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Julian Thomé, Lwin Khin Shar, Domenico Bianculli, Lionel Briand
SnT Centre - University of Luxembourg

Email:julian.thome@uni.lu, lwinkhin.shar@uni.lu, domenico.bianculli@uni.lu, lionel.briand@uni.lu

Abstract—Constraint solving is an essential technique for
detecting vulnerabilities in programs, since it can reason about
input sanitization and validation operations performed on user
inputs. However, real-world programs typically contain complex
string operations that challenge vulnerability detection. State-of-
the-art string constraint solvers support only a limited set of
string operations and fail when they encounter an unsupported
one; this leads to limited effectiveness in finding vulnerabilities.

In this paper we propose a search-driven constraint solving
technique that complements the support for complex string
operations provided by any existing string constraint solver. Our
technique uses a hybrid constraint solving procedure based on the
Ant Colony Optimization meta-heuristic. The idea is to execute
it as a fallback mechanism, only when a solver encounters a
constraint containing an operation that it does not support.

We have implemented the proposed search-driven constraint
solving technique in the ACO-Solver tool, which we have evaluated
in the context of injection and XSS vulnerability detection
for Java Web applications. We have assessed the benefits and
costs of combining the proposed technique with two state-of-
the-art constraint solvers (Z3-str2 and CVC4). The experimental
results, based on a benchmark with 104 constraints derived from
nine realistic Web applications, show that our approach, when
combined in a state-of-the-art solver, significantly improves the
number of detected vulnerabilities (from 4.7% to 71.9% for Z3-
str2, from 85.9% to 100.0% for CVC4), and solves several cases
on which the solver fails when used stand-alone (46 more solved
cases for Z3-str2, and 11 more for CVC4), while still keeping the
execution time affordable in practice.

Keywords-vulnerability detection, string constraint solving,
search-based software engineering

I. INTRODUCTION

Malicious users can attack Web applications by providing in
input properly-crafted strings that can exploit vulnerabilities in
source code; a successful attack may lead to leaking sensitive
user data or to a denial of service. According to the Open
Web Application Security Project (OWASP [1]), two of the
most critical types of vulnerability are injection (ranked #1)
and XSS-cross-site scripting (ranked #3) vulnerabilities. Both
types of vulnerability are caused by the improper use of user
input strings in security-sensitive program statements: often
these strings are not property validated or sanitized.

State-of-the-art approaches [2]–[5] for identifying these
types of vulnerability are based on symbolic execution and
constraint solving. Roughly speaking, these approaches consist
of solving the constraints corresponding to the attack con-
dition, obtained by conjoining the path conditions generated
by the symbolic execution with attack specifications provided

by security experts. If the solver yields SAT, showing the
satisfiability of the attack condition, it means that the attack
is feasible and that the analyzed path is vulnerable to the
attack. The main strength of this approach is that vulnerability
detection yields a limited number of false positives, since the
concrete inputs determined with constraint solving prove the
existence of vulnerabilities.

However, the effectiveness and precision of these ap-
proaches are challenged by the degree of support for (complex)
string operations provided by the constraint solver itself.
State-of-the-art solvers such as Kaluza [3], Stranger [6],
CVC4 [7], S3 [8], and Z3-str2 [9] support only a lim-
ited number of strings operations, such as concatenation,
assignment, and equality; more complex operations like string
replacement or standard sanitization functions are not sup-
ported or only partially-supported. Existing solvers could
be extended to provide native support for complex string
operations, but the task is non-trivial and not scalable to the
size of a complete string function library of a modern pro-
gramming language, or of sanitization libraries like OWASP
ESAPI [10] and Apache Commons Lang [11]; for example, the
classes String, StringBuffer, StringBuilder from
the Java Standard Library, and the classes StringUtils,
StringEscapeUtils from the Apache Commons Lang
library contain a total of 370 methods.

Alternatively, complex string operations could be trans-
formed into a set of equivalent constraints with only operations
natively-supported by the solver; however, such a solution
would increase the complexity of the generated constraints,
potentially leading to scalability issues [4]. In practice, existing
solvers fail (i.e., they crash or return an error) when they
encounter an unsupported operation; in the context of vulnera-
bility detection, this behavior could yield false negatives (i.e.,
it misses some vulnerabilities) when the attack conditions are
actually feasible.

In the context of vulnerability detection, the goal of this
paper is to address the challenge of supporting complex
operations in string constraint solvers by proposing a search-
driven constraint solving technique that complements them.
We intentionally target a solution that does not rely on any
assumption regarding the selected constraint solver and that
can therefore be widely used in the future.

The idea is to solve the constraints (in an attack condition)
through a two-stage process. In the first stage we take any
constraint solver and use it to solve the constraints that contain



only operations supported by the solver itself. The remaining
unsolved constraints, which contain operations not supported
by the solver, are handled in the second stage, by means of a
hybrid constraint solving procedure.

We treat the solver in the first stage as a black-box, and only
assume that it terminates its execution either by failing (when
it encounters a constraint containing an operation that it does
not support) or by returning an answer (which can be either
UNSAT or SAT and a solution). The hybrid solving procedure
in the second stage is executed only when the solver in the first
stage fails. In the second stage we solve the constraints con-
taining unsupported operations by means of a hybrid search-
driven procedure that leverages the Ant Colony Optimization
meta-heuristic [12]. This procedure searches for a solution
that satisfies the constraints involving unsupported operations;
the search is driven by different fitness functions, depending
on the type of the constraints. We call this procedure hybrid
because we reduce its search space before running the search
itself, to make the latter scalable. We perform the search space
reduction by restricting the domains of the string variables
involved in the constraints to solve. To do so, in our current
strategy and given the state of the art, we rely on an automata-
based string constraint solver (Sushi [4]).

We have implemented the proposed search-driven constraint
solving technique in a tool called ACO-Solver [13]. We have
evaluated the proposed technique in the context of injection
and XSS vulnerability detection for Java Web applications.
More specifically, we have assessed the benefits and costs
of combining the proposed technique with two state-of-the-
art string constraint solvers (Z3-str2 and CVC4), on a bench-
mark with 104 constraints derived from nine realistic Web
applications. The experimental results show that the proposed
approach, when combined with a state-of-the-art solver, sig-
nificantly improves the number of detected vulnerabilities
(from 4.7% to 71.9% for Z3-str2, from 85.9% to 100.0%
for CVC4), and solves several cases on which the solver fails
when used stand-alone (46 more solved cases for Z3-str2, and
11 more for CVC4); both benefits can be obtained while still
keeping the execution time reasonable, in the order of minutes.
Furthermore, we have also assessed the role played by the
automata-based solver in the search space reduction step that
precedes the meta-heuristic search: the results confirm that it
contributes to increasing the number of solved cases.

The overall results confirm that our search-driven approach
for string constraint solving, when combined with existing
solvers, adds significant benefits in terms of cases that are
solved, while keeping the cost (in terms of computation time)
affordable in practice. We remark that these results should be
interpreted in the specific context of vulnerability detection,
and cannot (and do not aim to) be extrapolated to the more
general case of string constraint solving.

