E
d`2

< 0

(b) Unstable crack growth: dD
d` > 0

Figure 3: Stable (a) and unstable (b) crack growth regimes showing the corresponding
behaviours of the energy function E(u(`), `). Note that a decreasing total energy function
simply means that there is available energy for crack growth, given the assumed load.

(39), an equilibrium fracture front position does not exist upon the application of a
load increment. Thus, in the unstable case (39), crack growth may persist indefinitely.
Nonetheless, for some tough materials the fracture driving force may well be increasing
with crack length, however, crack growth can still be stable provided the material’s
resistance to crack growth increases at a faster rate than the driving force.

The classification of fracture growth stability can also serve as a means to interpret the
local curvature of the total energy function E(`) = E

(
u(`), `

)
with respect to `. Figure

3 illustrates two different behaviours of E(`) corresponding to a stable and an unstable
evolutions of cracks. However, in order to characterise the shape of E(`) with respect
to all tip perturbations that preserve the current fracture area, the following three cases
can be defined in reference to the stability property of the fracture front :

unstable fracture front :
∂2E
∂`i∂`j

δ`iδ`j≤ 0, ∀δ` ∈ Rn s.t.
∑n

i=1δ`i = 0 (40)

stable fracture front :
∂2E
∂`i∂`j

δ`iδ`j> 0, ∀δ` ∈ Rn s.t.
∑n

i=1δ`i = 0 (41)

partially stable front :
∂2E
∂`i∂`j

δ`iδ`j≥ 0, ∃δ` ∈ Rn s.t.
∑n

i=1δ`i = 0 (42)

Thus, a stable fracture front corresponds to a convex E(`), an unstable front is associated
with a concave E(`), whereas a partially stable front results when E(`) is a generalised
saddle function. As indicated in (40)-(42), the fractured area is supposed to stay constant
with respect to any fracture front perturbation δ`, i.e.

∑
δ` = 0. As such, the admissible

crack tip perturbations include both positive and negative variations in the crack branch
areas such that upon summing them all, the net change in fractured area is zero.
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The behaviour of E(`) is important to the solution approach to be used to solve the CCG
problem. Because a unique solution to the crack tip growth rates is not possible based
on the maximum dissipation rate alone, it becomes necessary to consider the rate at
which the dissipation rate changes. This leads to a constrained quadratic optimisation
problem for which a closed-form analytical solution is generally difficult. An efficient
numerical technique will typically exploit the properties of the curvature of E(`), i.e.
the stability property of the critical part of the fracture front (40)-(42). The following
section describes three viable strategies for solving the CCG problem.

7.2 Crack growth solution

The solution to the competing crack growth (CCG) problem are the crack tip extension
rates ˆ̀∈ Ac that maximise the rate at which the dissipation rate changes (37). From a
mathematical viewpoint, the CCG problem can be considered as a constrained quadratic
optimisation problem since the crack tip extension rates appear in a quadratic form in the
expression of dD

da in equation (36), and the constraints on the solution arise from having
to consider the admissible space of the critical crack tip extension rates Ac. Specifically,
the constraints are as follows: (1) the crack tip growth rates must add-up to one (i.e.∑

i∈Ictip
ˆ̀
i = 1), and (2) the growth rates must be non-negative (i.e. ˆ̀

i ≥ 0 ∀i ∈ Ic
tip).

