Cheng, L.-J., THALMAIER, A., & Wang, F.-Y. (30 September 2024). Hessian estimates for Dirichlet and Neumann eigenfunctions of Laplacian. International Mathematics Research Notices, 2024 (21), 13563-13585. doi:10.48550/arXiv.2210.09593 Peer Reviewed verified by ORBi |
Cheng, L.-J., THALMAIER, A., & Wang, F.-Y. (09 October 2023). Covariant Riesz transform on differential forms for 1<p\leq2. Calculus of Variations and Partial Differential Equations, 62 (9), 245. doi:10.1007/s00526-023-02583-7 Peer Reviewed verified by ORBi |
Cheng, L.-J., & THALMAIER, A. (21 September 2023). Dimension-free Harnack inequalities for conjugate heat equations and their applications to geometric flows. Analysis and PDE, 16 (7), 1589-1620. doi:10.2140/apde.2023.16.1589 Peer Reviewed verified by ORBi |
Cheng, L.-J., THALMAIER, A., & Wang, F.-Y. (01 September 2023). Some inequalities on Riemannian manifolds linking Entropy, Fisher information, Stein discrepancy and Wasserstein distance. Journal of Functional Analysis, 285 (5), 109997. doi:10.1016/j.jfa.2023.109997 Peer Reviewed verified by ORBi |
Chen, Q.-Q., Cheng, L.-J., & THALMAIER, A. (June 2023). Bismut-Stroock Hessian formulas and local Hessian estimates for heat semigroups and harmonic functions on Riemannian manifolds. Stochastic Partial Differential Equations: Analysis and Computations, 11 (2), 685-713. doi:10.1007/s40072-022-00241-1 Peer reviewed |
Cheng, L.-J., THALMAIER, A., & Wang, F.-Y. (2023). Second Order Bismut formulae for Neumann semigroups on manifolds. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/52488. doi:10.48550/arXiv.2210.09607 |
Baudoin, F., Grong, E., Neel, R., & THALMAIER, A. (2022). Variations of the sub-Riemannian distance on Sasakian manifolds with applications to coupling. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/53331. |
CHENG, L. J., Grong, E., & THALMAIER, A. (September 2021). Functional inequalities on path space of sub-Riemannian manifolds and applications. Nonlinear Analysis: Theory, Methods and Applications, 210 (112387), 1-30. doi:10.1016/j.na.2021.112387 Peer reviewed |
Cao, J., Cheng, L.-J., & THALMAIER, A. (2021). Hessian heat kernel estimates and Calderón-Zygmund inequalities on complete Riemannian manifolds. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/47902. |
CHENG, L. J., THALMAIER, A., & Zhang, S.-Q. (2021). Exponential contraction in Wasserstein distance on static and evolving manifolds. Revue Roumaine de Mathématiques Pures et Appliquées, 66 (1), 107-129. Peer reviewed |
Arnaudon, M., THALMAIER, A., & Wang, F.-Y. (October 2020). Gradient Estimates on Dirichlet and Neumann Eigenfunctions. International Mathematics Research Notices, 2020 (20), 7279-7305. doi:10.1093/imrn/rny208 Peer Reviewed verified by ORBi |
Baudoin, F., Grong, E., Kuwada, K., Neel, R., & THALMAIER, A. (13 August 2020). Radial processes for sub-Riemannian Brownian motions and applications. Electronic Journal of Probability, 25 (paper no. 97), 1-17. doi:10.1214/20-EJP501 Peer Reviewed verified by ORBi |
Güneysu, B., & THALMAIER, A. (28 May 2020). Scattering theory without injectivity radius assumptions, and spectral stability for the Ricci flow. Annales de l'Institut Fourier, 70 (1), 437-456. doi:10.5802/aif.3316 Peer Reviewed verified by ORBi |