In summary, the main contributions of this paper are: 1) a
search-driven technique for solving string constraints with
complex string operations, in the context of vulnerability
detection; 2) the empirical assessment of the benefits and costs
of adding the proposed technique to two state-of-the-art string

constraint solvers, evaluated in the context of injection and
XSS vulnerability detection for Java Web applications.

The rest of this paper is structured as follows. Section II pro-
vides some background on the concepts and techniques used
in the rest of the paper. Section III discusses the motivations
for this work and illustrates a running example. Section IV
illustrates our search-driven approach for string constraints
solving. Section V presents the evaluation of our approach.
Section VI discusses related work. Section VII concludes the
paper and gives directions for future work.

II. PRELIMINARIES

A. Automata-based String Constraint Solving

In this paper we focus on string constraints, i.e., con-
straints on string variables that can be involved in string-
manipulating functions. An example of such a constraint is
ID.contains("ul"), where ID is a string variable and
contains(...) is a string-manipulating function from the
Java class library. A solution for this constraint is a string
value for variable ID that satisfies the constraint; for example,
the string “module” is a solution for the above constraint.

One of the ways to solve string constraints is to consider
their automata-based representation [4], [14]–[18]. More pre-
cisely, an automata-based string constraint solver uses finite-
state machines (FSM) to encode the set of string values that a
string variable can take. String operations are modeled through
automata operations, such as concatenation and intersection. If
the constraint is satisfiable, the solver returns SAT and yields
a solution automaton for each string variable; this automaton
accepts string values that satisfy the constraint in which the
variable is involved.

For example, an automata-based constraint solver that sup-
ports, among others, the contains operation will solve the
constraint above and will return for variable ID the FSM
MID =.*ul.*, i.e., the automaton that accepts string values
containing the ul substring. Notice that we abuse the notation
by defining an FSM by means of the regular expression
characterizing the regular language it accepts.

B. Ant Colony Optimization

Ant Colony Optimization (ACO) [12] is one of the most
widely-used meta-heuristic search techniques for solving com-
binatorial optimization problems. It is inspired by the obser-
vation of the behavior of real ants searching for food. Real
ants start seeking food randomly; when they find a source
of food, they leave a chemical substance (called pheromone)
along the path that goes from the food source back to the
colony. Other ants can detect the presence of this substance
and are likely to follow the same path. This path, populated
by many ants, is called pheromone trail and serves as a
guidance (e.g., positive feedback) for the other ants. In ACO,
these observations are translated into the world of artificial
ants, which can cooperate to find a good solution to a given
optimization problem. The optimization problem is translated
into the problem of finding the best path on a weighted
graph. Artificial pheromone trails are numerical parameters



that characterize the graph components (i.e., nodes and edges);
they encode the “history” in approaching the problem (and
finding its solutions) by the whole ant colony. ACO algorithms
also implement a mechanism, inspired by real pheromone
evaporation, to modify the pheromone information over time
so that ants can forget the (search) history and start exploring
new search directions. The artificial ants build their solutions
by moving step-by-step along the graph; at each step they
make a stochastic decision based on the pheromone trail.

III. MOTIVATIONS AND RUNNING EXAMPLE

In this section we present a motivating example that high-
lights the need to handle complex string constraints in the con-
text of vulnerability detection based on constraint solving. We
will also use it as a running example in the rest of the paper.
Although we crafted this example for illustrative purposes, it
can be considered realistic since it contains typical operations
that are commonly found in modern Web applications.

The program, shown in Figure 1, contains a security-
sensitive operation (i.e., a sink) at line 18, which cor-
responds to an XPath injection (XPathi) vulnerability
within an XPath query. It is vulnerable to XPathi be-
cause the variable sid, containing a user input, is
not sanitized properly before using it in the XPath
query. Indeed, the standard sanitization procedure ESAPI.
encoder().encodeForXPath from OWASP applied to
variable sid only escapes meta-characters such as ’ and ’’.
Assuming that the element sid is defined as a numeric data
type in the schema of the document students.xml, one
could still perform a successful attack without using those
meta-characters, for example using the input 0 or 1. This
vulnerability can be discovered by using the following three-
step vulnerability detection procedure:

1) Path conditions generation through symbolic execution.
One of the path conditions generated by symbolically execut-
ing a path leading to the execution of the sink at line 18 is:

PC18 ≡ SUBJ.trim().substring(0,2).equals("cd")

∧Integer.parseInt(MAX)≤ 20
∧OP.trim().equalsIgnoreCase("GradeQuery")

∧SID.toLowerCase().length()≤
Integer.parseInt(MAX)

∧SID.contains("id")

where SUBJ,MAX,OP,SID, are symbolic values for the vari-
ables initialized with the Web request inputs (lines 5–8).

2) Definition of the attack specification. In this step, the
values at the sink are checked against an attack specification
defined by a security expert (usually by means of threat cata-
logues and attack libraries). Attack specifications are defined in
a way that properly characterizes security threats. For example,
the following specification characterizes a security threat (in
the form of a tautology attack) for variable sid:

ATTK ≡ ESAPI.encoder().encodeForXPath(SID.

toLowerCase()).matches("(0|

[1-9][0-9]*) (o|O)(r|R) [1-9][0-9]*")

1 protected void doPost(HttpServletRequest req,
2 HttpServletResponse res) {
3 Document doc=getStudentDB("./students.xml");
4 XPath xpath=XPathFactory.newInstance().newXPath();
5 String op=req.getParameter("option");
6 String sid=req.getParameter("id");
7 int max=Integer.parseInt(req.getParameter("max"));
8 String subj=req.getParameter("subjid");
9 sid=sid.toLowerCase();

10 if(!subj.trim().substring(0,2).equals("cd")) {subj="*"; }
11 if(max>20) { max=20; }
12 if(op.trim().equalsIgnoreCase("GradeQuery")) {
13 if(sid.length()<=max & sid.contains("id")) {
14 sid=ESAPI.encoder().encodeForXPath(sid);
15 subj=subj.replaceAll("’|\"|\\", "");
16 String query="//students/grade[sid="
17 +sid+"and subjid=’"+subj+"’]/mark";
18 NodeList nl=(NodeList)xpath.evaluate(query, doc);
19 } } }

Figure 1: A Java servlet program vulnerable to XPathi

where ESAPI.encodeForXPath(SID.toLowerCase())
is the symbolic expression over the symbolic value SID
representing the values of variable sid at the sink. The
expression matches("(0|[1-9][0-9]*) (o|O)(r|R)
[1-9][0-9]*") describes a tautology attack pattern.