Thus, the CCG problem can be stated as follows:

objective : max Ψ(v) =
1

2
Hsijvivj

subject to : C(v) ≡ viei − 1 = 0,

vi ≥ 0 ∀i ∈ Ic
tip

(43)

In (43), the objective function to be maximised is Ψ(v). The constraint of a unit
fracture growth rate that any valid solution v needs to satisfy is enforced via the equality
constraint equation C(v) = 0. In addition, the constraint of a non-negative fracture
growth rate is imposed via the inequality constraint vi ≥ 0, where i ∈ Ic

tip. The factor
”1/2” is introduced purely for the sake of convenience. Finally, the constant terms Hsij ,
where i, j ∈ Ic

tip, correspond to the negative elements of the Hessian matrix of E(`) that
is evaluated for a particular fracture front configuration:

Hsij = −∂
2E(`)

∂`i∂`j
(44)

Hsij = −∂
2Π(`)

∂`i∂`j
+
∂Gci

∂`j
(45)

Since the analytical solution to the CCG problem (43) is generally difficult, a numerical
approach will need to be applied instead. In order to solve the CCG problem efficiently,
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a numerical scheme will have to be based around the particular shape (or curvature)
of Ψ(v) within the confines of the feasible solution space, as defined by the constraint
conditions in (43). Within this solution space, Ψ(v) can be downward-convex (concave),
upward-convex (convex) or a generalised saddle function. These three behaviours of Ψ(v)
can be categorised as stable (41), unstable (40), and partially (un)stable (42) fracture
front configurations respectively. In the vicinity of a feasible solution v the curvature of
Ψ(v) can be examined by assessing its second variation subject to C(v) = 0:

δ2Ψ = Hsijδviδvj ∀δv : δvi∇Ci = 0, (46)

where the gradient of C(v) is a vector of ones. In (46), the equality-constraint reduces
the available space of the variation δv by requiring that δv be orthogonal to the gradient
of C(v), i.e. δvi∇Ci = 0. Therefore, the type of curvature that Ψ(v) can exhibit along
any feasible perturbation δv is determined by the definitiveness of the second order term
δ2Ψ(V∗) = HsijV

∗
i V
∗
j for all real-valued vectors V∗ that satisfy V ∗i ∇Ci = 0. To this end,

V∗ can be constructed from any same-dimension real-valued vector V by subtracting
from V its projection in the direction of ∇C. In other words, V∗ can be given as:

V∗ =

(
I− ∇C∇C

T

∇CT∇C

)
V (47)

The definitiveness of δ2Ψ(V∗) = HsijV
∗
i V
∗
j , where V∗ is constrained, can be effectively

described in terms of that of δ2Ψ∗(V) = H∗s ijViVj , where V is unconstrained and where
the matrix H∗s is the projection of Hs on the feasible solution plane; i.e., H∗s is:

H∗s =

(
I− ∇C∇C

T

∇CT∇C

)T

Hs

(
I− ∇C∇C

T

∇CT∇C

)
(48)

It is remarked that the resulting symmetric matrix H∗s is semidefinite because at least
one eigenvalue is zero, e.g. ∇CiHs

∗
ij∇Cj = 0. Nonetheless, the signs of the remaining

eigenvalues of H∗s can be used to characterise the relevant behaviour of Ψ(v) within the
feasible solution space. Therefore, Ψ(v) is convex with respect to v, subject to C(v) = 0,
if H∗s is positive semidefinite (i.e. all the remaining eigenvalues of H∗s are positive); Ψ(v)
is concave if H∗s is negative semidefinite (i.e. the eigenvalues are negative); Ψ(v) is a
saddle function if H∗s is indefinite (i.e. the eigenvalues are of mixed signs).

The stability property of the fracture front can be characterised using H∗s in the same
way. Thus, the fracture front is stable if H∗s is negative semidefinite; the fracture front is
unstable if H∗s is positive semidefinite; the fracture front is partially (un)stable if H∗s is
indefinite. Figure 4 illustrates the usefulness of H∗s in describing the relevant behaviour
of Ψ(v) for a few different instances involving a pair of competing crack tips.

