Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Search-driven String Constraint Solving for Vulnerability Detection
THOME, Julian; SHAR, Lwin Khin; BIANCULLI, Domenico et al.
2017In Proceedings of the 39th International Conference on Software Engineering (ICSE 2017)
Peer reviewed
 

Documents


Texte intégral
icse2017.pdf
Postprint Auteur (230.88 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
vulnerability detection; string constraint solving; search-based software engineering
Résumé :
[en] Constraint solving is an essential technique for detecting vulnerabilities in programs, since it can reason about input sanitization and validation operations performed on user inputs. However, real-world programs typically contain complex string operations that challenge vulnerability detection. State-of-the-art string constraint solvers support only a limited set of string operations and fail when they encounter an unsupported one; this leads to limited effectiveness in finding vulnerabilities. In this paper we propose a search-driven constraint solving technique that complements the support for complex string operations provided by any existing string constraint solver. Our technique uses a hybrid constraint solving procedure based on the Ant Colony Optimization meta-heuristic. The idea is to execute it as a fallback mechanism, only when a solver encounters a constraint containing an operation that it does not support. We have implemented the proposed search-driven constraint solving technique in the ACO-Solver tool, which we have evaluated in the context of injection and XSS vulnerability detection for Java Web applications. We have assessed the benefits and costs of combining the proposed technique with two state-of-the-art constraint solvers (Z3-str2 and CVC4). The experimental results, based on a benchmark with 104 constraints derived from nine realistic Web applications, show that our approach, when combined in a state-of-the-art solver, significantly improves the number of detected vulnerabilities (from 4.7% to 71.9% for Z3-str2, from 85.9% to 100.0% for CVC4), and solves several cases on which the solver fails when used stand-alone (46 more solved cases for Z3-str2, and 11 more for CVC4), while still keeping the execution time affordable in practice.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
THOME, Julian ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SHAR, Lwin Khin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BIANCULLI, Domenico  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Search-driven String Constraint Solving for Vulnerability Detection
Date de publication/diffusion :
mai 2017
Nom de la manifestation :
39th International Conference on Software Engineering (ICSE 2017)
Lieu de la manifestation :
Buenos Aires, Argentine
Date de la manifestation :
May 20-28, 2017
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 39th International Conference on Software Engineering (ICSE 2017)
Maison d'édition :
ACM
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR9132112 - A Scalable And Accurate Hybrid Vulnerability Analysis Framework, 2014 (01/09/2014-14/04/2018) - Julian Thomé
Intitulé du projet de recherche :
R-STR-5011-00 > GR V&V > 01/01/2012 - 19/01/2048 > BRIAND Lionel
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 13 décembre 2016

Statistiques


Nombre de vues
849 (dont 81 Unilu)
Nombre de téléchargements
1087 (dont 54 Unilu)

citations Scopus®
 
36
citations Scopus®
sans auto-citations
32
citations OpenAlex
 
39

Bibliographie


Publications similaires



Contacter ORBilu