3) Constraint solving. The third step requires to solve
the attack condition, defined as the constraint obtained by
conjoining the path condition with the attack specification;
this step is performed using a constraint solver. If the solver
yields SAT, showing the satisfiability of the constraint, it
means that the attack is feasible and that the analyzed path is
vulnerable to the attack. In the example, the attack condition
AC1 ≡ PC18∧ATTK is satisfiable, confirming the presence of
the vulnerability.

This procedure assumes that the constraint solver is
able to handle string operations like trim, toLowerCase,
parseInt, equalsIgnoreCase, length, replaceAll,
and encodeForXPath. However, state-of-the-art solvers
such as Kaluza [3], CVC4 [7], S3 [8], and Z3-str2 [9] do not
support at least one of these complex operations. From a more
general standpoint, the major challenge faced when adopting a
vulnerability detection procedure based on constraint solving
is the degree of support for (complex) string operations
provided by the constraint solver itself.

One way to face this challenge is to modify or enhance an
existing solver in order to provide native support for complex
string operations. However, this task is non-trivial and requires
a deep understanding of string manipulating functions and
constraint solving; moreover, it is not scalable to the size of
a sanitization library like OWASP ESAPI or of a complete
string function library of a modern programming language.
Alternatively, instead of modifying the solver, one could re-
express complex operations with their equivalent set of basic
constraints that can be solved by the solver. Although relatively
easier, this alternative still requires significant effort and exper-
tise, and usually results in complex constraints that may still
lead to scalability issues for constraint solvers [4]. For exam-
ple, consider one of the constraints in the above path condition:
OP.trim().equalsIgnoreCase("GradeQuery"); as-
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Figure 2: Two-stage approach for string constraint solving

suming the solver handles only length, charAt, equals,
and substring, one could re-express this constraint as:

∃c1,c2,0≤ c1 ≤ c2 ≤ OP.length(), such that
(OP.substring(c1,c2).equals("gradequery")

∨·· ·∨ . . .equals("gRadeQueRy") . . .∨·· ·∨
OP.substring(c1,c2).equals("GRADEQUERY"))

∧∀i,0≤ i < c1,OP.charAt(i)= ‘ ’

∧∀ j,c2 < j ≤ OP.length(),OP.charAt( j)= ‘ ’

which uses equivalent constraints for equalsIgnoreCase
and trim. Notice how the equalsIgnoreCase operation is
expanded into a disjunction of constraints with the equals
operation, which cover all the possible combinations of the
characters denoting a case-insensitive representation of the
string “GradeQuery”; also, modeling the trim operation re-
quires to add several auxiliary variables and predicates.

To work around this issue, the current solution in practice
is to have the constraint solver fail (i.e., it crashes or returns
an error) when it encounters an unsupported operation. Our
experiments show that this is the case for state-of-the-art
solvers like CVC4 and Z3-str2. However, in the context of
vulnerability detection, such a behavior could yield false
negatives (i.e., it misses some vulnerabilities) when the attack
conditions are actually feasible.

Hence, the challenge discussed above shows that, in the
context of vulnerability detection, there is the need for scalable
and precise techniques for constraint solving that can handle
constraints with complex string operations.

IV. SEARCH-DRIVEN STRING CONSTRAINT SOLVING

We address the challenge of supporting complex operations
in string constraint solvers — in the context of vulnerability
detection — by proposing a search-driven constraint solving
technique that complements their support for complex string
operations.

The idea, illustrated in Figure 2, is to solve the constraints
corresponding to an attack condition AC through a two-stage
process. In the first stage we take any existing constraint
solver and use it to solve the conjuncts in AC that contain
only operations supported by the solver itself. The remaining
conjuncts in AC, which contain unsupported operations, are
solved in the second stage, by means of a hybrid constraint
solving procedure that combines an automata-based solver
with a search-driven solving procedure based on the Ant
Colony Optimization meta-heuristic.

1: function CSTRSOLVE(AttackCondition AC)
2: Set of Solution Sol←∅
3: Boolean externalSolved← false
4: Set of Set of Constraint H← GETDEPENDENTSETSOFCSTRS(AC)
5: for all Hi ∈ H do
6: 〈externalSolved,Sol〉 ← EXTERNALSOLVE(Hi)
7: if ¬externalSolved then
8: 〈H ′i ,Sol〉 ← AUTOMATASOLVE(Hi)
9: if H ′i 6=∅ then

10: Sol← SEARCHSOLVE(H ′i ,Sol)
11: if Sol =∅ then
12: return TIMEOUT
13: end if
14: end if
15: end if
16: end for
17: return 〈SAT,Sol〉
18: end function

Figure 3: Search-driven string constraint solving algorithm

The meta-heuristic search in the second stage tries to find
solutions for the variables involved in conjuncts of AC that
contain operations that neither the solver in the first stage
nor the automata-based solver in the first step of the second
stage supports. Nevertheless, we invoke the automata-based
solver before the meta-heuristic search in order to reduce the
search space of the latter. We specifically use an automata-
based (vs. bit-vector-based or word-based) constraint solver
because it returns, when successful, a solution automaton for
each variable occurring in the constraints it could solve, based
on the operations it supports. This automaton accepts the
language corresponding to the set of values (for the variable)
that satisfy the constraints involving the operations that the
solver supports. In this way, we are able to reduce (possibly
in a significant way) the size of the domains of the variables
involved in the constraint; this is expected to make the search
more scalable and effective.

A. Overview

The pseudocode of our string constraint solving algorithm
is shown in Figure 3. It takes in input an attack condition AC
(expressed as a conjunction of constraints) and returns whether
it is satisfiable, unsatisfiable, or whether it timed out; when it
returns satisfiable, it also returns the set of solutions found.

First, it decomposes (line 4) the attack condition AC
into the set H of sets of dependent constraints. More
specifically, function GETDEPENDENTSETSOFCSTRS
identifies the connected sub-hypergraphs (i.e., the maximal
connected components) of the hypergraph equivalent to
the constraint network [17], [19] representing the attack
condition; each set Hi ∈ H corresponds to a sub-hypergraph.
For the attack condition AC1 in our running example, we
have H = {H1,H2,H3}, with H1 = {cstr1}, H2 = {cstr2},
H3 = {cstr3,cstr4,cstr5,cstr6}, where:
cstr1 ≡ SUBJ.trim().substring(0,2).equals("cd")

cstr2 ≡ OP.trim().equalsIgnoreCase("GradeQuery")

cstr3 ≡ SID.toLowerCase().length()≤ Integer.parseInt(MAX)

cstr4 ≡ Integer.parseInt(MAX)≤ 20
cstr5 ≡ SID.contains("id")

cstr6 ≡ ESAPI.encoder().encodeForXPath(SID.toLowerCase())

.matches("(0|[1-9][0-9]*) (o|O)(r|R) [1-9][0-9]*")



Next, the algorithm iterates through the sets of constraints Hi
in H, performing the following steps (lines 5–16).