19



0
0.5

1

00.51
−1

0

1

2

 

v1v2

 

Ψ
(v

)

Ψ(v), s.t.
∑

v = 1

(a) Hs - indefinite;
H∗s - negative semidefinite

0
0.5

1

00.51
0

2

4

 

v1v2

 
Ψ
(v

)

Ψ(v), s.t.
∑

v = 1

(b) Hs - positive definite;
H∗s - negative semidefinite

0
0.5

1
0 0.5 1

−1

0

1

 

v1v2

 

Ψ
(v

)

Ψ(v), s.t.
∑

v = 1

(c) Hs - indefinite;
H∗s - positive semidefinite

Figure 4: Three instances of a pair of competing cracks, each showing a different shape
of the objective function Ψ(v) with its behaviour highlighted within the feasible solution
space. The surface of Ψ(v) is governed by Hs, whereas its behaviour within the feasible
solution space is governed by H∗s .
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The following subsections delineate numerical solution methods for solving the competing
crack growth problem (43) for arbitrary numbers of competing crack tips. The numerical
solution methods are tailored to the stability property of the critical part of the fracture
front (i.e. considering the critical crack tips). The solution methods are provided for the
cases of: stable (41), unstable (40), and partially (un)stable (42) fracture fronts.

7.2.1 Fracture front is unstable

The simplest case arises when the critical fracture front is unstable (40). In this case, H∗s
is positive semidefinite by reason that it has no negative eigenvalues. The solution v that
maximises Ψ(v) can be determined by inspection of Hs alone; specifically, the solution
is vi = 1 where i ∈ Ic

tip is the tip that corresponds to the largest element on the diagonal
of Hs. The particular case of competing crack growth is illustrated by Figure 4c.

Thus, under the conditions of an unstable fracture front configuration, only a single crack
tip can advance since only then the growth maximises the objective function Ψ(v). This
has an important implication concerning symmetric problems where there are at least
a few critical crack tips; specifically, it reveals that the symmetric fracture advance is
unstable since an asymmetric solution (i.e. growth at one crack tip) is energetically
favoured better over a symmetric solution. Case in point is the 2D problem of centre
crack in a rectangular plate subjected to a vertical tensile load. For this problem,
Hs11 > Hs12 and, by symmetry, Hs11 = Hs22 and Hs12 = Hs21. The particular case
is shown in Figure 4c. Firstly, by assuming a symmetric solution, i.e. v1 = v2 = 1

2 ,
the objective function acquires the value Ψsym = 1

8(Hs11 +Hs22 + 2Hs12). On the other
hand, by assuming an asymmetric solution, i.e. growth of one crack tip, gives Ψasym =
1
2Hs11 = 1

2Hs22. The difference in Ψ is Ψasym−Ψsym ≡ 1
4(Hs11−Hs12) > 0. This indicates

that the 2D problem favours an asymmetric solution, i.e. growth of one crack tip, rather
than the symmetric solution, i.e. simultaneous growth of both crack tips.

7.2.2 Fracture front is stable

When the fracture front is stable (41), the matrix H∗s is negative semidefinite, i.e. H∗s
has no positive eigenvalues. As a result, the function Ψ(v) is concave (convex-down)
within the feasible solution space. To find v that maximise Ψ(v) (or that causes Ψ(v)
to decrease least) requires to solve the constrained quadratic optimisation problem (43).
Since a closed-form solution is difficult by virtue of the imposed inequality constraints,
a more practical approach is to apply an iterative solution scheme. One such technique
that is well suited for handling inequality constrains is the active-set method for convex
quadratic programming problems [80]. The method consists of first making a feasible
guess for the initial solution (such that it satisfies all constraint conditions), then seeking
to improve it in a series of equality-constrained optimizations. In more detail, the algo-
rithm at iteration step k projects the current solution vk for a set of active critical crack
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tips Ic,k
tip ⊆ Ic

tip along a feasible direction dk that maximises the objective function, sub-

ject to the equality constraints. The extent to which the solution is advanced along dk

is determined by a weight factor wk such the objective function Ψk+1 = Ψ(vk +wkdk) is
either maximised locally (i.e. reaches an extremum) or it is maximised up to a point the
solution hits any of the inequality constrains. When it is the latter case, the subsequent
iteration k + 1 treats the about-to-fail inequality constraint as an equality constraint.
This effectively leads to consider a reduced set of critical crack tips Ic,k+1

tip = Ic,k
tip \i.

Since the inequality constraints act only as bounds that limit the advance of solution vk

to maximise Ψk+1, the optimal advance direction dk = vk+1 − vk can be determined by
using the method of Lagrangian multipliers because the problem at hand is effectively
an equality-constrained optimisation. The Lagrangian at iteration time k reads:

L(vk+1, λk+1) =
1

2
Hsij v

k+1
i vk+1

j + λk+1(eiv
k+1
i − 1), for i, j ∈ Ic,k

tip (49)

The solution to {vk+1, λk+1} corresponds to the stationary point of the Lagrangian.
Taking the variation of L(vk+1, λk+1) with respect to each variable in turn yields:

Hsijv
k+1
j + eiλ

k+1 = 0 (50)

eiv
k+1
i − 1 = 0 (51)

Solving (50) and (51) gives the solution to the idealised rate of fracture advance, vk+1.
The solution vk+1 is termed idealised because the requirement for a strictly non-negative
solution is unenforced. Nonetheless, the solution advance direction dk = vk+1 − vk at
iteration step k can be used. In this case, dk take the following form:

dki =
Hs
−1

ij ej

Hs
−1

ij ei ej
− vki for i ∈ Ic,k

tip (52)

The amount that the solution vk can advanced along the direction dk is determined by
the weight-factor wk ∈ [0, 1] such that an improved solution is vk+1 = vk + wkdk. The
weight factor wk is computed based on the distance from the current solution vk to the
most imminent boundary of any inequality constraint such that vk+1

i ≥ 0 ∀i ∈ Ic,k
tip . This

leads to the following expression for the maximum (positive) value of the weight:

wk = min

(
vki
−dki

, 1

)
where i ∈ Ic,k

tip (53)

A pseudo-code of the algorithm for solving the competing crack growth problem (43) for
the specific case of a stable fracture front is provided in Appendix B.
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7.2.3 Fracture front is partially stable

For the general case of a partially stable fracture front (42), the matrix H∗s is indefinite,
i.e. H∗s has eigenvalues of mixed signs. As a result, the function Ψ(v) behaves as a
generalised saddle function within the feasible solution space. This, in turn, prevents the
two previously delineated techniques from being used effectively since they are limited to
convex problems only. The non-convexity of Ψ(v) gives rise to a solution space that can
contain many extrema, among which it can prove difficult to determine the solution that
globally maximises Ψ(v). For this reason it may be necessary to examine all stationary
solutions as well as the solutions that lie on the vertices of the feasible domain. In
order to solve the CCG problem (43) for this case, we adopt a gradient-descent solution
method. Specifically, the solution advance direction is determined as the projection of
the gradient of Ψ(v) on the plane that is orthogonal to ∇C. The solution vk at iteration
step k is advanced following the active-set framework, as described previously; however,
any chance of downward convexity of Ψ along a particular solution advance directions
is exploited. In this formulation, the solution advance vector dk is obtained as:

dki =

(
δij −

∇Ci∇Cj
∇Cq∇Cq

)
∇Ψk

j where i, j, q ∈ Ic,k
tip (54)

where the gradient of the objective function is ∇Ψk
i = Hsij v

k
j . Since the gradient of the

equality constraint is a vector of ones, i.e. ∇C = 1, equation (54) simplifies to:

dki = ∇Ψk
i −mean(∇Ψk) (55)

The solution is projected along dk using the weight factor wk ≥ 0 to the extent that no
inequality constraint is violated, i.e. vk+1

i = vki + wkdki ≥ 0 for i ∈ Ic,k
tip . Thus, wk is

similar to that in (53), though the upper-limit can be omitted so long as Ψ(vk+wkdk) is
upward-convex with respect to wk, i.e. Hsijd

k
i d
k
j > 0. The expression for wk reads:

wk = min

(
vki
−dki

)
where i ∈ Ic,k

tip (56)