THOMPSON, J., & THALMAIER, A. (May 2020). Exponential integrability and exit times of diffusions on sub-Riemannian and metric measure spaces. Bernoulli, 26 (3), 2202-2225. doi:10.3150/19-BEJ1190 Peer reviewed |
Baudoin, F., Grong, E., Kuwada, K., & THALMAIER, A. (August 2019). Sub-Laplacian comparison theorems on totally geodesic Riemannian foliations. Calculus of Variations and Partial Differential Equations, 58:130 (4), 1-38. doi:10.1007/s00526-019-1570-8 Peer Reviewed verified by ORBi |
Grong, E., & THALMAIER, A. (August 2019). Stochastic completeness and gradient representations for sub-Riemannian manifolds. Potential Analysis, 51 (2), 219-254. doi:10.1007/s11118-018-9710-x Peer Reviewed verified by ORBi |
THALMAIER, A., & THOMPSON, J. (March 2019). Derivative and divergence formulae for diffusion semigroups. Annals of Probability, 47 (2), 743-773. doi:10.1214/18-AOP1269 Peer Reviewed verified by ORBi |
CHENG, L. J., THALMAIER, A., & THOMPSON, J. (November 2018). Uniform gradient estimates on manifolds with a boundary and applications. Analysis and Mathematical Physics, 8 (4), 571-588. doi:10.1007/s13324-018-0228-6 Peer Reviewed verified by ORBi |
CHENG, L. J., THALMAIER, A., & THOMPSON, J. (13 July 2018). Functional inequalities on manifolds with non-convex boundary. Science China Mathematics, 61 (8), 1421-1436. doi:10.1007/s11425-017-9344-x Peer Reviewed verified by ORBi |
CHENG, L. J., THALMAIER, A., & THOMPSON, J. (09 May 2018). Quantitative C1-estimates by Bismut formulae. Journal of Mathematical Analysis and Applications, 465 (2), 803-813. doi:10.1016/j.jmaa.2018.05.025 Peer Reviewed verified by ORBi |
CHENG, L. J., & THALMAIER, A. (27 February 2018). Evolution systems of measures and semigroup properties on evolving manifolds. Electronic Journal of Probability, 23 (20), 1-27. doi:10.1214/18-EJP147 Peer Reviewed verified by ORBi |
CHENG, L. J., & THALMAIER, A. (15 February 2018). Spectral gap on Riemannian path space over static and evolving manifolds. Journal of Functional Analysis, 274 (4), 959-984. doi:10.1016/j.jfa.2017.12.004 Peer Reviewed verified by ORBi |
CHENG, L. J., & THALMAIER, A. (2018). Characterization of pinched Ricci curvature by functional inequalities. Journal of Geometric Analysis, 28 (3), 2312-2345. doi:10.1007/s12220-017-9905-1 Peer Reviewed verified by ORBi |
GRONG, E., & THALMAIER, A. (2016). Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: Part II. Mathematische Zeitschrift, 282 (1), 131-164. doi:10.1007/s00209-015-1535-3 Peer Reviewed verified by ORBi |
GRONG, E., & THALMAIER, A. (2016). Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: Part I. Mathematische Zeitschrift, 282 (1), 99-130. doi:10.1007/s00209-015-1534-4 Peer Reviewed verified by ORBi |
THALMAIER, A. (2016). Geometry of subelliptic diffusions. In D. Barilari, U. Boscain, ... M. Sigalotti (Eds.), Geometry, Analysis and Dynamics on sub-Riemannian Manifolds. Volume II (pp. 85-169). Zürich, Switzerland: EMS Publishing House. doi:10.4171/163 Peer reviewed |
Guo, H., PHILIPOWSKI, R., & THALMAIER, A. (15 October 2015). On gradient solitons of the Ricci-Harmonic flow. Acta Mathematica Sinica, 31 (11), 1798-1804. doi:10.1007/s10114-015-4446-7 Peer Reviewed verified by ORBi |