First, it calls function EXTERNALSOLVE (line 6),
which invokes the external solver and returns a tuple
〈externalSolved,Sol〉. If the external solver supports all the
operations used in the constraints contained in Hi, it will
return a true value for the flag externalSolved and the set
Sol will contain a solution for each variable involved in the
constraints in Hi; the algorithm can then proceed to the next
iteration of the loop, to process the set Hi+i. Otherwise, in
case the external solver does not support an operation used
in a constraint in Hi, it will fail and EXTERNALSOLVE will
set the flag externalSolved to false and Sol to the empty set.

When the flag externalSolved is false, the algorithm enters
the second stage of our approach. It calls function AUTOMATA-
SOLVE (line 8), which internally invokes the automata-based
string constraint solver Sushi [4] to solve the constraints in
Hi that use operations it supports (i.e., concat, contains,
equals, trim, substring, replace, replaceAll, and
matches). If a constraint is satisfiable, Sushi yields a solution
automaton for each string variable involved in the constraint.
Function AUTOMATASOLVE returns a tuple 〈H ′i ,Sol〉. The set
H ′i ⊆Hi contains the constraints in Hi that could not be solved
by Sushi because they use unsupported operations. The set
Sol contains the solution automata for the variables involved
in the constraints in Hi: if a variable was involved only in
constraints with unsupported operations, its corresponding so-
lution automaton is the default one, accepting any string (i.e.,
the automaton accepting the regular language .*); otherwise,
the solution automaton is the one determined by Sushi. Notice
that both EXTERNALSOLVE and AUTOMATASOLVE internally
terminate the entire constraint solving procedure and return
UNSAT, without proceeding to the following steps, when they
detect unsatisfiable constraints.

Subsequently, if the set H′i is not empty (meaning that there
are unsolved constraints in Hi using unsupported operations),
the algorithm invokes the SEARCHSOLVE function, which
implements a meta-heuristic search algorithm (detailed in the
next subsection) to solve the constraints in H ′i and returns
an updated set of solutions Sol (line 10). If the set Sol is
not empty, it means that the set of constraints Hi has been
solved and the algorithm can proceed to process the set Hi+i;
otherwise, it means that the SEARCHSOLVE function timed
out and thus the algorithm returns TIMEOUT, terminating the
entire constraint solving procedure. A time-out can indicate
either that a solution exists for the constraint but the solver
could not find it, or that the constraint is actually unsatisfiable;
the security analyst then has to decide (possibly based on
empirical studies) how to treat it.

The algorithm returns SAT and the set of solutions Sol
(line 17) only when the loop over H has been completely
executed, meaning that all the constraints in the sets in H are
satisfiable, which is equivalent to say that the attack condition
AC in input is satisfiable.

For our running example, the call to EXTERNALSOLVE
with input H1 will return 〈true,{SUBJ = “cd”}〉, mean-

ing that the external solver was able to solve the con-
straint, determining the solution “cd” for variable SUBJ.
However, the call to EXTERNALSOLVE with input H2 and
H3 will return 〈false, /0〉 because the external solver can-
not handle some of the operations used in the constraints
in H2 and H3 (e.g., the operations equalsIgnoreCase,
encodeForXPath). This means that the constraints in H2
and H3 will be processed in the second stage. In particu-
lar, the calls to AUTOMATASOLVE will behave as follows.
AUTOMATASOLVE(H2) = 〈{cstr2},{MOP}〉, with MOP = .*,
meaning that cstr2 could not be solved by Sushi (because it
contains an unsupported operation). AUTOMATASOLVE(H3) =
〈{cstr3,cstr4,cstr6},{MSID,MMAX}〉, where MSID = .*id.*
and MMAX = .*, meaning that Sushi could only solve cstr5
and determine a solution automaton for variable SID.

B. Solving Constraints using Meta-heuristic Search

In this subsection we illustrate how function SEARCHSOLVE
works, by explaining how we use meta-heuristic search for
solving string constraints that involve unsupported operations1.

Our search procedure is based on the MAX−MINAnt
System proposed in [20]. In this algorithm the pheromone
values are bounded by maximum and minimum values, which
are dynamically computed after every search iteration. This
avoids the relative differences between the pheromone values
from becoming too extreme during the run of the algorithm
and, therefore, mitigates the search stagnation problem in
which ants traverse the same trails and construct the same
solutions over and over again.

We chose ACO over other well-known meta-heuristic search
techniques (such as hill climbing, simulated annealing, and
genetic algorithms [21]) because:
• It has inherent parallelism in which multiple candidate

solutions can be searched in parallel for efficiency.
• It is stochastic in nature, which allows for escaping from

local optima.
• It is typically used for finding good solutions (i.e., paths

that return good fitness values) in graphs [12]. Hence, it can
be easily adapted to our problem where the search space is
defined in a graph form, i.e., an automaton.
• Differently from other search algorithms, in ACO, mod-

ifying a candidate solution to get a different one is straight-
forward, since it only requires having an ant exploring the
solution automaton.

Below, we first present the fitness functions used within the
algorithm and then the algorithm itself.

1) Fitness Functions: Any search-based procedure requires
defining one or more fitness functions to assess the quality
of the potential solutions, i.e., their distance from the best
solution. A low(er) value for the fitness of a solution implies
a high(er) quality for the solution itself. Since in the context

1In our implementation based on Sushi, function SEARCHSOLVE is also
used to solve numeric constraints, which are also unsupported by Sushi.
Nevertheless, we expect that most of the numeric constraints are already
solved by the external solver in the first stage. Integrating a separate numeric
constraint solver before the meta-heuristic search is part of future work.



of this work we deal with both numeric and string constraints,
we use fitness functions specific to these domains.

For numeric constraints we use the Korel function [22],
which is a standard fitness function for this domain. We
consider numeric constraints of the form C ≡ E1 ./ E2, where
./∈ {=, 6=,<,≤,>,≥} and E1,E2 are numeric expressions
that can be numeric variables, numeric constants, or any
other expression whose evaluation results in a numeric value
(e.g., the length operation for strings); notice that we
treat boolean expressions also as numeric expressions. Let
s = [s1, . . . ,sn] be the vector of candidate solutions for the
numeric variables x1, . . . ,xn in C, and a(s),b(s) be the nu-
meric values resulting from the evaluations of E1 and E2
respectively, after replacing the variables in them with the
corresponding solutions in s; the fitness of s is defined as:

f (s) =

{
0 a(s) ./ b(s) is true
|a(s)−b(s)|+ k a(s) ./ b(s) is false

where k = 0 when ./∈ {=,≤,≥} and k = 1 otherwise.