In case Ψ(vk + wkdk) is downward-convex with respect to wk, i.e. Hsijd
k
i d
k
j < 0, an

optimum weight factor wk can be determined via a line-search technique. The locally
optimal value of the weight factor wk is obtained by solving for the stationarity value of
Ψ(vk+wkdk) with respect to wk while minding the inequality constrains via (56):

23



wk = −
Hsijd

k
i v
k
j

Hsijd
k
i d
k
j

provided Hsijd
k
i d
k
j < 0 and (57)

subject to wk < min

(
vki
−dki

)
where i, j ∈ Ic,k

tip

Note that the converged solution vn (when n → ∞) can depend on the initial (trial)
solution v0. For this reason, it is generally required to assess different starting points, e.g.
the vertices of the feasible solution space, in order to find the globally optimal solution.
A pseudo-code of the algorithm for solving the competing crack growth problem (43) for
the general case of a partially (un)stable fracture front is provided in Appendix C.

7.3 Comparison to previous work

Below is a diagrammatic summary of the proposed solution strategies for resolving com-
peting crack growth based on the stability of the fracture front configuration (30).

Solution strategies based
on fracture front stability

Fracture front:
unstable (40)

Fracture front:
stable (41)

Fracture front:
partially stable (42)

Hs
∗ is positive definite:

eigenvalues are positive

Solution method:
arg max(diag(Hs))

(Section 7.2.1)

Hs
∗ is negative definite:

eigenvalues are negative

Solution method:
single trial, convex-based
(Section 7.2.2 (or 7.2.3))

Hs
∗ is in-definite:

mixed sign eigenvalues

Solution method:
multi-trial, gradient-based

(Section 7.2.3)

Figure 5: Choice of solution strategy to the problem of competing crack growth based
on the stability of the competing crack tip configuration.

Reference [17] that dealt with multi-crack growth within the LEFM framework also con-
sidered the problem of competing crack growth. At the instance of crack tip competition
(e.g. when the equivalent stress intensity factors at several crack tips approach critical
values) a stability analysis [17] is performed to determine the active competing crack
tips that should be extended. This involves evaluating all possible sub-determinants of
the matrix of the rates of the energy release rates (36) and growing the subset of the
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competing crack tips that corresponds to the maximum sub-determinant. When the
maximum sub-determinant is positive, the tip configuration is said to be unstable and
the active crack tips are obtained directly. If the maximum sub-determinant is negative,
the tip configuration is said to be stable; in this case, the solution is one that dissipates
the least energy. In either case, each active crack tip is extended by a constant increment
in the direction given by the maximum hoop stress criterion [23].

Our approach is different in that we seek the crack tip extension configuration that
dissipates the most energy per unit fracture area increase (regardless of the type of
stability of the competing crack tips); therefore, the maximum sub-determinant [17] and
our total energy minimisation approach will generally yield differ solutions. To show this,
several fabricated example cases of stable, unstable and partially stable competing crack
tip configurations are analysed in Appendix A. Our approach is also different from [17]
in that we determine the crack tip extension directions based on the maximum energy
dissipation principle, which stems directly from Griffith’s law (22), instead of using the
rather heuristic maximum hoop stress criterion, which is the case in [17].

The following section provides the detailed derivation of the crack growth direction
criterion that is consistent with the maximum energy dissipation principle.