GUO, H., PHILIPOWSKI, R., & THALMAIER, A. (September 2015). Martingales on manifolds with time-dependent connection. Journal of Theoretical Probability, 28 (3), 1038-1062. doi:10.1007/s10959-013-0536-6 Peer Reviewed verified by ORBi |
GUO, H., PHILIPOWSKI, R., & THALMAIER, A. (February 2015). An entropy formula for the heat equation on manifolds with time-dependent metric, application to ancient solutions. Potential Analysis, 42 (2), 483-497. doi:10.1007/s11118-014-9442-5 Peer Reviewed verified by ORBi |
PHILIPOWSKI, R., & THALMAIER, A. (2015). Heat equation in vector bundles with time-dependent metric. Journal of the Mathematical Society of Japan, 67 (4), 1759-1769. doi:10.2969/jmsj/06741759 Peer Reviewed verified by ORBi |
GUO, H., PHILIPOWSKI, R., & THALMAIER, A. (November 2014). A stochastic approach to the harmonic map heat flow on manifolds with time-dependent Riemannian metric. Stochastic Processes and Their Applications, 124 (11), 3535-3552. doi:10.1016/j.spa.2014.06.004 Peer reviewed |
Arnaudon, M., THALMAIER, A., & Wang, F.-Y. (2014). Equivalent Harnack and gradient inequalities for pointwise curvature lower bound. Bulletin des Sciences Mathématiques, 138 (5), 643-655. doi:10.1016/j.bulsci.2013.11.001 Peer Reviewed verified by ORBi |
GUO, H., PHILIPOWSKI, R., & THALMAIER, A. (November 2013). A note on Chow's entropy functional for the Gauss curvature flow. Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, 351 (21-22), 833-835. doi:10.1016/j.crma.2013.10.003 Peer reviewed |
GUO, H., PHILIPOWSKI, R., & THALMAIER, A. (2013). Entropy and lowest eigenvalue on evolving manifolds. Pacific Journal of Mathematics, 264 (1), 61-81. doi:10.2140/pjm.2013.264.61 Peer reviewed |
Arnaudon, M., & THALMAIER, A. (2012). The differentiation of hypoelliptic diffusion semigroups. In Don Burkholder: A Collection of Articles in His Honor (pp. 497-523). University of Illinois at Urbana-Champaign. Peer reviewed |
Arnaudon, M., & THALMAIER, A. (2011). Brownian motion and negative curvature. In Random walks, boundaries and spectra (pp. 143-161). Birkhäuser/Springer Basel AG, Basel. doi:10.1007/978-3-0346-0244-0_8 Peer reviewed |
Arnaudon, M., Coulibaly, K. A., & THALMAIER, A. (2011). Horizontal diffusion in C¹ path space. In Séminaire de Probabilités XLIII (pp. 73-94). Berlin, Unknown/unspecified: Springer. doi:10.1007/978-3-642-15217-7_2 Peer reviewed |
THALMAIER, A. (2011). Paul Malliavin (10 September 1925 - 3 June 2010). European Mathematical Society. Newsletter, 81, 17-20. doi:10.4171/NEWS |
THALMAIER, A., & Wang, F.-Y. (2011). A stochastic approach to a priori estimates and Liouville theorems for harmonic maps. Bulletin des Sciences Mathématiques, 135 (6-7), 816-843. doi:10.1016/j.bulsci.2011.07.014 Peer Reviewed verified by ORBi |
Arnaudon, M., & THALMAIER, A. (2010). Li-Yau type gradient estimates and Harnack inequalities by stochastic analysis. In Probabilistic approach to geometry (pp. 29-48). Tokyo, Japan: Math. Soc. Japan. Peer reviewed |
Arnaudon, M., & THALMAIER, A. (2010). The differentiation of hypoelliptic diffusion semigroups. Illinois Journal of Mathematics, 54 (4), 1285-1311. doi:10.1215/ijm/1348505529 Peer Reviewed verified by ORBi |
Airault, H., Malliavin, P., & THALMAIER, A. (2010). Brownian measures on Jordan-Virasoro curves associated to the Weil-Petersson metric. Journal of Functional Analysis, 259 (12), 3037-3079. doi:10.1016/j.jfa.2010.08.002 Peer reviewed |
Fang, S., Luo, D., & THALMAIER, A. (2010). Stochastic differential equations with coefficients in Sobolev spaces. Journal of Functional Analysis, 259 (5), 1129-1168. doi:10.1016/j.jfa.2010.02.014 Peer reviewed |
Arnaudon, M., THALMAIER, A., & Ulsamer, S. (2009). Existence of non-trivial harmonic functions on Cartan-Hadamard manifolds of unbounded curvature. Mathematische Zeitschrift, 263 (2), 369-409. doi:10.1007/s00209-008-0422-6 Peer Reviewed verified by ORBi |
Arnaudon, M., THALMAIER, A., & Wang, F.-Y. (2009). Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds. Stochastic Processes and Their Applications, 119 (10), 3653-3670. doi:10.1016/j.spa.2009.07.001 Peer reviewed |
Arnaudon, M., Coulibaly, K. A., & THALMAIER, A. (2008). Brownian motion with respect to a metric depending on time: definition, existence and applications to Ricci flow. Comptes Rendus. Mathématique, 346 (13-14), 773-778. doi:10.1016/j.crma.2008.05.004 Peer reviewed |
Mortini, R., & THALMAIER, A. (2007). Bild von Möglichem und Unmöglichem. Luxemburger Wort, p. 16. |
Arnaudon, M., Driver, B. K., & THALMAIER, A. (2007). Gradient estimates for positive harmonic functions by stochastic analysis. Stochastic Processes and Their Applications, 117 (2), 202-220. doi:10.1016/j.spa.2006.07.002 Peer reviewed |
Malliavin, P., & THALMAIER, A. (2006). Stochastic calculus of variations in mathematical finance. Berlin, Unknown/unspecified: Springer-Verlag. doi:10.1007/3-540-30799-0 |
Arnaudon, M., THALMAIER, A., & Wang, F.-Y. (2006). Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bulletin des Sciences Mathématiques, 130 (3), 223-233. doi:10.1016/j.bulsci.2005.10.001 Peer Reviewed verified by ORBi |
Airault, H., Malliavin, P., & THALMAIER, A. (2004). Canonical Brownian motion on the space of univalent functions and resolution of Beltrami equations by a continuity method along stochastic flows. Journal de Mathématiques Pures et Appliquées, 83 (8), 955-1018. doi:10.1016/j.matpur.2004.06.001 Peer Reviewed verified by ORBi |
Cruzeiro, A. B., Malliavin, P., & THALMAIER, A. (2004). Geometrization of Monte-Carlo numerical analysis of an elliptic operator: strong approximation. Comptes Rendus. Mathématique, 338 (6), 481-486. doi:10.1016/j.crma.2004.01.007 Peer reviewed |
THALMAIER, A., & Wang, F.-Y. (2004). Derivative estimates of semigroups and Riesz transforms on vector bundles. Potential Analysis, 20 (2), 105-123. doi:10.1023/A:1026310604320 Peer Reviewed verified by ORBi |
Arnaudon, M., & THALMAIER, A. (2003). Yang-Mills fields and random holonomy along Brownian bridges. Annals of Probability, 31 (2), 769-790. doi:10.1214/aop/1048516535 Peer reviewed |
Arnaudon, M., & THALMAIER, A. (2003). Horizontal martingales in vector bundles. In Séminaire de Probabilités XXXVI (pp. 419-456). Berlin, Germany: Springer. doi:10.1007/978-3-540-36107-7_22 Peer reviewed |
Barucci, E., Malliavin, P., Mancino, M. E., Renò, R., & THALMAIER, A. (2003). The price-volatility feedback rate: an implementable mathematical indicator of market stability. Math. Finance, 13 (1), 17-35. doi:10.1111/1467-9965.t01-1-00003 Peer reviewed |
Arnaudon, M., Plank, H., & THALMAIER, A. (2003). A Bismut type formula for the Hessian of heat semigroups. Comptes Rendus. Mathématique, 336 (8), 661-666. doi:10.1016/S1631-073X(03)00123-7 Peer reviewed |
Malliavin, P., & THALMAIER, A. (2003). Numerical error for SDE: asymptotic expansion and hyperdistributions. Comptes Rendus. Mathématique, 336 (10), 851-856. doi:10.1016/S1631-073X(03)00189-4 Peer reviewed |
Arnaudon, M., Bauer, R. O., & THALMAIER, A. (2002). A probabilistic approach to the Yang-Mills heat equation. Journal de Mathématiques Pures et Appliquées, 81 (2), 143-166. doi:10.1016/S0021-7824(02)01254-0 Peer Reviewed verified by ORBi |
Airault, H., Malliavin, P., & THALMAIER, A. (2002). Support of Virasoro unitarizing measures. Comptes Rendus. Mathématique, 335 (7), 621-626. doi:10.1016/S1631-073X(02)02539-6 Peer reviewed |
Driver, B. K., & THALMAIER, A. (2001). Heat equation derivative formulas for vector bundles. Journal of Functional Analysis, 183 (1), 42-108. doi:10.1006/jfan.2001.3746 Peer reviewed |
Arnaudon, M., & THALMAIER, A. (1999). Bismut type differentiation of semigroups. In Probability theory and mathematical statistics (pp. 23-32). Vilnius: TEV - Utrecht: VSP. Peer reviewed |
Arnaudon, M., Li, X.-M., & THALMAIER, A. (1999). Manifold-valued martingales, changes of probabilities, and smoothness of finely harmonic maps. Annales de l'Institut Henri Poincare (B) Probability & Statistics, 35 (6), 765-791. doi:10.1016/S0246-0203(99)00114-4 Peer reviewed |
Arnaudon, M., & THALMAIER, A. (1998). Stability of stochastic differential equations in manifolds. In Séminaire de Probabilités, XXXII (pp. 188-214). Berlin, Germany: Springer. doi:10.1007/BFb0101758 Peer reviewed |
THALMAIER, A. (1998). Some remarks on the heat flow for functions and forms. Electronic Communications in Probability, 3, 43-49. doi:10.1214/ECP.v3-992 Peer Reviewed verified by ORBi |
Arnaudon, M., & THALMAIER, A. (1998). Complete lifts of connections and stochastic Jacobi fields. Journal de Mathématiques Pures et Appliquées, 77 (3), 283-315. doi:10.1016/S0021-7824(98)80071-8 Peer Reviewed verified by ORBi |
THALMAIER, A., & Wang, F.-Y. (1998). Gradient estimates for harmonic functions on regular domains in Riemannian manifolds. Journal of Functional Analysis, 155 (1), 109-124. doi:10.1006/jfan.1997.3220 Peer reviewed |
THALMAIER, A. (1997). On the differentiation of heat semigroups and Poisson integrals. Stochastics and Stochastics Reports, 61 (3-4), 297-321. doi:10.1080/17442509708834123 Peer Reviewed verified by ORBi |
THALMAIER, A. (1996). Martingales on Riemannian manifolds and the nonlinear heat equation. In Stochastic analysis and applications (pp. 429-440). World Sci. Publ., River Edge, NJ. Peer reviewed |
THALMAIER, A. (1996). Brownian motion and the formation of singularities in the heat flow for harmonic maps. Probability Theory and Related Fields, 105 (3), 335-367. doi:10.1007/BF01192212 Peer Reviewed verified by ORBi |
Hackenbroch, W., & THALMAIER, A. (1994). Stochastische Analysis. (Mathematische Leitfäden). Wiesbaden, Germany: Vieweg+Teubner Verlag. doi:10.1007/978-3-663-11527-4 |
THALMAIER, A. (1989). Asymptotik Brownscher Bewegungen im Zusammenhang mit geometrischen und potentialtheoretischen Eigenschaften Riemannscher Mannigfaltigkeiten negativer Krümmung. Regensburg, Germany: Universität Regensburg Fachbereich Mathematik. |