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Chapter 0

Introduction

Damit der Mensch sich irre,
muß er schon mit der Menschheit konform urteilen.

L. Wittgenstein: Über Gewissheit.

The main object of interest in the present thesis is P (M) – the space of proba-
bility measures on a Riemannian manifold (M, g) endowed with the Wasserstein
distance: Let us fix µ and ν in P (M) and give ourselves a (lower-semicontinuous)
cost function c : M × M → R+ ∪ {+∞}. We denote by Π the set of all
product probability measures π on M ×M such that π(E ×M) = µ(E) resp.
π(M × E) = ν(E) for all Borel measurable sets E, in other words Π denotes
the set of all product probability measures with fixed marginals µ and ν. The
problem of optimal transport is to find

inf
µ∈Π

∫

M×M
c(x, y)π(dx, dy). (1)

In the 1940s Kantorovich developed a technique (see [Vil08] and [RR98] for a
contemporary account on Kantorovich’s contribution) that led to the following
conclusion: If M happens to be a Polish space, i.e. a complete separable metric
space and c a lower-semicontinuous cost function, then there exists a unique
optimal transport plan π̃ such that

∫

M×M
c(x, y)π̃(dx, dy)

is minimal. If for some p ∈ N we have c(x, y) = dg(x, y)
p, then

dW (µ, ν)p = inf
π∈Π

∫

M×M
dg(x, y)

pπ(dx, dy)

is a metric, the so-called p-Wasserstein1 distance on the space of probability
measures. The space (P p(M), dW ) -defined as the space of all Borel probability

1It was the Soviet mathematician L. N. Vasersthein who used the 1-Wasserstein distance

in his 1969 publication on ”Markov processes over denumerable products of spaces describing

large system of automata”; even though the earliest and most foundational contributions to

this subject are due to Kantorovich, we stick to the misspelled and historically inacurate

naming which appears throughout the contemporary literature.
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CHAPTER 0. INTRODUCTION

measures with finite p-th moment- is called p-Wasserstein space. If not stated
otherwise in this work we assume that M is a complete, simply connected Rie-
mannian manifold without boundary. Additionnally we will restrict ourselves
to the 2-Wasserstein distance and henceforth omit any superscripts, i.e. if not
stated otherwise (P (M), dW ) denotes the 2-Wasserstein space over a complete,
simply connected Riemannian manifold without boundary.
If we restrict ourselves to Pac, the space of absolutely continuous probability
measures, it was proved by [Bre91] and [McC01] (using Kantorovich’s duality
to prove a polar factorization of vector valued maps) that the optimal transport
plan π̃ is actually an optimal transport map, i.e.

π̃(dx, dy) = (id× T )#µ
for T being a µ-almost unique map from M to M which has the following form

T (x) = expx(−∇ϕ(x)),
where ϕ is a µ-almost unqiue convex function on M . As a corollary it is shown
that T̃ (x) = expx(−∇ϕ∗(x)) is the inverse optimal transport map from ν to µ,
∗ means the Legendre transform with respect to the Riemannian metric g.

In the last decade Wasserstein spaces have come in touch with many differ-
ent areas of mathematics:

• In the field of PDEs it was possible to prove that a huge class of diffu-
sion equations happens to be gradient flow equations (see [AGS08]) on
P (M) which made it possible to show contractivity for the corresponding
diffusion semigroups and theorems on logarithmic Sobolev and Poincaré
inequalities (see [Vil08]).

• In the field of metric geometry the convexity properties of Boltzmann
and Renyi entropies along Wasserstein geodesics (where the underlying
space M is not any longer a Riemannian manifold but just a geodesi-
cally complete length space) led to a consistent generalization of lower
Ricci curvature bounds on metric spaces which is stable under Gromov-
Hausdorff convergence of families of metric spaces (see [Stu06a], [Stu06b]
and [LV09]).

• In the field of infinite differential geometry [Ott01] introduced for the
first time the subspace P∞(M) of smooth, positive probability densities
on M = Rd as infinite-dimensional Riemannian manifold and calculated
geodesic equations and sectional curvature bounds on this space. In the
sequal [Lot08] developed formulas for Riemannian curvature on P∞(M) in
case that M is a complete, simply-connected Riemannian manifold with-
out boundary and [GKP10] made clear how differential forms on Wasser-
stein spaces look like and proved that the first deRham cohomology group
vanishes on P (Rd).

• In the field of stochastic analysis it was [SvR09] who constructed a con-
tinuous time Markov process Xt which is reversible with respect to the
so-called entropic measure Pβ on P ([0, 1)) resp. P ([0, 1]). Since the tran-
sition semi-group pt(x, dy) satisfies the following short-time asymptotics

lim
t↓0

t log

∫

A

∫

B

pt(x, dy)P
β(dx) = −dW (A,B)2

2
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CHAPTER 0. INTRODUCTION

for Borel subsets A and B of P ([0, 1)) resp. P ([0, 1]) (with respect to the
Wasserstein topology) and the square-field operator with respect to the
correponding generator equals the square norm of the Wasserstein gradi-
ent, the processXt is called Wasserstein diffusion. The entire construction
of this process relies on Dirichlet forms on the space of non-decreasing
functions from the interval to itself: this space and its differentiable struc-
ture can be mapped isometrically to the Wasserstein space. The Dirichlet
form and the integration by parts formula involve the entropic measure
Qβ, which is nothing but the measure subject to the Dirichlet process. It
defines Pβ as the image under the forementioned isometry. The resulting
process is then mapped to the space of probability measures.

In this thesis several of the above mentioned areas are treated:
In chapter 1 we give the most basic topological facts on the interplay between
weak convergence and Wasserstein distance on P , additionally we introduce a
locally convex topology on P∞ and identify this space as infinite dimensional
manifold in the sense of [KM97].
In chapter 2 we develop further the Riemannian calculus on P resp. P∞ where
the different approaches (calculus of variation, Riemannian geometry on spaces
of smooth mappings and analysis on metric spaces) are shown to be equivalent
on P∞.
In chapter 3 we restrict ourself to tori as underlying manifolds and give calcu-
lations of renormalized (connection) Laplacians on the respective Wasserstein
spaces, seen as the Hilbert-Schmidt trace of the Hessian: This stems from the
fact that the only locally finite translation invariant measure on any Banach
space is the trivial measure, which applies also to P∞ ⊂ P , consequently we
cannot give a proper meaning to neither the Hodge Laplacian nor to the usual
connection Laplacian. The forementioned Hilbert-Schmidt trace depends on a
real parameter s > 3/2. When calculating explicitely this trace for the Wasser-
stein space above the unit circle we are able to give the analytic continuation
of the trace as a function of s ∈ C \ {1}. This analytic continuation allows us
to calculate the value of the trace at s = 0: It is shown that the resulting oper-
ator ∆P∞(T1) has a square-field operator which equals the squared Wasserstein
gradient times the volume of the unit circle.
In chapter 4 we give an approximation of the Wasserstein space P ([0, 1]) by
spaces of box-type measures (i.e. probability densities which are piecewise con-
stant and have constant weight on each set of any n-size partition of the inter-
val). This space is geodesically convex (in the sense of Wasserstein geometry)
and can be mapped isometrically (via a mapping m−1) to the (n − 1)-simplex
where a sticky diffusion process Xn

t (with respect to a non-Euclidean metric) in
the spirit of Ikeda-Watanabe is constructed. We show that the family of pro-
cesses {m(Xn

t );n ∈ N} is tight in C(R+;P ([0, 1])) with respect to the Skorohod
topology.
In the last chapter we restrict ourselves to the space of histograms on the unit
interval (i.e. probability densities which are piecewise constant and have vary-
ing weights; here the subsets of the partition are of uniform length). This space
is not geodesically convex (in the Wasserstein sense) but we can calculate the
Wasserstein distances numerically and obtain again a Riemannian metric on
the n-simplex. We investigate explosion behaviour of the respective diffusion
processes in dimension 1 and 2.
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CHAPTER 0. INTRODUCTION

The present thesis lacks in each of its chapters of ground-breaking results –
it is still very much work in progress, we mention therefore the most important
open questions:
The main open issues in chapter 3 is the question in how far we can general-
ize the regularization procedure to Wasserstein spaces above arbitrary compact
manifolds and if one can use this procedure to give a theory of stochastic flows
with interaction as sketched in section 3.3 – an issue which has been worked
on by LeJan and Raimond with completely different techniques (see the survey
article [LR05] for Brownian flows on the unit circle and [LR04]). Another inter-
esting question is if the regularization procedure can produce explicit formulas
for a regularized Ricci curvature on Wasserstein spaces.
In chapter 4 the main issue is the identification of the limiting process: How far
is its generator related to the regularized Wasserstein Laplacian?
In chapter 5 the unhandy Riemannian metrics obtained by projecting Wasser-
stein geodesics to the space of histograms give completely different boundary
behaviour of the corresponding Brownian motion when comparing only dimen-
sion 1 and dimension 2. Since computational issues are still far behind the
achievements of the abstract theory of optimal transport it would be interesting
to shed more light on this question.

Acknowledgements. The author would like to thank first of all Anton Thal-
maier for constant institutional and mathematical support at the university of
Luxembourg. Karl-Theodor Sturm and Josef Teichmann are kindly acknowl-
edged for discussions on the subject at various occasions. Max-Konstantin von
Renesse is kindly thanked for sharing unpublished ideas and for collaboration
on chapter three and four.
Of course I am indebted to my parents and my sister for constant moral backup.
I would like to thank Svetlana Adjoua Coffi for being with me. Thanks to
Stephan Sturm, Kolehe Abdoulaye Coulibaly, Nicolas Juillet, Hendrik Weber,
Hans and Thomas Schoiswohl, Johanna Moser, Daniel Kohlmeigner, Andreas
Hutterer, Bruno Mounikou, Nicolas Genest, Ninel Kameraz-Kos, Ilona Kryszkiewicz,
Fatoumata Faye, Jean-François Grassineau, Yero Bobo Bah and all those I for-
got for discussions on mathematics, birds, fish, gods and poetry, for hiking
the mountains, for making and teaching me music and for cooking and eating
together.
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Chapter 1

Topologies of probability
measures

In this chapter we will introduce the space of all probability measures on a
Polish space and its various subsets, among them the space of smooth, positive
probability densities on a compact Riemannian manifold. In addition to the
weak topology we put on the latter a coarser topology: the final topology with
respect to all smooth curves into the space of smooth, positive densities. In
contrast to the weak topology, which makes the space of all probability mea-
sures on a compact space itself into a Polish space, the so-called topology of
smooth curves is a priori only definied on he space of smooth, positive probabil-
ity densities; and this subspace is not complete for the weak topology. But from
the point of view of infinite-dimensional differential geometry, the topology of
smooth curves makes the space of smooth, positive densities into a topological
(and even smooth) open submanifold of a locally convex space. The reason for
choosing a locally convex space and not a Banach one as modelling space lies in a
theorem by [Omo78], which states that any Banach Lie group acting effectively
on a finite-dimensional compact manifold is necessarily finite dimensional itself.
Hence the group of smooth diffeomorphisms cannot be modelled on a Banach
space. As we will see later the space of smooth positive probability densities
can be seen as a topological space with a foliation given by the left action of the
smooth diffeomorphism group on it - the group action is locally free when we
mod out the subgroup of volume preserving diffeomorphism- and the topology
of smooth curves on the diffeomorphism group is inherited in this way by the
space of smooth, positive probability densities.
Thanks to Urysohn’s theorem we know that the space of probability measures
on a Polish measurable space (X,F) is metrizable; among the many notions of
distance we mention the following ones:

Definition 1.0.1. For µ, ν ∈ P (X) we define

• Total variation distance

dTV (µ, ν) = sup{|µ(A)− ν(A)|;A ∈ F}

9



CHAPTER 1. TOPOLOGIES 10

• Hellinger distance

dH(µ, ν)2 =
1

2

∫ (√
dµ

dvol
−
√

dν

dvol

)2

dvol

• Wasserstein distance: Given µ, ν ∈ P : Π := {π ∈ P (X×X) : π(A×X) =
µ(A);π(X ×B) = ν(B) for all Borel sets A,B}.

dW (µ, ν)2 := inf
π∈Π

∫
d(x, y)2π(dx, dy)

is called quadratic Wasserstein distance and the metric space (P, dW ) is
called Wasserstein space. The existence and uniqueness of the variational
problem was proved by Kantorovich introducing a duality technique, for a
survey see [Vil03].

Whereas the total variation distance (widely used in statistics) metrizes strong
convergence (with respect to the total variation norm) Wasserstein distances
can be used more widely since it metrizes weak convergence (by testing against
bounded continuous functions). Recently in [MH08] a spectral gap for Markov
semigroups in an infinite-dimensional setting has been shown by using Wasser-
stein distances rather than total variation distances, since usual (Harris) con-
ditions failed. Last but not least, from a geometric point of view the (quadratic)
Wasserstein distance can be understood as geodesic distance and calculated as
the infimum of the energy over all paths linking two distinct probability measures,
see chapter 2 for a precise meaning of this paraphrasing.

Definition 1.0.2. Given a complete simply connected finite-dimensional
Riemannian manifold M without boundary with its geodesic distance d we
define:

• P (M) := {µ Borel probability measure on M such that
∫
M d(x0, x)

2µ(dx) <
∞}. If we don’t need to emphasize the underlying manifold we write short-
hand P .

• Pac(M) := {µ ∈ P : µ≪ volM}
• Define

P∞(M) := {µ ∈ Pac : m(x) :=
dµ

dvolM
(x) > 0; for a.e. x ∈M,m ∈ C∞(M)}

For all measures in Pac(M) (when not stated otherwise) we use henceforth
the symbol µ both for the measure and its density function.

• Σn = {λ ∈ Rn+1
≥0 :

∑n+1
i=1 λi = 1}

• Given a finite partition A = ∪ni=1Ai of M , where each Ai is a measurable
set (with respect to the volume measure ofM) that has non-empty interior.
To each λ ∈ Σn−1 we associate a probability measure (’histogram’) on M
having the following density functions with respect to the volume measure:

f(x) :=

n∑

i=1

λi
vol(Ai)

1Ai
(x); x ∈M
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We denote the set of all histograms (with respect to a fixed partition) by
Hn.