8 Direction of crack growth

In a 2D framework, the incipient growth direction of any crack tip i ∈ Itip can be
specified in terms of the crack tip growth angle θi or in terms of the crack tip kink angle
∆θi. If δ` ∈ Rn>0 consists of n small crack tip extensions, i.e. δ`i → 0+ ∀i ∈ Itip, then
minimising the total energy E(δ`,∆θ) with respect to ∆θ is equivalent to finding ∆θ
that maximises the incipient energy dissipation rate D(`,∆θ) ≡ Di(`,∆θi)ˆ̀

i. In order
for D(`,∆θ) to be maximum, the individual crack tip energy dissipation rates Di(`,∆θi)
must be maximum, regardless of the relative crack tip growth rates (ˆ̀

i = d`i/da). Thus,
each crack tip i ∈ Itip has a preferred growth direction that locally maximisesDi(θi). The
optimality condition for θi, in the sense of a maximum Di(θi), can be written as:

dDi
dθi

= 0, assuming
d2Di
d2θi

< 0 (58)

Alternatively, (58) can be expressed as a stationary total energy E
(
∆`i, θi

)
with respect

to the sweeping crack tip extension ∆`i > 0 through the angle θi in the limit the extension
tends to zero, i.e. ∆`i → 0+. The alternative form is obtained from (58) by integrating
Di = −dE/d`i with respect to `i over the infinitesimal crack tip extension ∆`i:

lim
∆`i→0+

(
− dE

dθi

∣∣∣∣
∆`i

)
= 0, assuming lim

∆`i→0+

(
−d2E

dθ2
i

∣∣∣∣
∆`i

)
< 0 (59)
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For the purposes of notational convenience, Dθi is introduced to represent the average
rotational dissipation of the fracture extension ∆`i with respect to its angle θi:

Dθi = − dE
dθi

∣∣∣∣
∆`i

(60)

The rotational dissipation term Dθi describes how the total energy E of the mechanical
system changes with respect to the rotation of the crack tip extension ∆`i in terms of
its angle θi. Substituting (60) in (59) gives the criterion for the incipient crack growth
angle θi in terms of the fracture state of zero rotational dissipation:

lim
∆`i→0+

Dθi = 0, subject to lim
∆`i→0+

(
dDθi
dθi

)
< 0, (61)

Provided the crack tip increments are sufficiently small, their mutual interactions become
negligible; hence, the optimality of θi via the conditionDθi = 0 is asserted by determining
that dDθi/dθi < 0 is satisfied ∀i ∈ Itip. The main advantage of (61) to determining the
crack tip extension directions over the maximum dissipation principle (58) is that the
former is readily extendable to finite crack increments, i.e. a discrete framework.

9 Conclusions

The first part of our three-part paper has focused on the theory of crack evolution
under quasi-static conditions in an isotropic linear-elastic solid based on the principle
of minimum total energy (30), which stems directly from the Griffith’s law of crack
growth (22). The benefit of the minimum energy approach is that the time-continuous
minimisation of the energy functional naturally leads to the evolution of the displacement
field satisfying static equilibrium and to the evolution of the fracture surfaces satisfying
energy conservation and Griffith’s law. Although the energy minimal solution is more
difficult to determine at the instance of competing crack growth, three solution strategies
were proposed according to the type of stability of the crack tip configuration at hand.
Subsequently, the crack growth direction law based on the minimum energy principle (59)
was formulated as the criterion of vanishing rotational dissipation rates (61) of the crack
tip extensions. The particular advantage of the formulation (61) is that it can be easily
applied within a discrete framework involving finite-length crack tip increments.

Our solution approach is different from that in reference [17] in two major ways. Firstly,
we have shown by giving concrete examples that the maximum sub-determinant method
used in [17] is generally not equivalent to the minimum energy solution. Secondly, in
reference [17], the crack growth directions are determined using the maximum stress
criterion, which is not consistent with Griffith’s law under mixed-mode loading.
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Part-I of our three-part paper has mainly served as a stepping stone for applying the
energy minimisation techniques within a discrete context using a discretisation of choice
(e.g. the extended finite element method). Our approach to determining which cracks
grow, in what directions and when just by minimising the total energy functional is
attractive as it is not necessary to rely on the precise crack tip field characterisation (e.g.
compute SIFs) nor resort to heuristic criteria (e.g. the maximum hoop-stress or other
criteria that are based on SIFs) as our approach is consistent with Griffith’s law. For
this reason, the minimum energy approach is generally applicable to problems involving
spatially varying material toughness and for non-remote loading conditions (e.g. body
loads, residual strains/stresses, crack surface tractions) where the application of other
classic criteria are not so easy to justify. Our following paper, Part-II, deals with the
discrete framework and applies the fracture governing principles within XFEM.

