Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Contact-State Recognition of Compliant Motion Robots Using Expectation Maximization-Based Gaussian Mixtures
JASIM, Ibrahim; PLAPPER, Peter
2014In Joint 45th International Symposium on Robotics (ISR 2014) and 8th German Conference on Robotics (ROBOTIK 2014)
Peer reviewed
 

Documents


Texte intégral
tex_template_Paper1.pdf
Preprint Auteur (1.6 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Contact-State; Compliant Motion Robots; Force-Controlled Robots; Gaussian Mixtures; Robotic Assembly
Résumé :
[en] In this article, we address the problem of Contact-State (CS) recognition for force-controlled robotic tasks. At first, the wrench (Cartesian forces and torques) and pose (Cartesian position and orientation) signals of the manipulated object, in different Contact Formations (CFs) of a task, are collected. Then in the framework of the Bayesian classification, the Expectation Maximization-based Gaussian Mixtures Model (EM-GMM) is used in building efficient CFs classifiers. The use of the EM-GMM in developing the captured signals models accommodates possible signals non-stationarity, i.e. signals abnormal distribution, and enhanced recognition performance would be resulted. Experiments are performed on a KUKA Lightweight Robot (LWR) doing the cube-in-corner assembly task, which is a rigid cube object interacting with an environment composed of three orthogonal planes, and different CFs are considered. From the experimental results, the EM-GMM is shown to have an excellent recognition performance with an enhanced computational time. In order to compare the EM-GMM with the available CF recognition schemes, we developed the corresponding CF classifiers using the Gravitational Search-Fuzzy Clustering Algorithm (GS-FCA), Stochastic Gradient Boosting (SGB), and the Conventional Fuzzy Classifier(CFC) approaches. From the comparison results it is obvious that the EM-GMM scheme is outperforming the rest.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
JASIM, Ibrahim ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
PLAPPER, Peter ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Contact-State Recognition of Compliant Motion Robots Using Expectation Maximization-Based Gaussian Mixtures
Date de publication/diffusion :
02 juin 2014
Nom de la manifestation :
Joint 45th International Symposium on Robotics (ISR 2014) and 8th German Conference on Robotics (ROBOTIK 2014)
Date de la manifestation :
2-6-2014 to 3-6-2014
Manifestation à portée :
International
Titre de l'ouvrage principal :
Joint 45th International Symposium on Robotics (ISR 2014) and 8th German Conference on Robotics (ROBOTIK 2014)
Maison d'édition :
VDE
ISBN/EAN :
978-3-8007-3601-0
Peer reviewed :
Peer reviewed
Projet FnR :
FNR2955286 - Self-adaptive Fuzzy Control For Robotic Peg-in-hole Assembly Process, 2011 (01/05/2012-30/04/2016) - Ibrahim Fahad Jasim Ghalyan
Intitulé du projet de recherche :
R-AGR-0071 - IRP13 - PROBE (20130101-20151231) - PLAPPER Peter
Disponible sur ORBilu :
depuis le 25 juin 2014

Statistiques


Nombre de vues
266 (dont 5 Unilu)
Nombre de téléchargements
158 (dont 6 Unilu)

citations Scopus®
 
12
citations Scopus®
sans auto-citations
11

Bibliographie


Publications similaires



Contacter ORBilu