For string constraints we use two different functions, de-
pending on the operations in which string variables are in-
volved: the Levenshtein (edit) distance function [23] and the
equality cost function for regular expression matching [24];
both functions have been shown to be useful for search-based
generation of string values [24]. The Levenshtein distance
between two strings a and b is defined as the minimum number
of insert, delete, and substitute operations (of characters)
needed to convert a into b. The regular expression matching
function between a string a and a regular expression b is
defined as the minimum Levenshtein distance among a and
the strings belonging to the regular language defined by b.
We consider string constraints of the form C ≡ E1 ./ E2,
where ./ is a string operation returning a boolean result, and
E1,E2 are string expressions that can be string variables, string
literals, or any other expression whose evaluation results in
a string value (e.g., the concat operation for two strings).
Let s = [s1, . . . ,sn] be the vector of candidate solutions for
the string variables x1, . . . ,xn in C, and a(s),b(s) be the
string values resulting from the evaluations of E1 and E2
respectively, after replacing the variables in them with the
corresponding solutions in s; the fitness of s is defined as:

f (s) =

{
0 a(s) ./ b(s) is true
ψ(a(s),b(s)) a(s) ./ b(s) is false

where ψ is the equality cost function for regular expres-
sion matching when ./ is a regular expression-based string
matching operation (e.g., the matches operation for strings
in Java), and ψ is the Levenshtein distance in all other cases
for ./. We assume to have a list of operations classified as
regular expression-based string matching operations; if there
is an unknown regular expression-based matching operation,
it will be treated as a generic case, using the Levenshtein
distance function. For both types of constraints, the fitness of
a candidate solution is set to an arbitrarily-selected large value
(such as 1000) when the solution leads to an exception during
the evaluation of the expressions in which it is used.

1: function SEARCHSOLVE(Set of Constraint H, Set of Solution-automaton K)
2: Tuning-parameters 〈α,β ,ρ,ξmax,ξmin〉 ← SETTUNINGPARAMS()
3: Population-size A← SETNUMBERANTS()
4: Set of Desirability-value ∆← SETDESIRABILITYVAL(K)
5: Set of Pheromone Ξ← SETPHEROMONES(K)
6: Set of Solution-component TBest ←∅
7: Fitness FBest ← 1; Fitness FpBest ← 1
8: Array of Fitness tempF←∅; Array of Set of Solution-component tempT←∅
9: repeat

10: loop A times
11: Set of Solution-component T ← CONSTRUCTSOLUTIONS(K,∆,Ξ)
12: Fitness F ← COMPUTEFITNESS(T,H)
13: tempF← APPEND(tempF,F); tempT← APPEND(tempT,T )
14: end loop
15: 〈FBest ,TBest〉 ← BESTSOLUTION(tempF, tempT)
16: if FBest < FpBest then
17: 〈FBest ,TBest〉 ← 2OPTLOCALSEARCH(K,TBest)
18: end if
19: UPDATEPHEROMONES(K,Ξ,FBest ,TBest)
20: FpBest ← FBest
21: until FBest = 0 or timeout
22: if timeout then
23: return ∅
24: end if
25: return TBest
26: end function

27: function CONSTRUCTSOLUTIONS(Set of Solution-automaton K,
Set of Desirability-value ∆, Set of Pheromone Ξ)

28: Set of Solution-component S←∅
29: repeat
30: Automaton k← RANDOMSELECT(K)
31: FSMState v← GETSTARTSTATE(k)
32: repeat
33: Set of FSMTransition E← GETOUTTRANSITIONS(v)
34: FSMTransition e← SELECTTRANSITION(E,∆,Ξ)
35: S← S∪{e}
36: v← GETNEXTSTATE(e)
37: until ISACCEPTSTATE(v)
38: MARKASVISITED(k,K)
39: until all the automata in K have been traversed
40: return S
41: end function

Figure 4: Ant colony search for string constraint solving

2) Search Algorithm: The pseudocode of our instantiation
of the ACO meta-heuristic for solving string constraints is
shown in Figure 4. The main function SEARCHSOLVE takes
in input a set of constraints H (corresponding to the constraints
not solved by the automata-based solver in the first step) and
a set of solution automata K (as determined by the automata-
based solver for the solution of the constraints with supported
operations).

The first steps of function SEARCHSOLVE (lines 2–5)
initialize the tuning and search parameters as follows (the
initialization value is indicated next to each parameter):
• Tuning parameters: α = 1 and β = 1 determine the

relative importance of the pheromone trail and the heuristic-
based desirability information; ρ = 0.01 is the evaporation rate
used to prevent the pheromone values from piling up; ξmax = 5
and ξmin = 0 determine the bounds of pheromone values.
• Search parameters: the number of ants A = 20; the set

∆ of desirability values δe = 1 for each transition e of each
automaton in K; the set Ξ of pheromone values ξe = ξmax for
each transition e of each automaton in K.
In ACO, these parameters have to be defined specifically for
the target problem; we chose them based on the guidelines
provided in [20] and on our own preliminary experiments.
Notice that for each transition e, the parameter ξe is initialized



to the value ξmax; as discussed in [20], this allows for diverse
explorations of the solutions during the first iterations of the
algorithm, because of the small, relative differences between
the pheromone values of the explored transitions and of the
ones not-yet explored.

The algorithm then loops through the following three main
steps (lines 9–21) until the termination conditions are met:

Construction of solutions. This step (lines 10–15) con-
sists of three sub-steps:
1) Building the set of solution components. This step is
represented by the call to function CONSTRUCTSOLUTIONS,
which takes in input the set of solution automata K, the set of
desirability values ∆, and the set of pheromones values Ξ. This
function goes through (lines 29–39) the set of automata K,
and at each iteration it randomly selects an automaton k ∈ K.
Starting from the start state of k, it traverses the outgoing
transitions of the states in k. Upon reaching a state where there
are multiple outgoing transitions, it selects (line 34) one of

them (say transition e) based on the probability Pe =
ξ α

e δ
β
e

∑t∈E ξ α
t δ

β

t
,

computed using the pheromone value ξe and the desirability δe
of the transition. The selected transition is added to the local
set of solution components S (line 35) and its reaching state
is retrieved (line 36). The traversal/selection of the transitions
of an automaton is repeated until the final state is found2,
which means that a solution for the variable associated with the
current automaton k has been found. In this case the outer loop
moves to explore the next automaton in K, and continues until
all automata in K have been traversed. At the end, the function
returns a set of solution components, with one solution for
each string variable.
2) Determining the fitness of solution components. This step
computes the fitness for the solution components identified in
the previous step. Function COMPUTEFITNESS evaluates each
constraint in H with the solution components, and computes
the corresponding fitness f using one of the aforementioned
fitness functions (depending on the type of constraint). To
ensure that the search process is not biased towards solving the
constraints with larger-scale fitness values, each fitness value
f is normalized using the normalization function proposed
in [25], resulting in a normalized fitness value f̂ = f/(f +1).
We use this normalization function since it has proven to
be useful in the similar domain of search-based test input
generation of string data types [26]. After computing the
fitness for all the constraints in H, the overall fitness F of T
is computed by taking the average of individual, normalized
fitness values f̂ .
3) Selecting the best solution components. The two steps
above are repeated A times, with the values computed at each
iteration stored as elements of the auxiliary variables tempT ,
an array containing sets of solution components, and tempF, an
array containing the fitness values for the corresponding ele-
ments in tempT . Function BESTSOLUTION determines among
them the solution components that have the minimum (i.e.,

2Internally we represent solution automata as generalized non-deterministic
finite automata, which have only one final state.

best) fitness, and assign them to variable TBest, representing
the best solution of the current iteration of the outer loop.

Application of local search. This step (lines 16–18) is
used to refine the set of candidate solutions built in the step
above, to locally optimize them. More precisely, if the best
solution of the current iteration (TBest) is better than (i.e., its
fitness is lower than the fitness of) the best solution of the
previous iteration, we perform a local search procedure to
see whether further improvements can be made with other
solutions that are in the neighborhood of TBest. The local search
is performed using the 2-opt local search algorithm [27],
which finds other paths (or sets of solution components) in
each automaton in K that reach the final state. This algorithm
replaces at most two transitions of the current path with one
or more transitions; if it finds a set of solution components
with a better fitness value, this set becomes the new TBest.

Update of pheromone values. This step (line 19) updates
the pheromone values ξe ∈ Ξ, for each transition e of each
automaton in K. It first computes ξmax =

1
1−ρ

1
FBest

and ξmin =
ξmax
2n , where n denotes the cumulative total number of states

of all the automata in K; then, it sets ξe = (1−ρ)ξe +4ξe,
where 4ξe =

1
FBest

if the transition e is part of the solution
components in TBest, 0 otherwise. If ξe > ξmax, then it sets
ξe = ξmax; dually, if ξe < ξmin, then it sets ξe = ξmin.
The termination conditions of the loop at line 21 correspond
either to a time-out or to the finding of a solution that satisfies
all the constraints in H, for which the fitness FBest is zero.
If there is a timeout, the function returns an empty set of
solutions; otherwise, it returns TBest.

V. EVALUATION

We have implemented our search-driven string constraint
solving approach for vulnerability detection in the ACO-Solver
tool [13]. The tool is implemented in Java, uses Sushi as
automata-based constraint solver in the second stage, and has
a plugin architecture to support different solvers in the first
stage; we have developed plugins for CVC4 and Z3-str2.

In this section we report on the evaluation of ACO-Solver
in the context of vulnerability detection for Java Web appli-
cations. We assess the benefits and costs of combining the
proposed string constraint solving approach with two state-of-
the-art solvers, by answering the following research questions:
RQ1: How does the proposed approach improve the effective-

ness of state-of-the-art solvers for solving constraints
related to vulnerability detection? (subsection V-B)

RQ2: Is the cost (in terms of execution time overhead) of using
our technique affordable in practice? (subsection V-B)

RQ3: Does the automata-based solver in the first step of the
second stage of our approach contribute to the effective-
ness of the search-based procedure? (subsection V-C)

A. Benchmark and Evaluation Settings

To evaluate our approach in terms of vulnerability detection
capability, we use a benchmark composed of nine realistic,
open source Java Web applications/services, with known XSS,



XML, XPath, LDAP, and SQL injection vulnerabilities. Web-
Goat [28] is a deliberately in-secured Web application/ser-
vice for the purpose of teaching security vulnerabilities in
Web applications. Roller [29] and Pebble [30] are blogging
applications that also expose Web service APIs. WebGoat,
Roller, and Pebble have been already used as benchmarks
in the vulnerability detection literature [31]–[36]. Regain [37]
is a search engine, known to be used in a production-grade
system by one of the biggest drugstore chains in Europe. The
pubsubhubbub-java (shortened as PSH) tool [38] is the most
popular Java project related to the PubSubHubbub protocol in
the Google Code archive. The rest-auth-proxy (shortened as
RAP) microservice [39] is one of the most popular LDAP-
based Web service Java projects returned by a query on
Github.com with the search string ldap rest. TPC-APP,
TPC-C, and TPC-W are the standard benchmarks provided
by [40] for evaluating vulnerability detection tools for Web ser-
vices; the set of Web services they provide has been accepted
as representative of real environments by the Transactions
processing Performance Council (http://www.tpc.org).

This benchmark contains in total 104 paths to sinks: 64
vulnerable paths and 40 non-vulnerable ones. We generated
the corresponding 104 attack conditions using a Java program
slicing and symbolic execution tool developed in our previous
work [41]. For each attack condition, we established the
ground truth (i.e., whether it is vulnerable or not) via manual
inspection and consultation of the vulnerability report of the
corresponding application in the US National Vulnerability
Database (NVD) [42].

We conducted our evaluation on a machine equipped with
an Intel Core i7 2.4 GHz processor, 8 GB memory, running
Apple Mac OS X 10.11 and Sushi v2.0. We set the time-out
for solving each attack condition to 30 s.

B. Effectiveness and Cost of Vulnerability Detection

We assess the benefits and costs of combining the proposed
approach with two state-of-the-art string constraint solvers:
CVC4 (version 1.4) and Z3-str2 (from the repository head,
commit 2e52601). For each of these solvers, we run our
benchmark first through the standalone solver and then through
the solver combined with ACO-Solver.

The evaluation results are shown in Table I. Columns vp
and nvp indicate, respectively, the number of vulnerable and
non-vulnerable paths per application. Column t indicates the
cumulative time taken to solve all the attack conditions of
each application. Column × indicates the number of failing
cases, i.e., the number of attack conditions that the solver
failed to solve, due to an error or crashing; we omit this
column for Z3-str2 + ACO-Solver and CVC4 + ACO-Solver
since they did not fail. Column � indicates the number of
cases in which the solver timed out; we omit this column for
Z3-str2 and CVC4 since they did not time out. Column X
indicates the number of non-failing cases. Column ∆ indicates
the number of cases, out of the failing cases of Z3-str2 or
CVC4, that ACO-Solver helped solve. Columns tp, tn, fp,
fn, and ∇ denote, respectively, true positives (number of

vulnerable cases correctly identified), true negatives (number
of non-vulnerable cases correctly identified), false positives
(number of non-vulnerable cases reported as vulnerable), false
negatives (number of vulnerable cases not detected), number of
additional vulnerable cases uncovered by ACO-Solver. Column
pd reports the recall, i.e., the percentage of vulnerable cases
detected among the total vulnerable cases, and is computed
as pd = tp/(tp + fn) ∗ 100. Notice that, in the context of
vulnerability detection, when a solver fails or times out to
solve an attack condition, it neither detects a vulnerability nor
produces a false alarm. Hence, a failing (or time-out) case may
result either in a false negative or in a true negative, depending
on whether the attack condition is actually vulnerable.

We answer RQ1 by examining the number of failing and
time-out cases and the recall in Table I, first when using a
solver standalone, and then when combined with ACO-Solver.