10 Supplementary material

The open-source code XFEM Fracture2D and supporting material can be found here:

� XFEM Fracture2D: https://figshare.com/s/0b4394e8fab7191d2692

� competing cracks: https://figshare.com/s/4a7dd5fb0a8634c9fae4

� demo screenshots: https://figshare.com/s/6397737c78beb59f3b58

� demo movies: https://figshare.com/s/73d7b50a7729070c2173
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A Comparison of competing crack growth solutions:
maximum sub-determinant vs. maximum dissipation

We show that the maximum subdeterminant and the maximum energy dissipation cri-
teria are generally not equivalent in cases of more than two competing crack tips. This
is done with the help of a few fabricated case studies; specifically, we consider the pos-
sible scenarios of competing crack growth: (1) unstable, (2) stable, and (3) partially
stable crack tip configurations. For each scenario we illustrate a possible case where the
solutions by the two criteria are different. The solutions are compared in terms of the
average energy dissipation rate:

Ḡs = −δΠ
δa

= Gs0 +
1

2
Hsij

δ`i
δa

δ`j
δa
δa, (62)

where Gs0 is the value of energy release rate at each of the competing crack tips prior
to crack growth, Hsij ≡ ∂Gsi/∂`j are the rates of the energy release rates, and δa is a
small increase in the fracture area.

A.1 Unstable competing crack growth

Consider the following example case of an unstable crack tip configuration (i.e. the
matrix of the rates of the energy release rates is positive definite):

Hsij ≡ ∂Gi/∂`j =

1 1 1
1 2 1
1 1 3

 (63)

The maximum sub-determinant of the matrix Hs is 5. The solution directly corre-
sponds to the growth of the 2nd and 3rd crack tips since the sub-determinant is positive.
According to [17], the two crack tips advance at the same rate δ`/δa = [0, 0.5, 0.5].
On the other hand, the maximum dissipation solution is δ`/δa = [0, 0, 1]. The solu-
tions correspond to these energy dissipation rates: Ḡsmaxsubdet = Gs0 + 0.8750 δa and
Ḡsmaxdissip = Gs0 + 1.5 δa respectively. Thus, the maximum sub-determinant solution
gives a lower rate of energy dissipation for a given external load application for an
arbitrarily small δa. Consequently, the maximum sub-determinant solution is less ener-
getically favourable from the point of view of Griffith’s crack growth criterion.

A.2 Stable competing crack growth

Consider a case where the crack tip configuration is stable (i.e. the matrix of the rates
of the energy release rates is negative definite):
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Hs = −

1 1 1
1 2 1
1 1 3

 (64)

The maximum sub-determinate of the matrix Hs is 5 (same as in the previous case).
According to [17] the active crack tips are given directly and the crack tip advance
solution is δ`/δa = [0, 0.5, 0.5]. On the other hand, the maximum dissipation solution is
δ`/δa = [1, 0, 0]. These solutions correspond to energy dissipation rates of Ḡsmaxsubdet =
Gs0 − 0.8750 δa and Ḡsmaxdissip = Gs0 − 0.5 δa respectively. Thus, the maximum sub-
determinant solution is again sub-optimal from the viewpoint of Griffith.