• In the case when M is an interval (e.g. [0, 1]) we define a (’box-type
measure’) by associating to each λ ∈ Σn−1 the following density functions
with respect to the volume measure:

g(x) :=

n∑

i=1

(
1

nλi
1{λi>0}1[

∑i−1

k=1
λk,

∑
i
k=1 λk)

(x)dx +
1

n
1{λi=0}δ∑i

k=1
λk
(x)

)
; x ∈M

We denote the set of all box-type measures (with n boxes) by Gn.

Lemma 1.0.1 (Probabilistic glueing). [Vil03] Let µ1, µ2, µ3 be probability mea-
sures supported in the Polish spaces X1, X2, X3 respectively and let π12 ∈ Π(µ1, µ2)
and π23 ∈ Π(µ2, µ3). Then there exists a probability measure π ∈ P (X1 ×X2 ×
X3) with marginals π12 on X1 ×X2 resp. π23 on X2 ×X3.

Proof. Consider the probability measures π12 and π23 with common marginal
µ2. By the disintegration theorem there exist measurable mappings:

π12,2 : X2 → P (X1),

π23,2 : X2 → P (X3)

such that:

π12 =

∫

X2

(π12,2(x2)⊗ δx2
) dµ2(x2),

π23 =

∫

X2

(δx2
⊗ π23,2(x2)) dµ2(x2)

in the sense that for all measurable A ⊂ X1 ×X2 :

π12(A) =

∫

X2

π12,2(x2)(A
x2)dµ2(x2)

with Ax2 = {x1 ∈ X1 : (x1, x2) ∈ A}. In order to construct a probability
measure on X1 ×X2 ×X3 we set:

π =

∫

X2

(π12,2(x2)⊗ δx2
⊗ π23,2(x2)) dµ2(x2)

We check that π is indeed a probablity measure: For any measurable set A ⊂
X1 × X2 × X3 write pr12 resp. pr23 for the projection onto X1 × X2 resp.
X2 ×X3.

π(A) =

∫

X2

π12,2(x2)[(pr12(A))
x2 ]π23,2(x2)[(pr23(A))

x2 ] dµ2(x2).

Since for dµ2-almost every x2 π12,2(x2) and π23,2(x2) are probability measures
the total mass of π equals one.
We check that π has marginal π12 on X1×X2: Take any measurable set A ⊂ X1,
then:

π(A×X2 ×X3) =

∫

X2

π12,2(x2)[(A×X2)
x2 ]π23,2(x2)(X3) dµ2(x2)

=

∫

X2

π12,2(x2)(A) dµ2(x2)

= µ2(A),
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for marginals of π on X2 ×X3 an analogous calculation applies.

1.1 Weak topology and optimal transport dis-

tance

Theorem 1.1.1 (Topological properties). [Vil03] Let M be a metric space and
P (M) be equipped with the Wasserstein distance dW , then:

1. P is a metric space.

2. Convergence in Wasserstein distance is equivalent to weak convergence
plus convergence of second moments.

3. If M is Polish, then the Wasserstein space P (M) is also Polish.

Proof. 1. (P is a metric space.) Symmetry and non-negativity is clear
by definition and it holds for all µ ∈ P (M) that dW (µ, µ) = 0. Let µ, ν ∈
P (M) be given and suppose that dW (µ, ν) = 0. Let π ∈ Π(µ, ν) be an optimal
transport plan, i.e.

∫
M×M d(x, y)2 π(dx, dy) = dW (µ, ν)2 = 0, it follows that π

is supported on the diagonal. From this and by the marginal condition it follows
that for all ϕ ∈ Cb(M) :

∫

X

ϕ(x)µ(dx) =

∫

M×M
ϕ(x)π(dx, dy)

=

∫

M×M
ϕ(y)π(dx, dy)

=

∫

M

ϕ(y) ν(dy),

hence µ = ν.
The triangle inequality: Let µ1, µ2, µ3 and π12, π23, π be as in Lemma 1.0.1 and
π13 the marginal of π on X1 ×X3. Then using the Minkowski inequality:

dW (µ1, µ3) ≤
(∫

X1×X3

d(x1, x3)
2 dπ13(x1, x3)

) 1
2

=

(∫

X1×X2×X3

d(x1, x3)
2 dπ(x1, x2, x3)

) 1
2

≤
(∫

X1×X2×X3

(d(x1, x2)
2 + d(x2, x3))

2 dπ(x1, x2, x3)

) 1
2

≤
(∫

X1×X2×X3

d(x1, x2)
2 dπ(x1, x2, x3)

) 1
2

+

(∫

X1×X2×X3

d(x2, x3)
2 dπ(x1, x2, x3)

) 1
2

=

(∫

X1×X2

d(x1, x2)
2 dπ12(x1, x2)

) 1
2

+

(∫

X2×X3

d(x2, x3)
2 dπ23(x2, x3)

) 1
2

= dW (µ1, µ2) + dW (µ2, µ3).
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2. (Wasserstein distance metrizes weak convergence.) Let (µk)k∈N
be a sequence of probability measures in P (M). Assume µ ∈ P (M). The fol-
lowing statements are equivalent:

1. limk→∞ dW (µk, µ) = 0

2. limk→∞ µk = µ weakly, i.e. for all measurable ϕ ∈ Cb(X) :

lim
k→∞

∫

M

ϕdµk =

∫

M

ϕdµ.

and the sequence (µk)k∈N satisfies the following tightness condition: for
some x0 ∈M :

lim
R→∞

lim sup
k→∞

∫

d(x0,x)≥R
d(x0, x)

2 dµk(x) = 0 (1.1)

3. limk→∞ µk = µ weakly and there is convergence of the moment of order
2: for some x0 ∈M :

lim
k→∞

∫

M

d(x0, x)
2 dµk(x) =

∫

M

d(x0, x)
2 dµ(x). (1.2)

4. For all ϕ ∈ C(M) with |ϕ(x)| ≤ C(1+ d(x0, x)
2) for some x0 ∈M , C ∈ R:

lim
k→∞

∫

M

ϕdµk =

∫

M

ϕdµ.

Note that by the triangle inequality for d we can extend the statements in 2.
and 3. to any x0 ∈M.

(4. ⇒ weak convergence.): Assuming 4. we obtain convergence for all con-
tinuous bounded functions, i.e. weak convergence.
(2. ⇒ 4.): Assume that 2. is satisfied for some x0 ∈M and take any ϕ satisfying
the growth condition in 4. For R > 1 write

ϕR(x) = inf{ϕ(x), C(1 +R2)} ψR(x) = ϕ(x) − ϕR(x),

the latter being pointwise bounded by C d(x0, x)
2 1d(x0,x)≥R. It holds that:

|
∫

M

ϕ(x) dµk(x)−
∫

M

ϕ(x) dµ(x)| ≤ |
∫

M

ϕR(x) d(µk − µ)|

+C

∫

d(x0,x)≥R
d(x0, x)

2 dµk(x)

+C

∫

d(x0,x)≥R
d(x0, x)

2 dµ(x).

By assumption we have weak convergence also for the second moment, we con-
clude:

lim sup
k→∞

|
∫

M

ϕ(x) dµk(x)−
∫

M

ϕ(x) dµ(x)| ≤ C lim sup
k→∞

∫

d(x0,x)≥R
d(x0, x)

2 (dµk+dµ)(x),



CHAPTER 1. TOPOLOGIES 14

letting R go to infinity we obtain by assumption that the right-hand sides goes
to zero, which implies convergence in 4.

(3. ⇒ 2.): It holds by assumption:

lim
k→∞

∫

M

(d(x0, x) ∧R)2 dµk(x) =
∫

M

d(x0, x) ∧R)2 dµ(x),

and by monotone convergence:

lim
R→∞

∫

X

(d(x0, x) ∧R)2 dµ(x) =
∫

X

d(x0, x) dµ(x);

which yields:

lim
R→∞

lim
k→∞

∫

X

[d(x0, x)
p − (d(x0, x) ∧R)p] dµk(x) = 0

Assume that d(x0, x)
2 ≥ 2R. Then

d(x0, x)
2 −R2 = d(x0, x)

2

(
1− R2

d(x0, x)2

)

≥ d(x0, x)
2

(
1− 1

22

)
.

It follows that:

lim
R→∞

lim
k→∞

∫

d(x0,x)≥2R

d(x0, x)
2 dµk(x) = 0.

(1. ⇒ 3.): We want to show that convergence in the Wasserstein distance
implies weak convergence. As a preliminary note that weak convergence implies

∫

X

d(x0, x)
2 dµ(x) = lim

R→∞
lim
k→∞

∫

X

(d(x0, x) ∧R)2 dµk(x)

≤ lim inf
k→∞

∫

X

d(x0, x)
2 dµk(x),

and

lim sup
k→∞

∫

X

d(x0, x)
2 dµk(x) ≤

∫

X

d(x0, x)
2 dµ(x), (1.3)

is equivalent to convergence of the second moment in 3.

Take a sequence (µk)k∈N in P (X) with:

lim
k→∞

dW (µk, µ) = 0

and an optimal transference plan πk transporting µk to µ. For any ǫ > 0 there
exists a constant Cǫ > 0 such that for any x0, x, y ∈ X :

d(x0, x)
2 ≤ (1 + ǫ)d(x0, y)

2 + Cǫd(x, y)
2.
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By the marginal condition on πk it follows:
∫

X×X
d(x0, x)

2 dπk(x, y) =

∫

X

d(x0, x)
2 dµk(x)

≤ (1 + ǫ)

∫

X

dµ(y) + Cǫ

∫

M×M
d(x, y)2 dπk(x, y)

= (1 + ǫ)

∫

X

dµ(y) + CǫdW (µk, µ)
2,

Letting k tend to infinity the Wasserstein distance goes to zero and we obtain:

lim sup
k→∞

∫

M

d(x0, x) dµk(x) ≤ (1 + ǫ)

∫

M

d(x0, x)
2 dµ(x)

and with ǫ→ 0 we obtain the claimed convergence of the p-th moment.

Claim B. In order to prove (1. ⇒ weak convergence) and (3. ⇒ 1.) it is
sufficient to prove only the case where d is bounded.
Proof of claim B. Define d̂ = d∧1 and let Ŵ2 be the Wasserstein distance as-
sociated to d̂. By definition dW ≥ Ŵ2, hence in order to prove (dW -convergence
⇒ weak convergence) it is sufficient to prove (Ŵ2-convergence⇒ weak conver-
gence).
Assume now that 3. holds and that (µk)k∈N converges in Ŵ2. We want to show
that (µk)k∈N also converges in dW . By elementary geometric reasoning for all
x, y ∈ (M,d) it holds that for every R > 0 and x0 ∈M :

d(x, y) ≤ d(x, y) ∧R + 2 d(x, x0)1d(x,x0)≥R/2 + d(x0, y)1d(x0,y)≥R/2.

and there exists a constant Cp > 0:

d(x, y)2 ≤ C2

(
[d(x, y) ∧R]2 + d(x, x0)

2 1d(x,x0)≥R/2 + d(x0, y)
2 1d(x0,y)≥R/2

)
.

Let πk be an optimal transference plan for transporting µk to µ with cost func-
tion dp. For R ≥ 1:

dW (µk, µ)
2 =∫

X×X
d(x, y)2 dπk(x, y)

≤ Cp

∫

X×X
[d(x, y) ∧R]2 dπk(x, y)

+Cp

∫

{d(x,x0)≥R/2}×Y
d(x, x0)

2 dπk(x, y)

+Cp

∫

{d(x0,y)≥R/2}×X
d(x0, y)

2 dπk(x, y)

≤ R2 Ŵ2
2 (µk, µ) + C2

∫

{d(x,x0)≥R/2}×X
d(x, x0)

2 dπk(x, y)

+Cp

∫

{d(x0,y)≥R/2}×X
d(x0, y)

2 dπk(x, y).

Now let k →∞ and using assumption 3. let R → ∞ we obtain convergence in
the dW sense.
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qed. Claim B.

Assume that d ≤ 1. In this case all distances dW (with cost-function d(x, y)p)
are equivalent, we prove the case p = 1. Assume that the sequence (µk)k∈N
converges to µ in the 1-Wasserstein distance. Since we are in the case where
c is a metric, the Kantorovich-Rubinstein theorem applies and convergence in
1-Wasserstein distance reduces to

lim
k→∞

sup
‖ϕ‖Lip≤1

∫

M

ϕ(x) d(µk − µ)(x) = 0. (1.4)

We want to prove weak convergence, that is for all ϕ ∈ Cb(M),

lim
k→∞

∫

M

ϕdµk(x) =

∫

M

ϕdµ(x),

which is true (by the Kantorovich-Rubinstein theory) if ϕ is 1-Lipschitz and
replacing ϕ by ϕ

‖ϕ‖Lip
in the case ϕ 6= 0 convergence holds even for all Lips-

chitz functions. For every bounded function on (M,d) there exist (an)n∈N and
(bn)n∈N of uniformly Lipschitz functions such that (an) resp. (bn) is pointwise
increasing resp. decreasing in n and:

lim
n→∞

an = ϕ = lim
n→∞

bn.

It follows that

lim sup
k→∞

∫

M

ϕdµk(x) ≤ lim inf
n→∞

lim sup
k→∞

∫

M

bn dµk

= lim inf
n→∞

∫

M

bn dµ

=

∫

M

ϕ(x) dµ(x),

the last equality follows from dominated convergence. Analogously it holds that

lim inf
k→∞

∫

M

ϕ(x) dµk(x) ≥
∫

M

ϕ(x) dµ(x),

which proves weak convergence.

(3. ⇒ 1.): Assume that (µk)k∈N converges in the weak sense towars µ. We
want to prove convergence in the sense of Kantorovich-Rubinstein theory, i.e.
(1.4). Take any x0 ∈ M and denote the space of all Lipschitz functions on M
with Lipschitz constant less or equal 1 such that ϕ(x0) = 0 by Lip1;x0

(M), and
it suffices to prove:

lim
k→∞

sup
ϕ∈Lip1;x0

∫

M

ϕd(µk − µ) = 0

in order to show (1.4). From Prokhorov’s theorem we know that (µk)k∈N is
a tight family of probability measures on X : Take an increasing sequence of
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compact sets in M : (Kn)n∈N with ǫ = 1
n , i.e. for n ≥ 1:

µ(Kc
n) ≤

1

n
sup
k∈N

µk(K
c
n) ≤

1

n
.