When used standalone, Z3-str2 and CVC4 could not solve,
respectively, 85 and 32 cases. We manually inspected these
failing cases and observed they are due to unsupported oper-
ations contained in the attack conditions. For example, both
Z3-str2 and CVC4 do not handle some string operations (e.g.,
toLowerCase, toUpperCase, equalsIgnoreCase) and
the sanitization operations of the standard Apache secu-
rity library [11]. Also, Z3-str2 was not able to handle
Integer.parseInt, and String.valueOf conversions
and many of the regular expressions that reflect security threats
in our attack conditions. Z3-str2 missed 61 vulnerable cases
(out of 85 failing cases), resulting in a low recall of 4.7%.
CVC4 missed 9 vulnerable cases (out of 32 failing cases),
resulting in a recall of 85.9%.

Z3-str2 + ACO-Solver helped solve 46 out of the 85 failing
cases of Z3-str2, revealing 43 additional vulnerabilities. It
timed out on 39 cases; however, 21 out of these 39 time-out
cases are non-vulnerable cases (i.e., the corresponding attack
condition is UNSAT) and thus the search is obviously expected
to time out. CVC4 + ACO-Solver solved 11 failing cases of
CVC4, revealing 9 additional vulnerabilities. It timed out on
21 cases; however, all of them are actually non-vulnerable
ones. Z3-str2 + ACO-Solver improved the recall of Z3-str2
from 4.7% to 71.9%. CVC4 + ACO-Solver improved the one
of CVC4 from 85.9% to 100.0%, detecting all vulnerabilities.

We remark that, while most of these vulnerabilities had
already been reported to the NVD [42], we also discovered
two new XSS vulnerabilities (one in Regain and one in Pebble)
while performing this evaluation; we reported them to NVD
and also to the corresponding developers. The vulnerability
in Regain was detected by both Z3-str2 and CVC4, used
standalone; the one in Pebble was detected when both solvers
were combined with ACO-Solver. Though not shown in Table I
for space reasons, we also remark that both solvers achieved
100% precision (i.e., they reported no false positive).

The answer to RQ1 is that the proposed approach, when
combined with a state-of-the-art solver, significantly improves
the recall (from 4.7% to 71.9% for Z3-str2, from 85.9% to
100.0% for CVC4), and solves several cases on which the
solvers failed when used stand-alone (46 more solved cases

http://www.tpc.org


Table I: Comparison of vulnerability detection effectiveness and execution time between standalone solvers (Z3-str2 and CVC4)
and the same solvers combined with ACO-Solver (Z3-str2 + ACO-Solver and CVC4 + ACO-Solver)

App Paths Z3-str2 Z3-str2 + ACO-Solver CVC4 CVC4 + ACO-Solver

vp nvp t(s) × X tp tn fp fn pd t(s) � X ∆ tp tn fp fn ∇ pd t(s) × X tp tn fp fn pd t(s) � X ∆ tp tn fp fn ∇ pd

WebGoat 11 4 0.10 11 4 0 4 0 11 0.0 22.23 0 15 11 11 4 0 0 11 100.0 1.40 1 14 10 4 0 1 90.9 10.90 0 15 1 11 4 0 0 1 100.0
Roller 3 10 0.00 13 0 0 10 0 3 0.0 333.96 10 3 3 3 10 0 0 3 100.0 0.53 10 3 3 10 0 0 100.0 307.24 10 3 0 3 10 0 0 0 100.0
Pebble 6 7 0.01 12 1 0 7 0 6 0.0 199.34 5 8 7 6 7 0 0 6 100.0 0.04 12 1 0 7 0 6 0.0 205.14 5 8 7 6 7 0 0 6 100.0
Regain 3 3 86.71 0 6 3 3 0 0 100.0 84.12 0 6 0 3 3 0 0 0 100.0 0.61 0 6 3 3 0 0 100.0 1.47 0 6 0 3 3 0 0 0 100.0
PSH 1 3 13.33 4 0 0 3 0 1 0.0 61.64 2 2 2 1 3 0 0 1 100.0 0.00 4 0 0 3 0 1 0.0 61.34 2 2 2 1 3 0 0 1 100.0
RAP 1 0 0.00 1 0 0 0 0 1 0.0 0.40 0 1 1 1 0 0 0 1 100.0 0.00 1 0 0 0 0 1 0.0 0.93 0 1 1 1 0 0 0 1 100.0
TPC-APP 6 6 0.02 10 2 0 6 0 6 0.0 217.79 7 5 3 2 6 0 4 2 33.3 0.57 3 9 6 6 0 0 100.0 93.22 3 9 0 6 6 0 0 0 100.0
TPC-C 30 4 0.09 31 3 0 4 0 30 0.0 596.40 15 19 16 16 4 0 14 16 53.3 1.50 1 33 30 4 0 0 100.0 47.12 1 33 0 30 4 0 0 0 100.0
TPC-W 3 3 0.02 3 3 0 3 0 3 0.0 2.45 0 6 3 3 3 0 0 3 100.0 0.31 0 6 3 3 0 0 100.0 1.21 0 6 0 3 3 0 0 0 100.0

Total 64 40 100.28 85 19 3 40 0 61 4.7 1,518.33 39 65 46 46 40 0 18 43 71.9 4.96 32 72 55 40 0 9 85.9 728.57 21 83 11 64 40 0 0 9 100.0

for Z3-str2, and 11 more for CVC4). Hence, combining a
state-of-the-art solver with our approach proved to be very
effective to vulnerability detection. Since time-outs with CVC4
+ ACO-Solver are all unsatisfiable/non-vulnerable cases, if
such results were to be confirmed by additional benchmarks,
then one could conclude that the most cost-effective and
realistic decision strategy for the security analyst would be
to treat time-outs as non-vulnerable cases.

To answer RQ2, we compare the execution time (t) for
running the standalone solvers to the one for running the
solvers combined with ACO-Solver. The total execution of Z3-
str2 took less than two minutes and solved 19 cases; Z3-str2
+ ACO-Solver took about 25 minutes and solved 65 cases;
the execution of CVC4 took about five seconds and solved 72
cases; CVC4 + ACO-Solver took about 12 minutes and solved
83 cases. Despite the increase in terms of absolute values,
the total execution time of our approach is still affordable,
considering that 1) it can handle many cases that would
otherwise fail, and thus can detect more vulnerabilities; 2)
vulnerability detection is typically an offline activity, with no
real-time requirements. Hence, we answer RQ2 positively.

C. The Role of the Automata-based Solver

To address RQ3 and thus investigate the role played by the
automata-based solver in reducing the search space explored
by the meta-heuristic search, we used a modified implemen-
tation of our approach. We switched off the automata-based
solver in the first step of the second stage, meaning that the
search-based algorithm is executed using a set of solution
automata that accept any string and thus has a much larger
search space.

We run our benchmark through both solvers, combined with
this modified version of ACO-Solver, which does not call
Sushi internally. Because of space reasons, we present only the
results of running CVC4 combined with this modified ACO-
Solver; the results for Z3-str2 are similar.