A.3 Partially stable competing crack growth

Finally, consider a case where the crack tip configuration is only partially stable (i.e. the
matrix of the rates of the energy release rates is indefinite):

Hs =

−1 1 1
1 2 1
1 1 −1

 (65)

The maximum sub-determinant of Hs is 4. Since the sub-determinant is positive, the
solution is given directly as δ`/δa = [1/3, 1/3, 1/3]. The maximum dissipation solution
is δ`/δa = [0, 1, 0]. These solutions correspond to mean energy dissipation rates of
Ḡsmaxsubdet = Gs0+1/3 δa and Ḡsmaxsubdet = Gs0+1 δa respectively. Thus, the maximum
sub-determinant solution is energetically sub-optimal.
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B Competing crack growth solution algorithm
for a strictly stable fracture front

Algorithm 1 Compute a = arg maxv∈A
(

1
2v

THsv
)
,

subject to the constraints: ‖a‖1 − 1 = 0 and ai ≥ 0, and

where H∗s =
(
I − eTe

e eT

)
Hs

(
I − eTe

e eT

)
is negative semidefinite.

Require:
∑
ai = 1 and ai ≥ 0 for i ∈ Icrit {feasible initial guess}

n← |Icrit| {get size of set of critical crack tips}
d← zeros(n, 1) {initialize fracture advance direction}
e← ones(n, 1) {gradient of the equality-constraint equation}
p← true(n, 1) {logical form of the working set}
while 1 do
a0 ← a {store current solution as reference}
while 1 do

d[p]← Hs[p,p]−1e[p]
e[p]THs[p,p]−1e[p]

− a[p] {trial advance satisfying
∑n

i=1 d[i] = 0}
q ← and(d < 0, a < tol) {get infeasible points}
if any(q = true) then
d[q]← 0 {discard all infeasible points}
p[q]← 0 {update working set}

else
break {working set is feasible}

end if
end while

q ← and(d < 0, a > 0) {get imminent constraints}

w ← min
({

a[q]
−d[q] , 1

})
{projection weight factor}

a← a+ wd {update previous solution}
if or(1− w < tol, ‖a− a0‖ < tol) then

break {solution converged}
end if

end while
return a
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C Competing crack growth solution algorithm
for a partially (un)stable fracture front

Algorithm 2 Compute a = arg maxv∈A
(

1
2v

THsv
)
,

subject to the constraints: ‖a‖1 − 1 = 0 and ai ≥ 0, and

where H∗s =
(
I − eTe

e eT

)
Hs

(
I − eTe

e eT

)
is positive semidefinite.

Require:
∑
ai = 1 and ai ≥ 0 for i ∈ Icrit {feasible initial guess}

n← |Icrit| {get size of set of critical crack tips}
e← ones(n, 1) {gradient of the equality-constraint}
aall ← zeros(n, n) {for storing all converged solutions}
Ψall ← zeros(n, 1) {for storing objective function values}
for i = 1 to n do
a← zeros(n, 1)
a[i]← 1 {trial}
while 1 do
a0 ← a {store current solution as reference}
g ← Hsa {gradient of the objective function}
d← zeros(n, 1) {initialize fracture advance vector}
p← true(n, 1) {logical form of the working set}
while 1 do

d[p]← g[p]−mean(g[p]) {steepest gradient advance satisfying
∑n

i=1 d[i] = 0}
q ← and(d < 0, a < tol) {get infeasible points}
if any(q = true) then
d[q]← 0 {discard all infeasible points}
p[q]← 0 {update working set}

else
break {working set is feasible}

end if
end while

q ← and(d < 0, a > 0) {get imminent constraints}

w ← min
({

a[q]
−d[q]

})
{projection weight factor}

if dTHsd < 0 then

{objective function is concave along d as projected from a}
w ← min

(
w, d

THsa
dTHsd

)
{use the optimum weight factor if possible}

end if

a← a+ wd {update previous solution}
if ‖a− a0‖ < tol then

break {solution converged}
end if

end while
aall[:, i]← a
Ψall[i]← 1

2a
THsa

end for
imax ← find(Ψ = max(Ψall))
return a← aall[:, imax]
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