Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A Novel Multi-objectivisation Approach for Optimising the Protein Inverse Folding Problem
NIELSEN, Sune Steinbjorn; DANOY, Grégoire; Jurkowski, Wiktor et al.
2015In Applications of Evolutionary Computation: 18th European Conference, EvoApplications 2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings
Peer reviewed
 

Documents


Texte intégral
chp%3A10.1007%2F978-3-319-16549-3_2.pdf
Postprint Éditeur (935 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Inverse Folding Problem; Genetic Algorithm; Multi-objectivisation
Résumé :
[en] In biology, the subject of protein structure prediction is of continued interest, not only to chart the molecular map of the living cell, but also to design proteins of new functions. The Inverse Folding Problem (IFP) is in itself an important research problem, but also at the heart of most rational protein design approaches. In brief, the IFP consists in finding sequences that will fold into a given structure, rather than determining the structure for a given sequence - as in conventional structure prediction. In this work we present a Multi Objective Genetic Algorithm (MOGA) using the diversity-as-objective (DAO) variant of multi-objectivisation, to optimise secondary structure similarity and sequence diversity at the same time, hence pushing the search farther into wide-spread areas of the sequence solution-space. To control the high diversity generated by the DAO approach, we add a novel Quantile Constraint (QC) mechanism to discard an adjustable worst quantile of the population. This DAO-QC approach can efficiently emphasise exploitation rather than exploration to a selectable degree achieving a trade-off producing both better and more diverse sequences than the standard Genetic Algorithm (GA). To validate the final results, a subset of the best sequences was selected for tertiary structure prediction. The super-positioning with the original protein structure demonstrated that meaningful sequences are generated underlining the potential of this work.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences informatiques
Auteur, co-auteur :
NIELSEN, Sune Steinbjorn  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
DANOY, Grégoire  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Jurkowski, Wiktor;  TGAC, Norwich Research Park, Norwich, UK
Jimenez Laredo, Juan Luis;  LITIS, Universite du Havre, Le Havre, France
SCHNEIDER, Reinhard ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Talbi, El-Ghazali
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Novel Multi-objectivisation Approach for Optimising the Protein Inverse Folding Problem
Date de publication/diffusion :
2015
Nom de la manifestation :
18th European Conference on the Applications of Evolutionary Computation
Lieu de la manifestation :
Copenhagen, Danemark
Date de la manifestation :
from 08-04-2015 to 10-04-2015
Manifestation à portée :
International
Titre de l'ouvrage principal :
Applications of Evolutionary Computation: 18th European Conference, EvoApplications 2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 29 février 2016

Statistiques


Nombre de vues
270 (dont 12 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
2

Bibliographie


Publications similaires



Contacter ORBilu