Without loss of generality we may assume x0 ∈ K1. Of course for all n ≥ 1 :

{ϕ1Kn
; ϕ ∈ Lip1;x0

(M)}

is a subset of Lip1;x0
(M), the latter being a pointwise bounded equicontinuous

family of functions onM . Due to separability ofM Arzela-Ascoli applies: From
any sequence (ϕk) in Lip1;x0

(M) we can extract a subsequence (ϕkj ) which
converges uniformly on Lip1;x0

(Kn) for Kn compact and by taking the diagonal
(with index kj and n) there exists a subsequence which converges uniformly on
every Kn towards a measurable function ψ defined on

⋃
Kn which is bounded

Lipschitz since (ϕk) is uniformly bounded and uniformly Lipschitz, i.e. the limit
ψ is also 1-Lipschitz and can even be extended from

⋃
Kn to the whole M by

setting:
ψ̃(x) = inf

y∈
⋃
Kn

{ψ(y) + d(x, y)}.

It remains to show that

lim
k→∞

∫
ϕk d(µk − µ) :

Note that
∫
ϕk d(µk − µ) ≤ |

∫

Kn

(ϕk − ψ) d(µk − µ)|

+ |
∫

Kc
n

(ϕk − ψ) d(µk − µ)|

+ |
∫

M

ψ d(µk − µ)|.

We claim that all three terms on the right-hand side go to 0 for n → ∞ and
then k → ∞. The first one goes to zero for fixed n and k → ∞ since the ϕk’s
converge uniformly on each compact Kn towards ψ. The second term: All ϕk’s
and ψ are uniformly bounded by some constant c > 0 and the tightness of (µk)
and µ yields:

c (µk(K
c
n) + µ(Kc

n)) ≤ 2c
1

n
.

Taking the limit in n one obtains convergence towards zero uniformly in k.
The last term converges to zero since we assumed weak convergence of (µk)
towards µ.

3. (M Polish entails P (M) Polish)

We have to show that there exist a countable dense subset of P (M). For this
purpose we take a dense sequence Y := {yk; k ∈ N} ⊂M and write K as the set
of all probability measure of the form

∑
i aiδxi

where ai are rational numbers
and the xi’s are finitely many elements in Y . We claim that K is the countable
dense subset of P (M) in question:
Let ǫ > 0 be given, and let x0 be an arbitrary element of Y . If µ lies in P (M),
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then there exists a compact set L ⊂ M such that
∫
M\L d(x0, x)

2dµ(x) ≤ ǫ2.

Cover L by a finite family of balls B(xk, ǫ/2), 1 ≤ k ≤ N , with centers xk ∈ Y
and define

Bk = B(xk, ǫ/2) \
⋃

j<k

B(xj , ǫ/2).

Then all Bk are disjoint and still cover L. Define a function f on M by

f(Bk ∩ L) = {xk}, f(M \ L) = {x0}.

Then, for any x ∈ L, d(x, f(x)) ≤ ǫ. So
∫
d(x, f(x))2dµ(x) ≤ ǫ2

∫

L

dµ(x) +

∫

M\L
d(x0, x)

2 dµ(x)

≤ ǫ2 + ǫ2 = 2ǫ2

Since (Id, f) is a transport plan from µ to f#µ, dW (µ, f#µ)2 ≤ 2ǫ2. f#µ can
be written as

∑
ajδxj

, 0 ≤ j ≤ N . This shows that µ might be approximated,
with arbitrary precision, by a finite combination of Dirac masses. To conclude,
it is sufficient to show that the coefficients aj might be replaced by rational
coefficients, up to a very small error in Wasserstein distance. By Theorem 6.15
in [Vil08]

dW (
N∑

j=1

ajδxj
,
N∑

j=1

bjδxj
) ≤ 2

1

p′ max
k,l

d(xk, xl)
N∑

j=1

|aj − aj |
1
2 ,

and obviously the latter quantity can be made as small as possible for some
well-chosen rational coefficients bj .

Completeness: Let {µk; k ∈ N} be a Cauchy sequence in P (M). By a con-
sequence of Prokhorovs theorem it admits a subsequence {µk′} which converges
weakly to some measure µ. Then

∫
d(x0, x)

2dµ(x) ≤ lim inf
k′→∞

∫
d(x0, x)

2dµk′ (x) < +∞

so µ belongs to P (M). Moreover, by lower semicontinuity of dW ,

dW (µ, µl′) ≤ lim inf
k′→∞

dW (µk′ , µl′),

so in particular

lim sup
k′→∞

dW (µ, µl′ ) ≤ lim sup
k′,l′→∞

dW (µk′ , µl′) = 0,

which means that µl′ converges to µ in the dW sense. Since µk is a Cauchy
sequence with a converging subsequence, it follows by that the whole sequence
is converging.

Proposition 1.1.1. Let M be compact, then

1. {Hn;n ∈ N} ⊂ P is dense with respect to dW .
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2. {Gn;n ∈ N} ⊂ P is dense with respect to dW .

3. P∞ ⊂ P is dense with respect to dW , hence Pac ⊂ P is also dense with
respect to dW .

4. None of the above subspaces is complete with respect to dW . Only {Hn;n ∈
N} and {Gn;n ∈ N} are countable.

Proof. We prove the first statement: Since M is compact we define disjoint
finite cover {Bk; k = 1, . . . n} as in part three of the preceding theorem:

Bk = B(xk, ǫ/2) \
⋃

j<k

B(xj , ǫ/2).

We define a mapping f :M →M such that f(Bk∩M) = Bk∩M and f#µ(Bk∩
M) = µ(Bk ∩M), i.e. f is a (not necessarily monotone) rearrangement of each

cell Bk∩M which should additionally verify df#µ
dx (x)|Bk∩M =

µ(Bk∩M)1Bk∩M (x)

vol(Bk∩M)
.

This map verifies all criteria of an admissible transport map (although it is
difficult to construct it for most concrete examples). Obviously d(x, f(x)) ≤ ǫ.
So

dW (µ, f#µ)2 ≤
∫
d(x, f(x))2dµ(x) ≤ ǫ2

∫

M

dµ(x)

≤ ǫ2

And by construction f#µ ∈ Hn. Similar arguments apply to Gn and to P∞.
The lack of completeness is illustrated for the subspace (P∞, dW ) ⊂ (P, dW ):
Convolution of a positive smooth density with rescaled Gaussians converges in
Wasserstein distance to a Dirac measure. On the space of histograms we define
weights a1 = 1− 1

2n and a2, . . . an such that
∑n
j=1 aj = 1, then the corresponding

sequence of histograms converges in dW to a Dirac measure.

Remark 1.1.1. IfM is compact, then P (M) can be made into a compact metric
space (’Watanabe compactification’) P (M) ∪ {∞W } with respect to a topology
defined by

µn → µ ∈ P (M)⇔
∫
fµn →

∫
fµ

and

µn →∞W ⇔
∫

1µn →∞.

See remark 3.2.2 in [Daw93]

1.2 Topology of smooth curves

Complementary to the weak topology we put another topology on the subspace
P∞ in the flavor of [KM97]:

Definition 1.2.1 (Topology of smooth curves). Let E be a locally convex (Haus-
dorff) vector space. We say that a curve c : R→ E is differentiable if the limit
c′(t) := lims→0

1
s (c(t + s) − c(t)) exists. The curve is called smooth if all iter-

ated derivatives exist. A set A ⊂ E is called c∞-open if for any smooth curve
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c : R → E the set c−1(A) ⊂ R is open. We write c∞ for the topology of
smooth curves, i.e. for the topology whose basis consists of c∞-open sets. Let
U ⊂ E bounded. By EU we denote the linear span of U in E, equipped with
the Minkowski functional pU (v) := inf{λ > 0 : v ∈ λ.U}. (EU , pU ) is a normed
space. A locally convex vector space E endowed with the c∞-topology is defined
to be complete if any Mackey-Cauchy sequence is convergent in the following
sense: A sequence is {xn;n ∈ N} in E is called Mackey convergent to x if there
exists a bounded, absolutely convex U ⊂ E such that {xn;n ∈ N} converges to x
in the normed space EU . Note that convergence statement in EU is equivalent to
the existence of a real-valued sequence {yn > 0;n ∈ N} converging to zero which
satisfies xn ∈ yn.U . We can thus paraphrase: A sequence {xn;n ∈ N} in E is
called Mackey-Cauchy if there exists a bounded absolutely convex U ⊂ E and a
net {y(n,n′); (n, n

′) ∈ N2} in R converging to zero such that xn−xn′ ∈ y(n,n′).U .
By Theorem 2.14 in [KM97] we know that a convenient space is also character-
ized by the following condition: If c : R → E is a curve such that l ◦ c : R → R

is smooth for all continuous linear functionals l ∈ E∗, then c is smooth.

Definition 1.2.2 (Smooth manifolds). Let X be a set. A chart (U, u) on X
is a bijection u : U → u(U) ⊂ EU from a subset U ⊂ X onto a c∞-open
subset in EU . For two charts (Uα, uα) and (Uβ , uβ) on X the mapping uαβ :=
uα ◦ u−1

β : uβ(Uαβ)→ uα(Uαβ) for α, β ∈ A is called the chart changing, where
Uαβ := Uα ∩ Uβ. A family (Uα, uα)α∈A of charts on X is called an atlas for X
, if the Uα form a cover of M and all chart changings uαβ are defined on c∞-
open subsets. An atlas (Uα, uα)α∈A for X is said to be a C∞-atlas, if all chart
uαβ := uα ◦ u−1

β : uβ(Uαβ) → uα(Uαβ) are smooth. Two C∞-atlas are called
C∞-equivalent, if their union is again a C∞-atlas for X. An equivalence class
of C∞-atlas is sometimes called a C∞-structure on X. The union of all atlas in
an equivalence class is again an atlas, the maximal atlas for this C∞-structure.
A C∞-manifold X is a set together with a C∞-structure on it.

Remark 1.2.1. Let M be compact. Then C∞(M) is a convenient vector space:
It is a vector space over R, and with respect to the topology of smooth curves it
is Hausdorff. Addition and scalar multiplication are continuous (they are even
smooth) and the function 0 has a basis of neighborhoods consisting of convex
sets. It is complete with respect to the topology of smooth curves: We have to
verify that for each continuous linear functional l on C∞(M) the curve l ◦ c is
smooth from R to R. It is sufficient to prove that t 7→

∫
M ϕctvol is smooth (for

ϕ ∈ C∞c ) which is true since we can put differentiation with respect to t inside
the integral.

Definition 1.2.3 (Kinematic tangent bundle). Consider a manifold M with a

smooth atlas (M ⊃ Uα uα←− Eα)α∈A. On the disjoint union

⋃

α∈A
Uα × Eα × {α}

we define an equivalence relation

(x, v, α) ∼ (y, w, β)⇔ x = y and d(uαβ)(uβ(x))w = v

and denote the quotient set by TM which we call kinematic tangent bundle of
M which embeds as subbundle into the so-called operational tangent bundle - a
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notion, which we will not belabour here but which is equivalent to the kinematic
tangent bundle in the case of finite-dimensional manifolds. The name ’kinematic
tangent bundle’ comes from the fact that there exists a bijection from TM to
C∞(R;M)� ∼ where two curves c ∼ e if and only if c(0) = e(0) and in one
chart (U, u) with c(0) ∈ U we have d

dt |0(u ◦ c)(t) = d
dt |0(u ◦ e)(t).

Henceforth when we talk about the tangent bundle of P∞ we use exclusively
the notion of kinematic tangent bundle.

Definition 1.2.4 (Tangent map). Given a smooth mapping f :M → N between
manifolds (i.e. smooth curves in M are mapped to smooth curves in N), then
f induces a linear mapping T (f)(x) : TxM → Tf(x)N : for each g ∈ C∞(N ⊃
{f(x)},R) and x ∈M

(T (f)(x)(Xx))(g) = Xx(g ◦ f) = d(g ◦ f)(x)(X).

The differential is understood in the sense that there exist a smooth curve c in
M with initial speed vector ċ(0) = X. Therefore we also write short-hand

T (f)(x)(ċ(0)).

The most prominent example of an infinite-dimensional manifold is the group
of all smooth diffeomorphism on a compact manifold modelled on the space of
all smooth mappings from the manifold to itself. Its tangent space at identity is
the space of all smooth vector fields, hence equipped with the L2-inner product
the group becomes an infinite-dimensional Riemannian manifold. The reason for
choosing a locally convex space and not a Banach one as modelling space lies in a
theorem by [Omo78], which states that any Banach Lie group acting effectively
on a finite-dimensional compact manifold is necessarily finite dimensional itself:
no way for the group of smooth diffeomorphisms to be modelled on a Banach
space.
We return our attention to the space of smooth probability densities by noting
several remarks:

Proposition 1.2.1. Let M be compact. Then P∞(M) is a smooth manifold
with respect to the topology of smooth curves, more precisely P∞(M) is a c∞-
open submanifold of C∞(M).

Proof. 1. Modelling space C∞(M):
Fix µ ∈ P∞(M). A smooth chart u on Uµ ⊂ P∞(M) bounded is given by a
bijection that maps each smooth positive density in Uµ to a smooth positive
function; u(Uµ) is a c

∞-open subset of the linear span of Uµ in C∞(M).

Remark 1.2.2. P∞ is contractible, i.e. the identity map on P∞ is homotopic
to a constant function; in other words given any probability density dµ

dvol
∈ P∞,

there exists a family of diffeomorphisms φt (given by a global flow to a smooth,
fully supported vector field) such that φt#µ = vol for some t ∈ [0, +∞], so P∞

can be shrinked continuously with respect to the c∞-topology to the point vol.

Remark 1.2.3 (Wasserstein space as stratified manifold). As remarked in
[GKP10] P∞(M) may also be viewed in another way as infinite-dimensional
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manifold, again M is assumed to be compact. Recall that the push-forward of a
probablity density µ by a Borel map φ from M to itself is defined as

φ#µ(A) := µ(φ−1(A))

for any Borel set A. Then the map

Diff∞(M)× P∞(M)→ P∞(M)

given by
(φ, µ) 7→ φ#µ

defines a left action of Diff∞(M) on P∞(M) and is smooth (in the sense of the
topology of smooth curves). We denote by

Oµ := {ν ∈ P∞(M) : ν = φ#µ for some φ ∈ Diff∞(M)}

the orbit and by

Diff∞(M)µ := {φ ∈ Diff∞(M) : φ#µ = µ}

the stabilizer of any fixed measure µ. Note that the latter is itself a Lie sub-
group of the diffeomorphism group - its Lie algebra is the space of vector fields
whose divergence with respect to the measure µ equals zero. The quotient space
Diff∞(M)�Diff∞(M)µ can be mapped one-to-one to Oµ via j : [φ] 7→ φ#µ.
This mapping can be lifted to the respective tangent bundles: By Hodge theory
for the L2(µ)-closure of the space of all vector fields we can decompose each
vector field into its µ-divergence free part and its gradient part. For the tangent
map this means that

T (j) : X (M)�Ker(divµ)→ Oµ

is a bundle isomorphism. This construction is also valid for the more general
case when replacing diffeomorphisms by homeomorphisms and in this way P
becomes a stratified manifold, i.e. a topological space with a foliation and a
differentiable structure definied on each leaf of the foliation: the foliation is
induced by the action of Diff∞(M) on P . On the other hand Oµ = P∞(M)
for µ ∈ P∞(M) shows that for the subspace of smooth positive densities there
exists a single leaf and P∞(M) becomes a homogenous space with the quotient
Diff∞(M)�Diff∞(M)µ acting faithfully on P∞(M) for any µ ∈ P∞(M).

