Article (Périodiques scientifiques)
Generalized Information Theory for Hints
RYAN, Peter; Pouly, Marc; Kohlas, Juerg
2013In International Journal of Approximate Reasoning, 54 (1), p. 228-251
Peer reviewed
 

Documents


Texte intégral
Generalized Information Theory for Hints.pdf
Postprint Éditeur (596.79 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Dempster-Shafer theory; Information theory; Theory of Hints
Résumé :
[en] This paper develops a new uncertainty measure for the theory of hints that complies with the established semantics of statistical information theory and further satisfies all classical requirements for such a measure imposed in the literature. The proposed functional decomposes into conversant uncertainty measures and therefore discloses a new interpretation of the latters as well. By abstracting to equivalence classes of hints we transport the new measure to mass functions in Dempster-Shafer theory and analyse its relationship with the aggregate uncertainty, which currently is the only known functional for the Dempster-Shafer theory of evidence that satisfies the same set of properties. Moreover, the perspective of hints reveals that the standard independence notion in Dempster-Shafer theory called non-interactivity corresponds to an amalgamation of probabilistic independence and qualitative independence between frames of discernment. All results in this paper are developed for arbitrary families of compatible frames generalizing the very specialized multi-variate systems that are usually studied in information theory.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
RYAN, Peter ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Pouly, Marc
Kohlas, Juerg
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Generalized Information Theory for Hints
Date de publication/diffusion :
2013
Titre du périodique :
International Journal of Approximate Reasoning
ISSN :
0888-613X
Volume/Tome :
54
Fascicule/Saison :
1
Pagination :
228-251
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 10 mars 2016

Statistiques


Nombre de vues
136 (dont 3 Unilu)
Nombre de téléchargements
210 (dont 2 Unilu)

citations Scopus®
 
8
citations Scopus®
sans auto-citations
7
OpenCitations
 
7
citations OpenAlex
 
11
citations WoS
 
8

Bibliographie


Publications similaires



Contacter ORBilu