Bandiera, R., & SCHÄTZ, F. (2017). Eulerian idempotent, pre-Lie logarithm and combinatorics of trees. (1). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/31774. |
SCHÄTZ, F., & Zambon, M. (2017). Deformations of pre-symplectic structures and the Koszul L-infty-algebra. (2). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/31775. |
SCHATZ, F., & Zambon, M. (2017). Equivalences of coisotropic submanifolds. Journal of Symplectic Geometry, 15 (1), 107-149. doi:10.4310/JSG.2017.v15.n1.a4 Peer reviewed |
Andersen, J., Masulli, P., & SCHATZ, F. (2016). Formal connections for families of star products. Communications in Mathematical Physics, 342 (2), 739-768. doi:10.1007/s00220-016-2574-2 Peer Reviewed verified by ORBi |
Bandiera, R., & SCHÄTZ, F. (2016). How to discretize the differential forms on the interval. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/29243. |
Arias Abad, C., & SCHATZ, F. (2015). Flat Z-graded connections and loop spaces. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/22575. |
Arias Abad, C., & SCHATZ, F. (2015). Higher holonomies: comparing two constructions. Differential Geometry and its Applications, 40, 14-42. doi:10.1016/j.difgeo.2015.02.003 Peer Reviewed verified by ORBi |
SCHATZ, F. (2014). Highlights 2013. QGM Highlights 2013, p. 1. |
Crainic, M., Struchiner, I., & SCHATZ, F. (2014). A Survey on Stability and Rigidity Results for Lie algebras. Indagationes Mathematicae, 25 (5), 957-976. doi:10.1016/j.indag.2014.07.015 Peer Reviewed verified by ORBi |
Arias Abad, C., & SCHATZ, F. (2014). Holonomies for connections with values in L_infty algebras. Homology, Homotopy and Applications, 16 (1), 89-118. doi:10.4310/HHA.2014.v16.n1.a6 Peer Reviewed verified by ORBi |
Arias Abad, C., & SCHATZ, F. (2014). Reidemeister torsion for flat superconnections. Journal of Homotopy and Related Structures, 9 (2), 579-606. doi:10.1007/s40062-013-0052-5 Peer Reviewed verified by ORBi |
Arias Abad, C., & SCHATZ, F. (2013). The A_infty de Rham theorem and integration of representations up to homotopy. International Mathematics Research Notices, 2013 (16), 3790-3855. doi:10.1093/imrn/rns166 Peer Reviewed verified by ORBi |
SCHATZ, F., & Zambon, M. (2013). Deformations of coisotropic submanifolds for fibrewise entire Poisson structures. Letters in Mathematical Physics, 103 (7), 777-791. doi:10.1007/s11005-013-0614-9 Peer Reviewed verified by ORBi |
Cattaneo, A., & SCHATZ, F. (2012). Introduction to supergeometry. Reviews in Mathematical Physics, 23 (6), 669-690. doi:10.1142/S0129055X11004400 Peer Reviewed verified by ORBi |
SCHATZ, F. (13 June 2011). Lie theory for representations up to homotopy [Paper presentation]. Poisson geometry and applications, Figueira da Foz, Portugal. |
Arias Abad, C., & SCHATZ, F. (2011). Deformations of Lie brackets and representations up to homotopy. Indagationes Mathematicae, 22, 27-54. doi:10.1016/j.indag.2011.07.003 Peer Reviewed verified by ORBi |
SCHATZ, F. (2011). Moduli of coisotropic Sections and the BFV-complex. Asian Journal of Mathematics, 15 (1), 71 - 100. doi:10.4310/AJM.2011.v15.n1.a5 Peer reviewed |
SCHATZ, F. (2010). Invariance of the BFV complex. Pacific Journal of Mathematics, 248 (2), 453-474. doi:10.2140/pjm.2010.248.453 Peer Reviewed verified by ORBi |
SCHATZ, F. (2009). BFV-complex and higher homotopy structures. Communications in Mathematical Physics, 286 (2), 399–443. doi:10.1007/s00220-008-0705-0 Peer Reviewed verified by ORBi |
Cattaneo, A., & SCHATZ, F. (2008). Equivalences of Higher Derived Brackets. Journal of Pure and Applied Algebra, 212 (11), 2450-2460. doi:10.1016/j.jpaa.2008.03.013 Peer Reviewed verified by ORBi |