Remark 1.2.4 (Wasserstein space as embedding in the space of linear forms).
Another point of view (as advocated by [Lot08]) is

P∞(M) ⊂ (C∞(M))∗,

i.e. for every ϕ ∈ C∞(M) we define a functional Fϕ(µ) :=
∫
ϕµvol on P∞(M)

which is point-seperating and smooth (in the sense of the topology of smooth
curves). The functions Fϕ(µ) can be thought of as coordinates of the point µ.
For a reason which is explained by Proposition 2.2.1 tangent vectors act on
smooth functions on P∞(M) by

(VϕF )(µ) =
d

dt
|t=0F (µ− tdivµ(∇ϕ))
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for ϕ ∈ C∞(M) given. As in the original paper of [Ott01] we obtain a bundle
isomorphism

C∞(M)�R→ TP∞(M),

where the latter is the kinematic tangent bundle.

Not the following

Remark 1.2.5. Let M be compact. If a sequence {µk; k ∈ N} in P∞(M)
converges weakly to some µ ∈ P∞(M) then {µk; k ∈ N} converges with respect
to the topology of smooth curves to µ .

Proof. Since C∞ ⊂ Cb we know that limk→∞ µk(φ) := limk→∞
∫
φµk = µ(φ) ∀φ ∈

Cb implies limk→∞ µk(φ) = µ(φ) ∀φ ∈ C∞.



CHAPTER 1. TOPOLOGIES 24



Chapter 2

Riemannian geometry of
probability measures

Starting from an energy variation formula for paths in Pac we report results
about the characterization of Wasserstein geodesics and its links to partial dif-
ferential equations. We present a Riemannian geometry on Pac from two view-
points: At first from a analytical one using calculus of variations and PDEs.
Secondly we develop a formal Riemannian geometry on Pac which will be shown
to be rigorous when we restrict ourselves to P∞ equipped with the topology of
smooth curves. Within this framework we show new and known formulas for
the Levi-Cività connection, Riemannian curvature and parallel transport. Ad-
ditionnally we mention results from [AGS08] which are rather in the flavor of
Lipschitz analysis and geometric measure theory.

2.1 Wasserstein geodesics

As Kantorovich laid the foundations of existence and uniqueness of the optimal
transport problem and hence the well-definedness of Wasserstein distances for
convex cost functions it was Brenier and McCann who in [Bre91] and [McC01]
laid the foundations of the characterization of optimal transport maps, i.e. the
map T : M → M that is actually realizing the infimum in (1). We cite the
following

Theorem 2.1.1. Given µ, ν ∈ Pac, then the optimal transport plan π (for the
cost function (x, y) 7→ d(x, y)2) realizing the Wasserstein distance between µ
and ν is given by a map T :M →M such that

dW (µ, ν)2 =

∫

M

d(x, T (x))2µ(dx),

where T (x) = expx(−∇ϕ(x)) and ϕ is a µ-a.s. unique convex function on M .

Proof. For the case M = Rd the theorem was proved in [Bre91], in the case
where M is a connected compact, C3-smooth Riemannian manifold a proof can
be found in [McC01]. For the non-compact case a similar statement can be
found in [Fig07].

25
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The following theorem showed for the first time a connection between fluid
dynamics and optimal transport, i.e. we think of µ0 and µ1 as the density of
particles in a given region in Rd at time t = 0 and t = 1. If we assume that for
every t ∈ [0, 1] there exists a smooth resp. uniformly Lipschitz vector field vt
which describes how particles move around in a given area we can describe the
time evolution of the particles’ position by

dXt

dt
= vt(Xt) (2.1)

Under regularity assumption on the vector field vt we obtain for a given initial
value x0 ∈ Rd a unique solution Xx0

(t) for (2.1) on the whole time interval [0, 1];
moreover the map (t, x0) 7→ Xx0

(t) is globally Lipschitz and one-to-one. Thus
(Tt)0≤t≤1 = (x 7→ Xx(t))0≤t≤1 is a locally Lipschitz family of diffeomorphisms
and the characteristics method for the linear transport equation applies:
µt = Tt#µ0 is a weak solution to

∂µt
∂t

+ div(µtvt) = 0 (2.2)

The quantity div(µtvt) describes the flow density under vt. The total kinetic
energy up to a factor 1

2 is E(t) =
∫
Rd µt|vt|2dx. The energy one needs to move

particles around from time 0 to time 1 according to vt is defined as A[µ, v] =∫ 1

0
E(t)dt.

Theorem 2.1.2.

inf
(µ,v)∈V (µ0,µ1)

A[µ, v] = dW (µ0, µ1)
2, (2.3)

where V (µ0, µ1) is the set of all pairs (µ, v) := (µt, vt)t∈[0,1] satisfying the
following conditions:

1. µ ∈ C([0, 1], Pac(Rd)) where Pac(R
d) -the space of absolutely continuous

probability measures- is endowed with the weak-∗-topology, i.e. limi→∞ νi =
ν iff

∫
ϕνi −→

∫
ϕν for all ϕ ∈ C∞c .

2. v ∈ L2(dµt(x)dt)

3.
⋃
t∈[0,1] supp(µt) is bounded

4. ∂µt

∂t + div(µtvt) = 0, i.e.∫
Rd(∂tϕ(t, x))µt +

∫
Rd〈∇ϕ(t, x), vt〉µt = 0 for all ϕ ∈ C∞c (R+ × Rd).

5. µ(t = 0, ·) = µ0(·), µ(t = 1, ·) = µ1(·)

Proof. See [BB00]

Formula (2.3) can be seen as geodesic equation on the space of probability
measures from two points of view: Firstly, as generalization of action minimizing
curves, which are no longer deterministic but random and secondly, as realiza-
tion of the minimum in the energy variation formula for C1-curves (known from
finite-dimensional Riemannian geometry) if we endow P with a Riemannian
metric and can make clear what the tangent bundle above P should be.
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Remark 2.1.1 (Displacement interpolation). As already mentioned in the in-
troduction the Wasserstein distance is realized by the optimal coupling between
two probability measures µ0 and µ1. The notion of coupling may be extended to
time-dependent optimal transport. We call every random curve γ : [0, 1]→ M ,
such that law(γ0) = µ1 and law(γ1) = µ2, a dynamical coupling of µ0 and µ1.
Any probability measure on C([0, 1];M) is called a dynamical transference plan.
In chapter 7 in [Vil08] a fairly general machinery of Lagrangian action function-
als with respect to semi-continuous cost functions on Polish spaces (for continu-
ous, not necessarily differentiable curves) is developed. We give only the example
of kinetic energy for the case of a finite-dimensional Riemannian manifold: For

any continuously differentiable curve γ we define A(γ) := 1
2

∫ 1

0
|γ̇(s)|γ(s)ds and

among all C1-curves we define the subset Γ of action minimizing curves (note
that we do not fix starting and end points). Denote by ex : Γ → M the eval-
uation functional ex(γ) = γ(x). A dynamical optimal transference plan is a
probability measure Π on Γ such that

π := (e0, e1)#Π

is an optimal transport plan from µ0 to µ1. The following theorem shows that
dynamical optimal transference plans are minimizing curves for Lagrangian ac-
tion functionals on P .

Theorem 2.1.3. For a continuous curve (µt)0≤t≤1 in P such that the Wasser-
stein distance between µ0 and µ1 is finite, the following statements are equiva-
lent:

1) For each t ∈ [0, 1], µt is the law of γt, where (γt)0≤t≤1 is a dynamical optimal
coupling of (µ, ν).
2) The path (µt)0≤t≤1 is a minimizing curve for the action functional A defined
on P by

A(µ) := inf
γ
EA(γ)

with law(γt) = µt for each t ∈ [0, 1]. Note that the inf is taken over all random
curves (i.e. random variables with values in C([0, 1];M)) such that law(γτ ) = µτ
for 0 ≤ τ ≤ 1.

A curve (µt)0≤t≤1 in P fulfilling one of the above conditions is called displace-
ment interpolation between µ0 and µ1. The displacement interpolation is unique
if there is a unique optimal transport plan π between µ0 and µ1 and if any two
points x0, x1 ∈M are joined π(dx0, dx1)-almost surely by a unique geodesic.

Proof. [Vil08]

Definition 2.1.1 (Geodesics). On any complete, locally compact metric space
X we define geodesics γ between two points γ0 and γ1 as paths that realize the
distance, i.e. paths which attain the minimum in

L(γ) := sup
n

sup
0=t1<t2<...<tn+1=1

n∑

k=1

d(γtk , γtk+1
),

such that
d(γ0, γ1) = inf

γ∈C0([0,1];X)
L(γ)



CHAPTER 2. RIEMANNIAN GEOMETRY 28

There is an important corollary to the preceding theorem:

Corollary 2.1.1. Given µ0, µ1 ∈ P (M), M a compact Riemannian manifold,
and a continuous curve {µt; t ∈ [0, 1]}. With the above definition of geodesics
the following statements are equivalent:
1) t 7→ µt is a geodesic in P
2) µt is the law of γt, where γ is a random geodesic on M , such that (γ0, γ1) is
the optimal coupling from µ0 to µ1, i.e. the random variables γ0 and γ1 induce
a product measure which solves the optimal transport problem from µ0 to µ1.

The above characterization ofWasserstein geodesics as laws of random geodesics
on the underlying space rises further questions (for instance whether the geodesic
between two given measures may be branching), which we will no belabor here,
recently there has been developed a variational approach to this issue in the
spirit of Benamou-Brenier’s theorem (see [BBS10]). We turn our attention to
the second point of view, i.e. we endow P with a Riemannian structure and
prove formulas which are very much inspired from finite-dimensional Rieman-
nian geometry.

2.2 Otto’s Riemannian metric

Definition 2.2.1. Given µ ∈ P (M). We define the tangent space to µ as

TµP := {∇ϕ;ϕ ∈ C∞c (M)}L
2(µ)

,

note that if M is compact, then the compactness requirement on support of
smooth functions is omitted.

Lemma 2.2.1. Let µ ∈ P . A vector v ∈ L2(µ) belongs to TµP iff

||v + w||L2(µ) ≥ ||v||L2(µ) (2.4)

for all w ∈ L2(µ) such that div(µw) = 0. In particular for every v ∈ L2(µ) there
exists a unique Π(v) ∈ TµP in the equivalence class of v modulo divergence-free
vector fields, Π(v) is the element of minimal L2(µ)-norm in this class.

Proof. See Lemma 8.4.2. in [AGS08]: Convexity of the L2(µ) norm entails that
(2.4) holds iff

∫
M
〈v, w〉µ = 0 for any w ∈ L2(µ) such that div(µw) = 0, and this

is true iff v is in the L2(µ) closure of {∇ϕ;ϕ ∈ C∞c (M)}.

Proposition 2.2.1. If µ ∈ P∞, then

TµP
∞ = {µ(.) ∈ C∞(R+;P

∞);µ(0) = µ}� ∼,

where for two µ(.), ν(.) ∈ C∞(R+;P
∞) we say that µ(.) ∼ ν(.) if both µ(.) and

ν(.) solve the continuity equation (2.2) for the same given vector field vt, i.e.
that the tangent space coincides on P∞ with the kinematic tangent space defined
in definition 1.2.3
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Proof. To prove the proposition we make use of theorem 8.3.1 in [AGS08], where
it is shown that for every absolutely continuous curve µ there exists a Borel
vector field vt with L

2(µt)-norm bounded from above by the metric derivative

lim
t→0

dW (µt+h, µt)

|h|

of µ such that the continuity equation is satisfied and this applies in particu-
lar to smooth curves with values in P∞. By a variational selection principle
(lemma 2.2.1) it is then shown that there exists a unique projection of vt to
the equivalence class of vector fields modulo divergence-free vector fields with
minimal L2(µt)-norm, i.e. ∫

M

〈vt, wt〉µt = 0

for any wt ∈ L2(µt) such that div(µtwt) = 0 which is the case iff vt belongs
to the L2(µt) closure of {∇ϕ;ϕ ∈ C∞c (M)} since div(µtwt) = 0 means that∫
〈∇ϕ,wt〉µt = 0. Since for two curves being in the same equivalence class means

to solve the continuity equation for the same vector field (which we proved to
be the unique vector field of gradient type with minimal L2(µt)-norm) the proof
of

TµP
∞ ⊇ {µ(.) ∈ C∞(R+;P

∞);µ(0) = µ}� ∼,

is achieved. For the converse inclusion we cite again theorem 8.3.1 in [AGS08],
where it is shown that any continuous curve satisfying the continuity equation
for some Borel vector field has a metric derivative that is less or equal than the
L2(µt)-norm of the vector fields, we then apply again the lemma already cited
to conclude.

Definition 2.2.2. The (kinematic) tangent bundle TP∞ is defined as the dis-
joint union ⋃

µ∈P∞

TµP
∞.

Note that this definition coincides with definition 1.2.3 using the global chart of
the embedding P∞ ⊂ C∞.

Definition 2.2.3. We define on the kinematic tangent space TµP
∞ a Rieman-

nian metric denoted by

〈µ̇, µ̇〉µ :=

∫

M

|v0|2 dµ

where µ(.) is in the equivalence class of smooth curves satisfying µ(0) = µ and
the continuity equation (at t = 0) with respect to the gradient-type vector field
v0, i. e.