When executed with 30 s time-out, CVC4 + modified ACO-
Solver timed out on 31 cases, with a recall of 87.5% and
an overall execution time of 15.5 min. Therefore, the version
of ACO-Solver without Sushi helped solve only 1 more case,
whereas the unmodified ACO-Solver helped solve 11 more

cases. Since in this scenario we expected the search to explore
a larger search space, we also ran the solver with an increased
time-out of 300 s; however, we obtained the same results as
above in terms of solved cases and recall, but the execution
time increased to almost three hours.

From the above results, we answer RQ3 by saying that the
automata-based solver plays a fundamental role in achieving
a higher effectiveness, since it contributes to reducing the
number of failing cases and increasing the recall.

D. Verifiability and Threats to Validity

Verifiability: The applications composing the benchmark,
the related attack conditions, the instructions and scripts to
obtain the ACO-Solver tool and run the benchmark, and the
detailed evaluation results are available on our website [13].

Threats to Validity: Our results are based on solving the
constraints corresponding to attack conditions extracted from
a specific benchmark; hence, they cannot necessarily be gener-
alized to all types of constraints. We minimized this threat by
choosing applications that vary in functionality and by sam-
pling realistic projects, which in many cases represent well-
known benchmarks in the context of vulnerability detection.
There are other benchmarks (e.g., the one used in [43] and the
Kaluza suite [3]) that are widely-used for comparing constraint
solvers. However, they are not specific to the security domain
(e.g., they are not annotated with vulnerability information),
and thus the constraints they contain cannot be used to assess
the effectiveness of a solver in terms of vulnerability detection.
Furthermore, we remark that our results should be interpreted
in the specific context of vulnerability detection, and cannot
(and do not aim to) be extrapolated to the more general case
of string constraint solving.

As shown in subsection V-C, the role of an automata-based
solver is essential for our approach in order to reduce the input
domains and scale the meta-heuristic search process. Instead
of Sushi, which supports only basic operations, we could use
other, more powerful automata-based solvers like Stranger [6]
and JST [18], which support more operations. Nevertheless,
Sushi was available from the authors, fully functional, and
yielded a significant reduction in search space that was suffi-
cient to make the approach practical. By using an automata-



based solver with support for a larger set of operations, we
expect a reduction of the time taken by the meta-heuristic
search, since it will have to explore a smaller search domain.
Hence, our results should be interpreted as the lowest bound
for our search-driven constraint solving approach.

VI. RELATED WORK

Our proposed approach is related to work done in the
areas of constraint solving through heuristic search, (string)
constraint solving, code-based security analysis, and search-
based test input generation for string data types.

Constraint solving through heuristic search. Heuristic
search has been already proposed [44] for solving non-
linear arithmetic constraints with operations from unsupported
numeric libraries; the heuristics is optimized to explore an
n-dimensional space over real numbers. Contrastingly, our
approach targets solving string constraints with unsupported,
string-manipulating operations and its search heuristics is
optimized, in terms of search strategy and fitness functions, for
string constraints. Further, the approach in [44] is evaluated in
terms of coverage of test generators, while we evaluated our
approach in the context of vulnerability detection.

(String) constraint solving. There are many constraint
solvers that provide, to a certain degree, support for
strings: bit-vector based solvers like Hampi [45] and
Kaluza [3]; automata-based solvers like Violist [46],
Stranger [6], [14], ABC [47], StrSolve [15], Pass [16],
StringGraph [17], and JST [18]; word-based solvers like
Norn [48], S3 [8], and the aforementioned Sushi, CVC4, and
Z3-str2. Among them, Stranger, JST, StringGraph, S3, Z3-
str2, and CVC4 support the most number of string operations
(e.g., startsWith, endsWith, replace, replaceAll,
length, and matches) that are essential in the context of
vulnerability detection; they also support numeric constraints.
Although Hampi and Kaluza have been widely-used as bench-
marks for evaluating other solvers (see [7]–[9], [48]), they
actually support only a smaller set of string operations than
the solvers listed above; also, Hampi does not support numeric
constraints. Support for regular expressions (which are usually
used in attack specifications) is only provided — often in a
limited form — by Sushi, Stranger, ABC, Kaluza, S3, Z3-str2,
and CVC4. Nevertheless, none of them provides full support
for a complete string function library of a modern program-
ming language or for sanitization libraries like OWASP ESAPI
and Apache Commons Lang. This means that they fail when
they encounter an unsupported operation in an input constraint;
in turn this may lead to missing vulnerabilities. By contrast, in
our approach we use a search-based meta-heuristic algorithm
to handle unsupported operations.

Code-based security analysis. Code-based security analysis
approaches can be broadly categorized into two types: taint
analysis and symbolic execution. Taint analysis approaches
(such as [31], [32], [35], [49], [50]) check whether application
inputs are used in sinks without passing through known
sanitization functions. However, these approaches tend to
generate many false alarms since they cannot reason about

the implementation of sanitization functions. References [51],
[52] incorporate string analysis into taint analysis, improving
the precision in the analysis of SQLi and XSS vulnerabilities.
The SANER tool [53] and the approaches in [54], [55] reason
about the adequacy of input sanitization code by combining
taint analysis and string constraint solving using finite state
automata operations. Symbolic execution approaches [2], [3],
[5] perform (dynamic) symbolic execution on programs and
generate path conditions. They then use a constraint solver to
check these conditions and determine whether inputs used in
sinks may contain security attack values. These approaches,
which rely on (string) constraint solving, exhibit the same
limitations (e.g., limited support for complex string operations)
of the constraint solvers discussed above.

Search-based test input generation for string data types.
There are a few proposals [24], [26], [56] that apply a search-
based approach (typically genetic algorithms) for generating
test cases in the form of string input values, in the context
of satisfaction of branch coverage criteria. Their goal is to
improve coverage by driving the search for string values, either
with useful seed values [24], [26] or by hybridizing global
search and local search [56]. In our case, attack conditions
(which include full path conditions and attack specifications)
are much more complex than branch conditions and thus we
need to reduce the search space. Since we rely on automata-
based solvers for search space reduction, our search algorithm
works on automata and, as a result, we had to devise a search
strategy that is effective on graph representations. This was the
reason to select Ant Colony Optimization, which resulted in a
significantly different search strategy than the ones proposed
in the above-mentioned approaches.

VII. CONCLUSION AND FUTURE WORK

This work addresses the issue of adding support for (com-
plex) string operations in existing string constraint solvers in
the context of vulnerability detection. We have proposed a
search-driven constraint solving technique that complements
the support for complex string operations provided by any
existing string constraint solver. This technique uses a hybrid
constraint solving procedure based on the Ant Colony Opti-
mization meta-heuristic. The experimental results, based on a
benchmark derived from nine realistic Web applications, show
that our approach, when combined in a state-of-the-art solver,
significantly improves the number of detected vulnerabilities
and solves several cases on which the solver fails when used
stand-alone, while still keeping the execution time affordable
in practice. In the future we plan to integrate our search-driven
string constraint solver in a comprehensive framework for
vulnerability detection, together with state-of-the-art numeric
constraint solvers and automata-based ones.
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