Thèse de doctorat (Mémoires et thèses)
Geometry and Stochastic Calculus on Wasserstein spaces
SELINGER, Christian
2010
 

Documents


Texte intégral
Selinger-Thesis.pdf
Postprint Auteur (1.23 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Optimal transport Histograms; Regularized Laplacian Simplex; Wasserstein space Infinite dimensional diffusion process 8
Résumé :
[en] The main object of interest in this thesis is P(M) – the space of probability measures on a manifold endowed with the Wasserstein distance: In chapter 1 we give the most basic topological facts and introduce a locally convex topology on P∞ (the space of smooth positive densities) to identify this space as infinite dimensional manifold. In chapter 2 we develop further the Riemannian calculus on P resp. P∞ where the different approaches (calculus of variation, Riemannian geometry on spaces of smooth mappings) are shown to be equivalent on P∞ . In chapter 3 we restrict ourself tomeasures on the unit circle and give calculations of renormalized Laplacians on the respective Wasserstein spaces, seen as the Hilbert-Schmidt trace of the Hessian: This trace depends on a real parameter s and has an analytic continuation as a function of s ∈ C \ {1} which enables us to calculate evaluate at s = 0: The square-field operator of the Wassersein Laplacian equals the squared Wasserstein gradient times the volume of the unit circle. In chapter 4 we give an approximation of the Wasserstein space P ([0, 1]) by spaces of box-type measures which are geodesically convex and can be mapped isometrically via a mapping simplex , where a sticky diffusion process is constructed. We show that image of this processes constitute a tight family in C(R_+
[en] P ([0, 1])) with respect to the Skorohod topology. In the last chapter we restrict ourselves to the space of histograms on the unit interval. We calculate the Wasserstein distances numerically and obtain a Riemannian metric on the simplex. We investigate explosion behaviour of the respective diffusion processes in dimension 1 and 2.
Disciplines :
Mathématiques
Auteur, co-auteur :
SELINGER, Christian;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Langue du document :
Anglais
Titre :
Geometry and Stochastic Calculus on Wasserstein spaces
Date de soutenance :
08 novembre 2010
Institution :
Unilu - University of Luxembourg, Luxembourg, Luxembourg
Intitulé du diplôme :
Docteur en Mathématiques
Promoteur :
Disponible sur ORBilu :
depuis le 11 février 2014

Statistiques


Nombre de vues
245 (dont 15 Unilu)
Nombre de téléchargements
1439 (dont 12 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu