representations up to homotopy; Lie algebroids; higher holonomies
Résumé :
[en] We use Chen's iterated integrals to integrate representations up to homotopy. That is,
we construct an A-infinity functor from the representations up to homotopy of a Lie algebroid A to those of its infinity groupoid. This construction extends the usual integration of representations in Lie theory. We discuss several examples including Lie algebras and Poisson manifolds. The construction is based on an A-infinity version of de Rham's theorem due to Gugenheim. The integration procedure we explain here amounts to extending the construction of parallel transport for superconnections, introduced by Igusa and Block-Smith, to the case of certain differential graded manifolds.
Centre de recherche :
Center for Mathematical Analysis, Geometry and Dynamical Systems, IST Lisbon (Lisbon, Portugal)
Disciplines :
Mathématiques
Auteur, co-auteur :
Arias Abad, Camilo; Universidad Nacional de Colombia en Medellín (Colombia) > Escuela de Matemáticas > Profesor Asistente
SCHATZ, Florian ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
The A_infty de Rham theorem and integration of representations up to homotopy
Swiss National Science Foundation (SNF-grant 200020-121640/1) Erwin Schrödinger Institute (Vienna, Austria) Center for Mathematical Analysis, Geometry and Dynamical Systems, IST Lisbon (Lisbon, Portugal) FCT/POCTI/FEDER through project PTDC/MAT/098936/2008 FCT postdoc grant SFRH/BPD/69197/2010