µ̇ :=
d

dt
|0µ = −div(µv0)

Proposition 2.2.2 (Wasserstein Gradient formula). Let F : P∞ → R ∪ {∞}
such that

F (µ) =

∫

M

f(µ(x))vol
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for a twice differentiable function f : R+ → R and let µ(.) be a smooth curve in
P∞ such that µ(0) = µ and µ̇ = −div(µv). Then

〈∇P
∞

F (µ), v〉µ :=
d

dt
|0F (µ(t)) = 〈∇

δ

δµ
F (µ), v〉µ

Proof. In the spirit of the pioneering work [Ott01] we know that

d

dt
|0F (µ(t)) =

∫

M

〈(f ′ ◦ µ), µ̇〉vol = −
∫

M

(f ′ ◦ µ)div(µv)vol

which equals by integration by parts

∫

M

〈∇(f ′ ◦ µ), v〉µvol.

Definition 2.2.4. Vector fields on P∞ are defined as smooth (in the sense of
c∞-topology, see [KM97]) sections of the kinematic tangent bundle TP∞, i.e.
V ∈ Γ(TP∞ ← P∞) if V : µ 7→ µ̇ such that prP∞ ◦ V (µ) = µ. By proposition
2.2.1 we know that each equivalence class of curves corresponds to some element
in the L2(µ)-closure of the space of gradient-type vector fields. We say that a
smooth functions v defined on the underlying manifold determines a vector field
V on the space of smooth, positive probability densities if there exists some
representative of a smooth curve c : R → P∞ which passes at zero in µ and
which verifies the continuity equation ċ = −div(µ∇v) at time zero for a smooth
function v. This means that V might be seen as (regular) distribution acting on
test functions in the following way:
For all ϕ ∈ C∞c (M), a function v ∈ C∞(M) and m0 = dµ

dvol :

(V (µ)|ϕ) =
∫

M

〈∇v, ∇ϕ〉xm0(x)vol(dx).

We write short-hand

V (µ) = −div(µ∇v),
We emphasize that the smooth function v :M ∋ x 7→ v̄(m0(x)) ∈ R for v̄ : R+ →
R is a possible choice, i.e. take v̄(x) = log(x)+1, then ∇ v(x) = ∇ (log(m0(x))+
1) gives the vector field associated to the entropy via the Wasserstein gradient:

∇P
∞

∫

M

m0 log(m0) vol(dx) = div(µ∇ v)

2.3 Levi-Cività connection

Recall the notion of tangent map. For a smooth mapping F : P∞ → R and any
smooth curve c : (−a, a)→ P∞ such that c(0) = µ and ċ(0) = −div(µ∇u) the
tangent map

T(F): TP∞ → R× R

(µ, ċ(0)) 7→ (F (µ), T (F )(µ).ċ(0)) := (F (µ), ddt |0(F ◦ c)(t))
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Proposition 2.3.1 (Smooth Lie bracket [Sel06]). Given U, V ∈ Γ(TP∞ ←
P∞). Since vector fields are not complete we have to construct their respective
flows explicitely: For 0 < a≪ ǫ we define FlUt ,Fl

V
t : (−a, a)× P∞ → P∞ by

∂

∂t
FlUt (µ) = U(FlUt (µ))

= −div(FlUt (µ)∇ū(FlUt (µ)))

resp.

∂

∂t
FlVt (µ) = V (FlVt (µ))

= −div(FlUt (µ)∇v̄(FlVt (µ)))

Then the Lie bracket reads as follows:

[U, V ](µ) = div(V (µ)∇u)− div(U(µ)∇v) +
+div(µ∇T (u)(µ).V (µ)) − div(µ∇T (v)(µ).U(µ))

Here T (u)(µ) is the tangent map of u at µ, since u is a real-valued function on
P∞ it is the differential of u at µ.

Proof. As a prerequisite we calculate

∂

∂t
T
(
FlU−t

)
(µ),

i.e. the expression we differentiate is the tangent map of FlU−t at µ. By the
product rule applied to the flow equation:

∂

∂t
T (FlU−t)(µ) = T

(
∂

∂t
FlU−t

)
(µ)

= −T
(
−div(FlU−t∇

{
u ◦ FlU−t

}
)
)
(µ)

= div
[
T (FlU−t)(µ)∇

{
u ◦ FlU−t

}
(µ)
]
+

+div
[
(FlU−t)(µ)∇

{
T (u ◦ FlU−t)

}
(µ)
]

= div
[
T (FlU−t)(µ)∇

{
u ◦ FlU−t

}
(µ)
]
+

+div
[
(FlU−t)(µ)∇

{
T (u)(FlU−t(µ))T (Fl

U
−t)(µ)

}]
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By definition

[U, V ](µ) =
∂

∂t
|0(FlUt )∗V (µ)

=
∂

∂t
|0(T (FlU−t) ◦ V ◦ FlUt )(µ)

=

(
∂

∂t
|0T (FlU−t)(V ◦ FlUt |0)

)
(µ) + T (FlU−t)|0 ◦

(
∂

∂t
|0V ◦ FlUt

)
(µ)

=
∂

∂t
|0T (FlU−t)(V (µ)) +

∂

∂t
|0V (FlUt (µ))

= div [V (µ)∇u(µ)] + div [µ∇ {T (u)(µ).V (µ)}] +

+
∂

∂t
|0
(
−div

[
FlUt (µ)∇ v(FlUt (µ))

])

= div [V (µ)∇u(µ)] + div [µ∇ {T (u)(µ).V (µ)}] +
−div [U(µ)∇ v(µ)] − div [µ∇ {T (v)(µ).U(µ)}]

This formula generalizes formulas obtained by [Lot08] (where the functions
v̄ do not depend on the density). In view of the Lie bracket we define the
Levi-Cività connection on P∞ and show that it is Riemannian and torsion-free.

Proposition 2.3.2 (Smooth Levi-Cività connection).

∇̃UV (µ) := −div [U(µ)∇ v(µ)] − div [µ∇(T (v)(µ).U(µ))]

= div [div(µ∇u(µ))∇ v(µ)] − div [µ∇(T (v)(µ).U(µ))] ,

i.e. for all ϕ ∈ C∞c (M) :

(∇̃UV (µ)|ϕ) :=

∫

M

〈∇〈∇ϕ,∇v〉x,∇u〉xµ(dx) +
∫

M

〈∇(T (v)(µ).U(µ)),∇ϕ〉xµ(dx)

Proof. We have to show that

U〈V,W 〉µ = 〈∇̃UV,W 〉µ + 〈V, ∇̃UW 〉µ,
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i.e. for I(µ) = 〈V (µ),W (µ)〉µ

U〈V,W 〉µ =

T (I).U

=
d

dt
|0
∫

M

{〈∇ v((id + t∇u(µ))#µ),∇w((id + t∇u(µ))#µ)〉x×

× (id + t∇u(µ))#µ)}

=

∫

M

〈
d

dt
|0∇ v((id + t∇u(µ))#µ),∇w(µ)

〉

x

µ(dx)

+

∫

M

〈
∇ v(µ), d

dt
|0∇w((id + t∇u(µ))#µ)

〉

x

µ(dx)

+

∫

M

〈∇(〈∇ v(µ),∇w(µ)〉x),∇u(µ)〉x

=

∫

M

〈∇T (v).U, ∇w(µ)〉x µ(dx) +
∫

M

〈∇ v(µ),∇T (w).U〉x µ(dx)

+

∫

M

〈∇∇ v,∇w〉x,∇u〉x µ+

∫

M

〈〈∇ v,∇∇w〉x,∇u〉x µ

= −〈div(µ∇T (v).U), w〉µ − 〈div(µ∇T (w).U), v〉µ
+〈div(divµ∇u)∇ v), w〉µ + 〈div(divµ∇ v)∇u), v〉µ

= 〈∇̃UV,W 〉µ + 〈V, ∇̃UW 〉µ.

Taking some Riemannian connection ∇ definied in terms of the Koszul formula

2〈∇UV,W 〉µ = U〈V,W 〉µ + V 〈W,U〉µ −W 〈U, V 〉µ + 〈W, [U, V ]〉µ (2.5)
−〈V, [U,W ]〉µ − 〈U, [V,W ]〉µ (2.6)

and substituting the Lie bracket and the calculations of U〈V,W 〉µ into this

formula shows that ∇ = ∇̃. It is the Levi-Cività connection since ∇̃ is torsion-
free by definition.

Remark 2.3.1. Note that ∇̃UV (µ) ∈ TµP∞ since

(∇̃UV (µ)|ϕ) =

∫

M

〈∇ϕ,∇(Gµd∗µ(∇i∇jv∇judxi))〉xµ(dx)

+

∫

M

〈∇ϕ,∇(T (v)(µ).U(µ))〉xµ(dx)

by lemma 4.14 in [Lot08]. Here Gµ denotes the Green operator for d∗µd on
L2(µ).

Remark 2.3.2. [Gig09] developed notions in order to generalize covariant deriva-
tives to the case of vector fields on Pac by introducing parallel transport of
absolutely continuous vector fields along regular curves. Regular curves c :
[0, 1] → Pac are those whose velocity vector field vt (given by the solution of

the continuity equation) satisfy the Lipschitz condition
∫ 1

0 Lip(vt) dt < ∞ and∫ 1

0 |vt|2c(t)dt <∞. Absolutely continuous vector fields ut are those for which the

translation τst (ut) from L2(c(t)) to L2(c(s)) are absolutely continuous in t for
any s. It is shown the the angle between tangent spaces varies smoothly along
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the regular curves, i.e. the translation of a vector field from L2(c(t)) to L2(c(s))
along such curves is almost in the tangent space to Pac when s and t are close.
With the help of the parallel transport T tt+h : Tµt+h

P → Tµt
P the covariant

derivative is defined as

D

dt
ut := lim

h→0

T tt+h(ut+h))− ut
h

,

It is shown in [Gig09] that on the space of smooth positive densities this notion
of covariant derivative and the formulas obtained in proposition are the same.

Let us return to the case of smooth positive densities on a compact manifold:

Proposition 2.3.3 (Parallel transport).

Proof. With the help of the Levi-Cività connection on P∞ we are able to for-
mulate parallel transport reminding finite dimensional Riemannian geometry.
Given a curve c(t) ∈ P∞ and a vector field V along this curve in the sense that
there exists a smooth time-depending function vt such that

dc

dt
= −div(c(t)∇vt) = Vt(c(t)).

To transport a vector field parallely along a given curve c(t) is equivalent to
asking for a time-depending vector field Wt on P

∞ (given by another smooth
time-depending function wt) such that

(∇̃Vt
Wt)(c(t)) = 0.

By a basis {Eα;α ∈ N} of C∞ we obtain a global basis of TP∞ given by a
family of vector fields {Eα;α ∈ N} on TP∞. We write

Wt = wαt Eα|c(t)

By the derivation rule for the covariant derivative this gives the following formula
evaluated at c(t):

0 = ∇̃Vt
Wt = ∇̃Vt

(wαt Eα) = 〈∇P∞

wα, Vt〉c(t)Eα + wαt ∇̃Vt
Eα

which is equivalent to

〈 d
dt
wα(c(t)), Vt(c(t))〉c(t)Eα + wαt ∇̃Vt

Eα = 0,

i.e.

div

(
c(t)

(
∇ d

dt
wαt + 〈∇vt,∇2wαt 〉

))
= 0

with respect to the basis Eα. See also [Lot08].

This formula will be applied to obtain a

Proposition 2.3.4 (Geodesic equation). [Lot08] The curve c(t) ∈ P∞ is a
geodesic if

∇̃ċt ċt = 0,
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i.e. for a non-constant time-depending function φ ∈ C∞ which solves

∂φ

∂t
+

1

2
|∇φ|2 = 0

such that
ċt = −div(c(t)∇φt)

for t ∈ [0, 1]. Note that this formula recovers a result that was known by calculus
of variation, see [Ott01].

Proof. Put Wt = Vt = −div(c(t)∇φt) in the above formula.

We turn our attention to the Riemannian curvature operator on P∞:

2.4 Riemannian curvature

Definition 2.4.1. For smooth functions φ and ψ we define Πµ as the orthogonal

projection onto Im(d) in Ω1
L2(µ) and Tφψ := (id−Πµ)(φ′ψ′′dx). We use the letter

R for the Riemannian curvature operator on the underlying manifold, i.e.

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

Theorem 2.4.1 (Riemannian curvature operator). [Lot08] Let φ1, φ2, φ3, φ4 ∈
C∞ determine respective vector fields V1, V2, V3, V4 ∈ Γ(TP∞). The curvature
operator R̄ is given in µ ∈ P∞ by

〈R̄(V1, V2)V3, V4〉µ =

∫

M

〈R(φ1, φ2)φ3, φ4〉µ(dx) −

−2〈Tφ1φ2
, Tφ3φ4

〉µ + 〈Tφ2φ3
, Tφ1φ4

〉µ − 〈Tφ1φ3
, Tφ2φ4

〉µ

Proof. Iterate Koszul’s formula (see (2.5)) to obtain

〈R̄(V1, V2)V3, V4〉µ = V1〈∇V2
V3, V4〉 − 〈∇V2

V3,∇V1
V4〉 −

−V2〈∇V1
V3, V4〉+ 〈∇V1

V3,∇V2
V4〉 −

−〈∇[V1,V2]V3, V4〉

The rest of the calculations follow directly from Remark 2.3.1.
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Chapter 3

Zeta function regularized
Laplacian

In this chapter we continue the Riemannian calculus on P∞ by calculating for-
mulas for the Hessian of a functional. For the example of P∞(Td) we calculate
explicitely the trace of the Hessian by intertwining a Hilbert-Schmidt operator
on Γ(TP∞) in order to make the trace (which depends on an additional param-
eter) convergent: this is called renormalization. By a procedure known from
mathematical physics we consider the analytical continuation (in the parameter
variable) of the trace to the complex plane and obtain an expression for the trace
when taking the parameter to zero (with the help of the residue of this function
at zero). The resulting operator is called zeta function regularized Laplacian:
Its iterated square field operator (see [BE85] ) is calculated. Relations to the
generator of Sturm-von Renesse’s Wasserstein diffusion are shown.

3.1 Second order calculus

In [Ott01] the Hessian of the entropy functional Ent(µ) =
∫
Rn µlog(µ) vol(dx)

with respect to Kantorovich-Rubinstein metric was calculated by second order
variation of the entropy functional along constant speed geodesics. We will
calculate the Hessian with respect to the Levi-Cività connection on P∞ for any
smooth functional E : P∞ → R of the type

E(µ) =

∫

M

e(m(x)) vol(dx),
dµ

dvol
(x) = m(x), e : R+ → R.

This will be done in normal coordinates, i.e. covariant derivatives are calculated
in directions U ∈ Γ(TP∞) giving rise to geodesics: U(µ) = −div(µ∇u) for some
u ∈ C∞(M) depending not on m.

Proposition 3.1.1. [The Hessian: a variational approach] Given a functional
E : Pac(M)→ R of the type

E(µ) =

∫

M

e(µ(x))vol(dx)

37
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where e : R+ → R is twice differentiable we define

p(µ) = µe′(µ)− e(µ)
p2(µ) = µp′(µ)− p(µ).

By HessvarE(µ̇, µ̇) we denote the second order variation of E along a geodesic
path t 7→ µt in Pac of the form

{
∂tµ+∇.(µ∇ϕ) = 0

∂tϕ+ |∇ϕ|2
2 = 0.

By Γ2 we denote the iterated square field operator with respect to ∆: Define
Γ(f, g) = ∆(fg)− g∆f − f∆g, then Γ2(f) ≡ Γ2(f, f) := ∆Γ(f, f)−Γ(f,∆f)−
Γ(f,∆f).

Then

HessvarE(µ̇, µ̇) =

∫

M

Γ2(ϕ0) p(µ) e
−V vol+

∫

M

(Lϕ0)
2 p2(µ) e

−V vol. (3.1)

Proof. See [Vil08], p441f.
By the formula for the Wasserstein gradient we have for first order variation
that

d

dt
E(µt) =

∫

M

〈∇ϕt,∇e′(µt)〉µtvol

=

∫

M

〈∇ϕt,∇p(µt)〉vol

= −
∫

M

(∆ϕt)p(µt)vol

Differentiating once again

d2

dt2
E(µt) = −

∫

M

(∆∂tϕt)p(µt)vol−
∫

M

(∆ϕt)p
′(µt)∂tµtvol

=

∫

M

∆

( |∇ϕt|2
2

)
p(µt)vol−

∫

M

(∆ϕt)p
′(µt)∂tµtvol

Note that

−
∫

M

(∆ϕt)p
′(µt)∂tµtvol =

∫

M

(∆ϕt)p
′(µt)∇.(µt∇ϕt)vol

= −
∫

M

〈∇((∆ϕt)p′(µt)),∇ϕt〉µtvol

= −
∫

M

〈∇(∆ϕt),∇ϕt〉p′(µt)µtvol−
∫

M

(∆ϕt)p
′′(µt)µt〈∇µt,∇ϕt〉vol

= −
∫

M

〈∇(∆ϕt),∇ϕt〉p′(µt)µtvol−
∫

M

(∆ϕt)〈∇p2(µt),∇ϕt〉vol

and using integration by parts

−
∫

M

(∆ϕt)〈∇p2(µt),∇ϕt〉vol = −
(∫

M

〈∇((∆ϕt)p2(µt)),∇ϕt〉vol−
∫

M

〈∇(∆ϕt),∇ϕt〉p2(µt)vol
)

=

∫

M

(∆ϕt)
2p2(µt)vol +

∫

M

〈∇(∆ϕt),∇ϕt〉p2(µt)vol
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Collecting all terms we get

d2

dt2
E(µt) =

∫

M

∆

( |∇ϕt|2
2

)
p(µt)vol +

∫

M

(∆ϕt)
2p2(µt)vol

+

∫

M

〈∇(∆ϕt),∇ϕt〉p2(µt)vol−
∫

M

〈∇(∆ϕt),∇ϕt〉p′(µt)µtvol

=

∫

M

∆

( |∇ϕt|2
2

)
p(µt)vol +

∫

M

(∆ϕt)
2p2(µt)vol +

∫

M

〈∇(∆ϕt),∇ϕt〉 {p2(µt)− p′(µt)µt}︸ ︷︷ ︸vol

−p(µt)

=

∫

M

(
∆

( |∇ϕt|2
2

)
− 〈∇(∆ϕt),∇ϕt〉

)

︸ ︷︷ ︸
p(µt)vol +

∫

M

(∆ϕt)
2p2(µt)vol

Γ2(ϕt)

Remark 3.1.1. In Villani’s book this proposition is referred to as ”formula” in
order to caution the reader against the so called ”formal Riemannian calculus”
on Pac. Indeed Otto’s Wasserstein gradient formula requires a restriction to the
(non-complete with respect to the weak topology) subspace P∞ ⊂ P the above
calculations are rigorous due to the formalism developed in chapter 1.

3.2 Zeta function regularized Laplacian on P∞(T1)

The trace of a symmetric bilinear form B on a Riemannian manifolds (M, 〈·, ·〉x)
at a point x ∈ M for a chosen orthonormal basis {ei}i=1,...,dim(M) ⊂ TxM is
definied as

tr(B)(x) :=

dim(M)∑

i=1

〈Bei, ei〉x.

The functional tr is by definition invariant under change of the basis by any
orthogonal matrix O ∈ O(dim(M)). In order to make the definition a global
one one has to clarify how an element ex of Ox, the set of all orthonormal bases
of TxM , changes in dependence on the basepoint x: Any basis ex will be moved
by parallel transport along a smooth curve to a point ey ∈ Oy. In infinite di-
mension two questions arise immediately: Firstly, how can one make the series∑∞

i=1〈Bei, ei〉x converge, and secondly, what should be meant by invariance of
the trace under some group O(∞)? In the case of Hilbert manifolds M mod-
elled on Hs-Sobolev completions of Γ(TM ←M) for sufficiently large s ∈ R and
Hilbert-Schmidt operator A acting on Γ(TM ← M) one can remedy the con-
vergence question in defining the A-trace by trA(B)(p) =

∑m
i=1〈A∗BAei, ei〉p

with p ∈M and {ei}∞i=1 a complete orthornomal system of TpM . Since the op-
erator B is bounded and the Hilbert-Schmidt norm ||A||2HS :=

∑∞
i=1〈Aei, Aei〉p

is finite, the A-trace is convergent. In the sequal we adopt a similar point of
view in the case of P∞.
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Proposition 3.2.1 (Renormalized Laplacian on P∞(T1)). Given a functional
E : P∞(T1)→ R of the type

E(µ) =

∫

T1

e(µ(x))vol(dx),

where e : R+ → R is C3. For an orthonormal system {ek(µ)}k∈N of

TµP
∞(T1) := C∞(T1)/R

L2(µ)

we define an operator A on TµP
∞(T1) by diagonalization in the basis {ei(µ)}k∈N :

A : ek(µ) 7→, ⌊k/2⌋−aek(µ); k ∈ {2, 3, . . .}, a >
3

2
.

For the first mode we define A : e1(µ) 7→ 2π
√
2e1(µ). Let H̃essE be the Hes-

sian operator associated to the the (variational) Hessian HessvarE(., .)(µ). The
renormalized Wasserstein Laplacian in an open neighbourhood of µ as de-
fined below is finite:

∆a
P∞(T1)E(µ) :=

∞∑

k=1

〈H̃essEAek(µ), Aek(µ)〉µ <∞

Proof. For the inner product 〈ek, ek〉vol ≡ 〈ek, ek〉H1(vol) := 1
(2π)2 〈e′k, e′k〉L2 on

TvolP
∞(T1), we are given a complete orthonormal system on TvolP

∞(T1) by





e2k(x) =
√
2 k−1 sin 2πkx, k ∈ N

e2k+1(x) =
√
2 k−1 cos 2πkx, k ∈ N

e1(x) = 1.

Likewise by





e2k(µ)(x) such that d
dxe2k(µ)(x) =

1√
µ(x)

d
dxe2k(x), k ∈ N

e2k+1(µ)(x) such that d
dxe2k+1(µ)(x) =

1√
µ(x)

d
dxe2k+1(x), k ∈ N

e1(µ)(x) such that d
dxe1(µ)(x) =

1√
µ(x)

.

with inital data
{
e2k(µ)(0) = 0, k ∈ N

e2k+1(µ)(0) = 0, k ∈ N

we are given a complete orthonormal system of TµP
∞(T1): On the torus we

can solve the defining differential equation by integration and orthonormality
of {ek(µ)}k∈N is given by definition. To show that {ek(µ)}k∈N ⊂ TµP∞(T1) we
consider a vector field u such that divµu = 0. We have to show that ek(µ) ⊥ u
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with respect to 〈., .〉µ for all k ∈ N:
∫

T1

e′k(µ).uµ =

∫

T1

e′k.u
√
µ

= −
∫

T1

(
√
µ/µ)ek︸ ︷︷ ︸ .(uµ)

′ +

∫

T1

(ekuµ)
µ′

2
√
µ3

ϕ1 ∈ C∞c (T1)

= 0 +

∫

T1

(
ek

µ′

2
√
µ3

)

︸ ︷︷ ︸
uµ = 0

ϕ′
2 for ϕ2 ∈ C∞c (T1)

since
∫
µu.ϕ′ = 0 for any ϕ ∈ C∞c (S1). Note that at this place it is crucial to

deal with differentiable densities with full support. The function ϕ2 is obtained
by integration.

Given a functional E : P∞ → R and a distribution U ∈ TP∞ such that
(U(µ)|ϕ) =

∫
T1 u

′ϕ′µ for smooth, compactly supported functions u and ϕ. Ac-
cording to ([Vil08]):

HessvarE(U,U)(µ) =

∫

T1

Γ∆
2 (u)(µe

′(µ)−e(µ))vol+
∫

T1

(∆u)2(µp′(µ)−p(µ))vol,

with

p(x) = xe′(x)− e(x) and p′(x) = xe′′(x) + e′(x)− e′(x) = xe′′(x)

and Γ∆
2 the iterated carré du champ operator with respect to ∆ = ∆T1 = d2

dx2 .
Then

HessvarE(U,U)(µ) =

∫

T1

(u′′)2(µe′(µ)− e(µ))vol +
∫

T1

(u′′)2(µ2e′′(µ)− µe′(µ) + e(µ))vol

=

∫

T1

(u′′)2µ2e′′(µ)vol,

and

∆a
P∞(T1)E(µ) =

∫

T1

2(2π)2((e1(µ))
′′)2µ2e′′(µ)vol(dx)

+

∞∑

k=2

∫

T1

⌊k/2⌋−2a((ek(µ))
′′)2µ2e′′(µ)vol(dx)

=

∞∑

k=1

∫

T1

k−2a(((µ−1/2e′2k)
′)2 + ((µ−1/2e′2k+1)

′)2)µ2e′′(µ)vol(dx)

+2(2π)2
∫

T1

((log µ)′)2

4µ
µ2e′′(µ)vol(dx)

Since e′′2k = 2πke′2k+1 resp. e′′2k+1 = −2πke′2k and (e′2k)
2 + (e′2k+1)

2 = 2(2π)2 it
follows that

((µ−1/2e′2k)
′)2 + ((µ−1/2e′2k+1)

′)2 = ((e′2k)
2 + (e′2k+1)

2)(1/4µ−3(µ′)2) +

((e′2k)
2 + (e′2k+1)

2)(µ−1(2πk)2) +

e′2ke
′
2k+1(−µ−3/2µ′µ−1/22πk + µ−3/2µ′µ−1/22πk)

= 2(2π)2{1/4µ−3(µ′)2 + µ−1(2πk)2}
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Consequently

∆a
P∞(T1)E(µ) =

∞∑

k=1

∫

T1

k−2a2(2π)2
{
1/4µ−3(µ′)2 + µ−1(2πk)2

}
µ2e′′(µ)vol(dx)

+2(2π)2
∫

T1

((logµ)′)2

4µ
µ2e′′(µ)vol(dx)

= 2(2π)2
∞∑

k=1

k−2a

∫

T1

{
1/4((logµ)′)2 + (2πk)2

}
µe′′(µ)vol(dx)

+2(2π)2
∫

T1

((logµ)′)2

4
µe′′(µ)vol(dx)

< ∞

since

||((log µ)′)2µe′′(µ)||∞ < +∞
||µe′′(µ)||∞ < +∞,

which is guaranteed since the densities are supposed to have full support and
to be sufficiently regular.

For the Riemann zeta function ζR(s) =
∑∞

k=1
1
ks ,ℜ(s) > 1 there exists a

meromorphic continuation to the complex plane with single pole at s = 1 which
was proved by Riemann himself in 1859 by the following functional equation:

ζR(s) = 2sπs−1 sin
sπ

2
Γ(1− s)ζR(1 − s); s ∈ C \ {1}

which enables us to calculate a specific value:

ζR(0) =
1

π
lim
s→0

sin
sπ

2
Γ(1− s)ζR(1− s)

=
1

π
lim
s→0

(
sπ

2
− s3π3

48
+ . . .

)(
−1

s
+ . . .

)
= −1

2
.

We used that Res(ζ, 1) = lims→1(s− 1)ζR(s) = 1 = a−1 and the Laurent series
reads ζR(s) =

∑∞
n=−1 an(s− 1)n i.e. ζR(1 − s) = − 1

s + . . . .

Definition 3.2.1 (Zeta function regularized Laplacian).

∆P∞(T1)E(µ) := lim
a→0

∆a
P∞(T1)E(µ)

is called (Zeta function) regularized Laplacian.

Proposition 3.2.2. Given a functional E : P∞(T1)→ R of the type

E(µ) =

∫

T1

e(µ(x))vol(dx),
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where e : R+ → R is C3. Then

∆P∞(T1)E(µ) = 2(2π)2(ζR(0) + 1)

∫

T1

{
((log µ)′/2)2}µe′′(µ)

}
vol(dx)

= π2

∫

T1

{(log µ)′}2 µe′′(µ)vol(dx).

We used additionally the fact that for the analytical continuation of the Zeta
function ζR(−2) = 0 holds.

Example 3.2.1. For Ent(µ) =
∫
T1 µ(x) log µ(x) vol(dx) we have

∆P∞(T1)Ent(µ) = π2||(logµ)′||2L2(vol)

Example 3.2.2. For functionals E(µ) =
∫
T1 f(x)vol(dx) with f a measurable

function on T1 we have ∆P∞(T1)E(µ) = 0 for all µ ∈ P∞.

Remark 3.2.1. Set E(µ) = 1
2

∫
T1 µ

2vol, then

∆P∞E(µ) = π2||∇P
∞

Ent(µ)||2µ

for all µ ∈ P∞.

Proposition 3.2.3. Given a functional F : P∞(T1)→ R of the type

F (µ) = Φ (〈f, µ〉) ,

where f ∈ Cb(T1) and Φ ∈ Cb(R). Then

∆P∞F (µ) = 2(2π)2Φ′′(〈f, µ〉)||f ′√µ||2L2

and the square-field operator with respect to ∆P∞ applied to functionals F reads:

Γ(F ) = 2(2π)2||∇P
∞

F (µ)||2µ

Proof. We denote the L2(µ) inner product by 〈, 〉µ, if no measure is specified we
consider the inner product on L2(vol). Following ([Lot08]) a geodesic (µt)t∈[0,T ]

in P∞ starting at µ0 = µ satisfies

µ̇t = −div(µt∇vt)

where the smooth function vt satisfies

v̇t =
−|∇vt|2

2
.

The second order variation of F along (µt)t∈[0,T ] reads

d2

dt2
Φ(〈f, µt〉) =

d

dt
(Φ′(〈f, µt〉)〈f, µ̇t〉)

= Φ′′(〈f, µt〉)〈f, µ̇t〉2 +Φ′(〈f, µt〉)
d

dt
〈f, µ̇t〉
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Remark since v̇′t = −v′tv′′t and µ̇t = −(µtv′t)′

d

dt
〈f, µ̇t〉 =

d

dt

∫
f ′v′tµtvol

= 〈f ′,−v′tv′′t µt + v′tµ̇t〉
= −〈f ′, ((v′t)

2)′µt + µ′
t(v

′
t)

2〉
= −〈f ′, ((v′t)

2µt)
′〉

Hess(F )(v′, v′)(µ) =
d2

dt2 t=0
Φ(〈f, µt〉)

= Φ′′(〈f, µ〉)〈f ′, v′〉2µ +Φ′(〈f, µ〉)〈f ′′, (v′)2µ〉

In this formula at the place of v′ we plug in (here for s > 1/2) k−sek(µ)′ as in
the proof of Proposition 3.2.1 in order to calculate

∆s
P∞(T1)F (µ) =

∞∑

k=1

Φ′′(〈f, µ〉)〈f ′, k−sek(µ)
′〉2µ +Φ′(〈f, µ〉)〈f ′′, (k−sek(µ)

′)2µ〉

which equals

Φ′′(〈f, µ〉)
∞∑

k=1

〈f ′, k−sµ−1/2e′k〉2µ + 2(2π)2Φ′(〈f, µ〉)〈f ′′, 1〉ζ(2s)

Since ζ(2s) is finite for 2s > 1 and we now that 〈f ′′, 1〉 = 0 the second term
vanishes and by the functional equation for ζ we define again

∆P∞(T1)F (µ) := lim
s→0

∆s
P∞(T1)F (µ)

which equals

lim
s→0

Φ′′(〈f, µ〉)2(2π)2||f ′µ1/2||2H−s = Φ′′(〈f, µ〉)2(2π)2||f ′µ1/2||2L2 .

Note that the limit is taken for s ∈ C.

The square-field operator Γs(F ) with respect to ∆s
P∞ is defined by

1

2
∆s

P∞(F 2)− F∆s
P∞(F ).

In a first step we remark that

1

2

d2

dt2
(F (µt))

2 = (
d

dt
F (µt))

2 + F (µt)
d2

dt2
F (µt)

and so

1

2

d2

dt2
(F (µt))

2 − F d2

dt2
(F (µt)) = (

d

dt
F (µt))

2 = (Φ′(〈f, µ〉)〈f ′, v′〉µ)2
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which entails

Γs(F ) =

∞∑

k=1

(Φ′(〈f, µ〉)〈f ′, k−sek(µ)
′〉µ)2 = 2(2π)2(Φ′(〈f, µ〉))2||f ′||2

H−s
µ

But
lim
s→0
||f ′||2

H−s
µ

= ||f ′||2L2(µ)

and consequently
lim
s→0

Γs(F ) = 2(2π)2||∇P∞

F (µ)||2µ

Remark 3.2.2. By the chain rule the formulas for the regularized Wasserstein
Laplacian can be extended to the set of test functions

Z =
{
F (µ) ≡ Φ

(
〈f, µ〉

)
; Φ ∈ C2(Rd), f = (f1, . . . , fd) ∈ C2(T1;Rd);µ ∈ P∞(T1)

}
,

i.e.

∆P∞F (µ) =
d∑

i,j=1

∂i∂jΦ
(
〈f, µ〉

) ∫ 1

0

f ′
if

′
jµ

Remark 3.2.3. Observe that within the class Z there are test functions Φ(x) =
eix for d = 1 such that

∆P∞ei
∫
T1
fµ = −ei

∫
T1
fµ

∫

T1

(f ′)2µ

Proposition 3.2.4 (Iterated square-field operator). Let F ∈ Z with d = 1:

Γ2(F ) :=
1

2
∆P∞ ||∇P

∞

F ||2µ − 〈∇P
∞

∆P∞F,∇P
∞

F 〉µ

Then Γ2(F ) equals

2(2π)2
{
(Φ′′)2||f ′||4µ +Φ′Φ′′〈f ′, ((f ′)2)′〉µ

}

(compare to [BE85]).

Proof. Let µt be a geodesic and consider at first test functions in Z of type
F (µ) = Φ(〈f, µ〉) ≡ Φ. Remember that

||∇P∞

F ||2µ = ||Φ′〈f, µ̇〉||2µ = (Φ′)2||f ′||2µ

Then

d2

dt2
||∇P∞

F ||2µ =
d

dt
(2Φ′Φ′′〈f, µ̇〉||f ′||2µ + (Φ′)2〈(f ′)2, µ̇〉)

= 2(Φ′′)2〈f, µ̇〉2||f ′||2µ + 2Φ′Φ′′′〈f, µ̇〉2||f ′||2µ + 2Φ′Φ′′〈f, ..µ〉||f ′||2µ
+4Φ′Φ′′〈f, µ̇〉〈(f ′)2, µ̇〉+ (Φ′)2〈(f ′)2,

..
µ〉

Taking the regularized trace we obtain
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∆P∞ ||∇P∞

F ||2µ = 2(Φ′′)22(2π)2||f ′||4µ + 2Φ′Φ′′′2(2π)2||f ′||4µ + 2Φ′Φ′′〈f ′′, 1〉||f ′||2µ2(2π)2

+2(2π)24Φ′Φ′′〈f ′, ((f ′)2)′〉µ + (Φ′)2〈((f ′)2)′′, 1〉2(2π)2
= 2(2π)2

{
2(Φ′′)2||f ′||4µ + 2Φ′Φ′′′||f ′||4µ + 4Φ′Φ′′〈f ′, ((f ′)2)′〉µ

}

On the other hand

〈∇P∞

∆P∞F,∇P∞

F 〉µ = 2(2π)2Φ′Φ′′′〈f ′, f ′〉µ||f ′||2µ + 2(2π)2Φ′Φ′′〈f ′, ((f ′)2)′〉µ

So
1

2
∆P∞ ||∇P∞

F ||2µ − 〈∇P∞

∆P∞F,∇P∞

F 〉µ

equals

2(2π)2
{
(Φ′′)2||f ′||4µ +Φ′Φ′′〈f ′, ((f ′)2)′〉µ

}
.

The formula for the iterated square field operator generalizes by the chain rule
to any F ∈ Z.

Remark 3.2.4. Let G be the space of non-decreasing functions on T1. Remark
that G ⊂ L2(vol) is convex. We know (see [SvR09]) that there exists an isometry
ι between G and the space of all probability measures on T1 equipped with the
Wasserstein distance given by ι(g) = (g−1)′. Denote by H ⊂ G the dense
subspace of strictly increasing smooth functions on the unit sphere. On H we
define test funtions F (h) := Φ(

∫
f ◦ hvol) where Φ resp. f are smooth function

on R resp. on T1. We can easily calculate the L2-Hessian:

HessF (h)(ξ, ξ) =
d2

dt2
|0F (h+ tξ) =

d

dt
|0(Φ′(

∫
f ◦ h)

∫
f ′ ◦ (h+ tξ)ξ)

= Φ′′(

∫
f ◦ h)(

∫
(f ′ ◦ h)ξ)2 +Φ′(

∫
f ◦ h)

∫
(f ′′ ◦ h)ξ2

The Zeta function regularized L2(vol) Laplacian on H is given by

∆L2F (h) = lim
s→0

∑

k

k−2sHessF (h)(e′k, e
′
k)

= Φ′′(

∫
f ◦ h)〈f ′ ◦ h, f ′ ◦ h〉 − (2π)2Φ′(

∫
f ◦ h)

∫
(f ′′ ◦ h)

By ι∗(F )(µ) := F (ι−1(µ)) we obtain test functions on P∞ and can see

ι∗(∆L2F (h))−∆P∞ι∗(F )(µ) = 〈∇P
∞

ι∗F (µ),∇P
∞

ι∗Ent(µ)〉µ,

Remark 3.2.5. [SvR09] construct a Markov process with values in P ([0, 1]) via
a Dirichlet form (using the Wasserstein gradient) with respect to the so called
entropic measure Pβ. This dubbing stems from the heuristic approach of defining
a Gibbs type measure on the space of probability measures

dPβ =
1

Zβ
e−βEnt(µ)dP
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for some normalizing constant Zβ and some non-existing uniform distribution P.
Since every probability measure on the unit interval can be mapped isometrically
(for the Wasserstein distance) to G, the space of non-decreasing functions from
the unit interval to itself, the above measure may be considered as a probability
measure on this path space. In analogy to Feynman’s construction of the Wiener
measure on the space of all continuous functions from the unit interval to the
real numbers two differences appear:
Firstly Feynman chooses as discretized Hamiltonian the free energy of a path,
the anology in [SvR09] fixes a finite partition 0 = t0 < t1 < · · · < tn = 1 and
define the discretized Hamiltonian for g ∈ G by

H(g) = −
∑

i

log
gti − gti−1

ti − ti−1
(ti − ti−1).

From optimal transport one learns that a solution to the heat equation is also
solution to a gradient flow equation on the space of probability measures and
the functional for which the heat flow realizes its steepest descent is the Boltz-
mann entropy. Since [SvR09] want to construct a Wasserstein diffusion as a
stochastically perturbed heat flow the choice of the Boltzmann entropy for the
Hamiltonian reveals to be the right one.
Secondly Feynman chooses as reference measure for the finite-dimensional dis-
tribution of his Gibbs type measure on the path space the uniform distribution.
This finite-dimensional distributions constitute a family of consistent probability
measures and by Kolmogorov’s extension theorem Feynman can show that the
limiting measures equals the Wiener measure. In analogy [SvR09] choose

qn(dx1, . . . , dxn) = Cn
dx1 . . . dxn

x1(x2 − x1)...(xn − xn−1)(1 − xn)

as finite-dimensional reference measure. This measure (it is not a probability
measure!) turns out to be the only one on G which is invariant under rescaling
of any subset of the partition {xk < · · · < xl} by x 7→ (xl−xk)x+xk and which
has continuous density.
Combining the two ingredients one obtains as consistent family of finite-dimensional
distribution the Dirichlet-Poisson measure Qβ(gt1 ∈ dx1, . . . , gtn ∈ dxn) which
equals

1

Zβ,n

n+1∏

i=1

(xi − xi−1)
β(ti−ti−1)

dx1, . . . , xn
x1(x2 − x1)...(xn − xn−1)(1 − xn)

and the measure Pβ is defined as the push-forward of Qβ under the isometry
between G and P . The Dirichlet form built with this measure gives a generator
Lβ of a continuous Markov process with the Wasserstein distance as intrinsic
metric for β > 0. Define

Z1 =
{
F (µ) ≡ Φ

(
〈f, µ〉

)
; Φ ∈ C2(Rd), f = (f1, . . . , fd) ∈ C2([0, 1];Rd); f ′

i(0) = f ′
i(1) = 0

}
.

For F ∈ Z1 the generator Lβ equals

LβF = L1F + L2F + βL3F,

with
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L1F =
d∑

i,j=1

∂i∂jΦ(

∫
fdµ)

∫
f ′
if

′
jdµ

L2F = ∂iΦ(

∫
fdµ)


 ∑

gaps(µ)

[
f ′′
i (I−) + f ′′

i (I+)

2
− f ′

i(I−)− f ′
i(I+)

|I|

]
− f ′′

i (0) + f ′′
i (0)

2




L3F =

d∑

i=1

∂iΦ(

∫
fdµ)

∫
f ′′
i dµ

gaps denotes the set of intervals I = (I−, I+) ⊂ [0, 1] of maximal length with
µ(I) = 0 and |I| denotes the length of such an interval. From this it follows
that the regularized Wasserstein Laplacian is equal to the generator of Sturm-
von Renesse’s Wasserstein diffusion with inverse temperatur β = 0 and periodic
boundary conditions.

3.3 Zeta function regularized stochastic flows on
the torus

Let {Bkt , k ∈ N} be a family of independent Brownian motions on R and s a
positive real number. For every (µ, x, t) ∈ P∞ × T1 × R+ we define a random
field (compare to Proposition 3.2.1):

F (µ, x, t) :=
2π
√
2√

µ(x)
B1
t +

∞∑

k=1

√
22πk−s√
µ(x)

{
B2k
t sin 2πkx+B2k+1

t cos 2πkx
}
.

The process t 7→ F (µ(.), ., t) is a continuous local martingale with values in
Cj(T1;R) for j < s− 1.
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The quadratic variation V s(µ, x, y, t) of F (µ, x, t)− F (µ, y, t) equals

E
[
(F (µ, x, t)− F (µ, y, t))2

]
=

= t2(2π)2(
1√
µ(x)

− 1√
µ(y)

)2 +

+ t

∞∑

k=1

2(2π)2k−2sE

[
1√
µ(x)

{
B2k
t sin 2πkx+B2k+1

t cos 2πkx
}
−

1√
µ(y)

{
B2k
t sin 2πky +B2k+1

t cos 2πky
}
]2

= t2(2π)2(
1√
µ(x)

− 1√
µ(y)

)2 + t2(2π)2
∞∑

k=1

k−2s

{
1

µ(x)
+

1

µ(y)
−

− 2
1√
µ(x)

1√
µ(y)

(sin 2πkx sin 2πky + cos 2πkx cos 2πky)

}

= t2(2π)2(
1√
µ(x)

− 1√
µ(y)

)2 + t2(2π)2
∞∑

k=1

k−2s

{
1

µ(x)
+

1

µ(y)
−

− 2
1√
µ(x)

1√
µ(y)

(
1− 2 sin2(2πk

x− y
2

)

)}

which is finite and Lipschitz continuous for s > 3/2 (since the densities are
smooth and positive). As [Fan02] remarks one can construct with this random
fields (with µ ≡ 1 or not) Brownian motion on Diff1(T1) by using the theory of
stochastic flows (see [Bax84] and [Kun90]). The border case s = 3/2 could be
treated by looking into [Fan02], where it is proven that there exists a constant
c > 0 such that for all 0 < θ := x− y ≤ 1

2

∞∑

k=1

k−2s sin2(2πk
θ

2
) ≤ cθ2 log θ.

As was already shown in [Mal99] by means of heat kernel regularization (and
for µ ≡ 1) the random field F in the case of s = 3/2 gives rise to Brownian
motion on the space of homeomorphisms of T1. The parameter s = 1 would
correspond to the metric used in Wasserstein geometry; but this case cannot be
handled by the regularization techniques used in [Mal99].
Let us consider the analytic continuation of the quadratic variation s 7→ V s(µ, x, y, t)
to the complex plane:

Note that

sin2 2πkx =
2− exp(4πikx)− exp(−4πikx)

4
.

The polylogarithm

s 7→ Lis(z) :=

∞∑

k=1

zk

ks
|z| < 1
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has an analytic continuation (in s) to the complex plane and satisfies the fol-
lowing well-known identity (see [AS70] and [Apo76])

Lin(e
2πix) + (−1)nLin(e−2πix) = − (2πi)n

n!
Bn(x)

for x ∈ R, n = 0, 1, 2, . . . and Bn(x) being the Bernoulli polynomial; in partic-
ular

Li0(e
2πix) + Li0(e

−2πix) = −1

Li2(e
2πix) + Li2(e

−2πix) = 2π2

(
x2 − x+

1

6

)

which entails

lim
s→0

∞∑

k=1

sin2(2πk θ2 )

ks
=

1

2
ζ(0) +

1

4
= 0.

lim
s→2

∞∑

k=1

sin2(2πk θ2 )

ks
=

1

2
ζ(2)−1

4
2π2

(
θ2 − θ + 1

6

)
=

1

2

π2

6
−1

4
2π2

(
θ2 − θ + 1

6

)
.

For the analytic continuation of the infinitesimal covariance as(µ, x, y) :=
limtց0(V (µ, x, y, t)/t) at s ∈ C we define a0(µ, x, y, t) = as(µ, x, y)|s=0 resp.
a2(µ, x, y, t) = as(µ, x, y)|s=2 and conclude

a0(µ, x, y) = (2π)2

(
1√
µ(x)

− 1√
µ(y)

)2

Note that a0(µ, x, x) = 0. Resp.

a2(µ, x, y) = ((2π)2 + (2π)2
π2

6
)

(
1√
µ(x)

− 1√
µ(y)

)2

+ 8(2π)2(−2π2

4

(
θ2 − θ

)
)

Unfortunately both a1(µ, x, y) and a2(µ, x, y) are not positive definite for any
fixed x, y ∈ T1.

Definition 3.3.1. Given the random field F as above with s > 3/2 (for fixed
µ ∈ P∞(T1) it is a random field with local characteristics (0, a) in the sense
of [Kun90]), we define a generalized Kunita stochastic differential equation with
interaction to be a process

t 7→ (ϕt, µt) ∈ Diff∞(T1)× P∞(T1)

which is a simultaneous solution of

dϕt = F (µt, ϕt, dt) (3.2)

µt = ϕt#µ0. (3.3)

The first equation is a Kunita SDE with values in Diff∞(T1) and the solution
of the second equation is a P∞(T1)-valued stochastic process.

We say that the process t 7→ µt solves (3.2) and (3.3) iff the process t 7→ µt
is a fix point of the mapping κ : C(R+;P

∞(T1)) 7→ C(R+;P
∞(T1)), where

(κµ)t := ϕt#µ0 for ϕt solution to dϕt = F (µt, ϕt, dt).
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Proposition 3.3.1. Let t 7→ µt be a solution to (3.2) and (3.3) with µ0 ∈
P∞(T1). Then t 7→ µt is a diffusion process on P∞(T1) with generator

L(Ψ(〈f, µ0〉)) =
1

2
Ψ′′(〈f, µ0〉)

∫

T1

∫

T1

as(µ, x, y)∇f(x)∇f(y)µ0(dx)µ0(dy)

+
1

2
Ψ′(〈f, µ0〉)

∫

T1

as(µ, x, x)∆f(x)µ0(dx)

for s > 3.

Proof. Use the generalized Ito formula in [Kun90] p92f.

3.4 Renormalized Laplacian on P∞(Td)

Recall ([Mal08]) that the topological dual of Td is Zd, where the coupling be-
tween k ∈ Zd and x ∈ Td is given by (k, x) := exp(i〈k, x〉), with 〈k, x〉 =∑d

i=1 kixi. The Fourier transform of a complex function on Td is given by

f̂(k) = 1
(2π)d

∫
Td f(x)(−k, x) dx and any f ∈ L2( 1

(2π)d vol) can be written as

f(x) =
∑
k∈Zd f̂(k)(k, x). The function f is real if and only if f̂(−k) = ¯̂

f(k). De-

note Z̃d ⊂ Zd such that each equivalence class of the equivalence relation defined
by k ∼ k′ if k = −k′ has a unique representative in Z̃d. Note that in contrast
to the one-dimensional case the choice of Z̃d is not unique. The Fourier ex-
pansion for real valued functions then reads f(x) = 2

∑
k∈Z̃d ℜ(f̂(k)) cos〈k, x〉−

ℑ(f̂(k)) sin〈k, x〉.
Proposition 3.4.1. Given a functional E : P∞(Td)→ R of the type

E(µ) =

∫

Td

e(µ(x))vol(dx),

where e : R+ → R is C3. For an orthonormal system {ek(µ), ēk(µ)}k∈Z̃d of

TµP
∞(Td) we define an operator A on TµP

∞(Td) by diagonalization in its basis:

A : ek(µ) 7→ |k|−aek(µ); k ∈ Z̃d, a >
3

2
+ d, d > 1

Let H̃essE be the Hessian operator associated to the the (variational) Hessian
HessvarE(., .)(µ). The renormalized Wasserstein Laplacian in an open
neighbourhood of µ as defined below is finite:

∆a
P∞(Td)E(µ) :=

∑

k∈Z̃d

〈H̃essEAek(µ), Aek(µ)〉µ <∞

Proof. We define an orthonormal system of C∞(Td) with respect to the inner
product H1( 1

(2π)d
dx) by

{
ek(x) := 2d/2 |k|−1

sin〈2πk, x〉, k ∈ Z̃d \ {|k| ≤ 1}
ēk(x) := 2d/2 |k|−1

cos〈2πk, x〉, k ∈ Z̃d \ {|k| ≤ 1}
and define smooth functions ek(µ) resp. ēk(µ) by integration

{
∇ek(µ)(x) = 1√

µ∇ ek(x) k ∈ Z̃d \ {|k| ≤ 1}
∇ēk(µ)(x) = 1√

µ∇ ēk(x) k ∈ Z̃d \ {|k| ≤ 1}
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with inital data {
ek(µ)(0) = 0, k ∈ Z̃d \ {|k| ≤ 1}
ēk(µ)(0) = 0, k ∈ Z̃d \ {|k| ≤ 1}

The ingredients to calculate for the Hessian formula are again Γ2(ek) and
(∆Td(ek))

2.

Γ2(ek(µ)) =
∑

ij

(∂i∂jek(µ))
2

=
∑

i,j

2d(2π)2k2j
|k|2

{
(∂iµ)

2

4c3
cos2〈2πk, x〉+ 2πki∂iµ

µ2
sin〈2πk, x〉 cos〈2πk, x〉+

(2πki)
2

µ
sin2〈2πk, x〉

}

= 2d(2π)2
{ 〈∇µ,∇µ〉

4µ3
cos2〈2πk, x〉+

2π〈k,∇µ〉
µ2

sin〈2πk, x〉 cos〈2πk, x〉+ (2π)2|k|2
µ

sin2〈2πk, x〉
}

and

(∆Td(ek(µ)))
2 =

2d(2π)2

|k|2
{ |〈∇µ, k〉|2

4µ3
cos2〈2πk, x〉+

2π〈∇µ, k〉|k|2
µ2

sin〈2πk, x〉 cos〈2πk, x〉+ (2π)2|k|4
µ

sin2〈2πk, x〉
}

≤ Γ2(ek(µ))

by Cauchy-Schwarz. Given a distribution Ek ∈ TP∞(Td) such that (Ek(µ)|ϕ) =∫
Td〈∇ek(µ),∇ϕ〉µ for smooth, compactly supported functions ϕ we have

HessvarE(Ek, Ek)(µ) =

∫

Td

Γ2(ek(µ))){µe′(µ)− e(µ)}vol +
∫

Td

(∆(ek(µ)))
2{µ2e′′(µ)− µe′(µ) + e(µ)}vol

≤
∫

Td

Γ2(ek(µ))µ
2e′′(µ)vol

= 2d(2π)4|k|2
∫

Td

sin2〈2πk, x〉µe′′(µ)vol +

2d(2π)2

4

∫

Td

|grad log µ|2 cos2〈2πk, x〉µ e′′(µ)vol +

2d(2π)3
∫

Td

〈grad logµ, k〉 sin〈2πk, x〉 cos〈2πk, x〉µe′′(µ)vol

≤ |k|2(2π)4||µe′′(µ)||∞ +
(2π)2

4
||µe′′(µ)|∇ log µ|2||∞

< +∞
if we are able to control

||µe′′(µ)|grad logµ|2||∞ < +∞ (3.4)

||µe′′(µ)|grad logµ| ||∞ < +∞ (3.5)

||µe′′(µ)||∞ < +∞, (3.6)
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which is the case since µ ∈ P∞(Td). Passing from ek(µ) to ēk(µ) we remark
that Γ2(ēk(µ)) is obtained by exchanging sin and cos and by a change of sign
of the the term involving both sin and cos in the formulae of Γ2(ek(µ)) and
(∆(ek(µ)))

2. Again we have (∆(ēk(µ)))
2 ≤ Γ2(ēk(µ)) and we can prove finite-

ness of HessvarE(Ēk, Ēk) with the same arguments.
In order to show finiteness of the renormalized Wasserstein Laplacian we in-
troduce a d-dimensional analogue of the zeta function: For d = 2, 3, . . . and
s ∈ R

ζd(s) :=
∑

k∈Z̃d\{|k|≤1}

1

|k|s

and for j ∈ {2, 3, 4, . . .} we estimate very roughly

hj := #
{
k ∈ Z̃d; j − 1 < |k| ≤ j

}
≤ j2d.

Consequently

ζd(s) <

∞∑

j=2

hj
js
≤ ζ(s− 2d),

and so

∆a
P∞(Td)E(µ) ≤

∑

k∈Z̃d\{|k|≤1}

|k|−2a+2(2π)4||µe′′(µ)||∞ +
(2π)2

4
||µe′′(µ)|∇ log µ|2||∞

= ζd(2a− 2)(2π)4||µe′′(µ)||∞ +
(2π)2

4
||µe′′(µ)|∇ log µ|2||∞

< ζ(2a− 2− 2d)2d(2π)4||µe′′(µ)||∞ +
(2π)2

4
||µe′′(µ)|∇ log µ|2||∞

< ∞

if

2a− 2d− 2 > 1⇔ a > (3 + 2d)/2.

Remark 3.4.1. Estimating the number N(r) of lattice points in Z2 inside the
boundary of a circle with given radius r is known to number theorists as Gauss’s
circle problem. Gauss showed that

N(r) = πr2 + E(r)

with |E(r)| ≤ 2
√
2πr. Today’s best known bounds ([Hux03]) for the error term

are

|E(r)| ≤ Crθ

with
1

2
< θ ≤ 131

208
.
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In the case of d = 2 we can obtain a better upper bound for ζd(s) as in the
above proposition:

hj := #
{
k ∈ Z̃2; j − 1 < |k| ≤ j

}

=
1

2
{N(j)−N(j − 1)}

≤ 1

2

{
(2j − 1)π + Cmax

{
j

1
2 − (j − 1)

131
208 , j

131
208 − (j − 1)

1
2

}}

≤ 1

2
{(2j − 1)π + Cj} = C′j + C′′

Consequently

∆a
P∞(T2)E(µ) ≤

∑

k∈Z̃2\{|k|≤1}

|k|−2a+2(2π)4||µe′′(µ)||∞ +
(2π)2

4
||µe′′(µ)|∇ log µ|2||∞

≤ (2π)4||µe′′(µ)||∞(C′ζ(2a− 3) + C′′ζ(2a− 2))
(2π)2

4
||µe′′(µ)|∇ log µ|2||∞

< ∞

Remark 3.4.2 (Zeta function as Dirichlet series with respect to spectral repre-
sentations of operators). Given an operator in its (purely discrete) spectral rep-
resentation A =

∑
n∈N

λnPn with eigenvalues {λn} having multiplicities {gn}
and projection operators Pn one definies the associated zeta function by

ζA(s) :=
∑

n∈N

gn
λsn
.

For the above mentioned operator

A : ek(µ) 7→ |k|−aek(µ); k ∈ Z̃d

each eigenvalue |k| has by definition multiplicity g|k| = #{j ∈ Z̃d : |j| = |k|}
and hence

ζd(s) = ζA(s)

Open question 3.4.1 (Exact calculation of the Laplacian by measured zeta
functions). By definition

∆a
P∞(Td)E(µ) =

∑

k∈Z̃d\{|k|≤1}

|k|−2a
{
HessvarE(Ek, Ek)(µ) + HessvarE(Ēk, Ēk)(µ)

}

=
∑

k∈Z̃d\{|k|≤1}

|k|−2a

∫

Td

{µe′(µ)− e(µ)}2
d(2π)2

4µ

{
|∇ logµ|2 −

( 〈∇ log µ, k〉
|k|

)2
}
vol

+
∑

k∈Z̃d\{|k|≤1}

|k|−2a

∫

Td

µ2e′′(µ)
2d(2π)2

µ

{ |〈∇ log µ, k〉|2
4|k|2 + 2d(2π)2|k|2

}
vol
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Hence we need explicit expressions for the term called measured zeta function:

ζd(s, E, µ) =
∑

k∈Z̃d\{|k|≤1}

|k|−2s

∫

Td

F (e, µ)

{ 〈∇ log µ, k〉
|k|

}2

vol

for

F (e, µ) =
1

µ
{e(µ)− µe′(µ) + µ2e′′(µ)}.

In the case of the Boltzmann entropy functional F = 0 and:

∆a
P∞(Td)Ent(µ) = 2d−2(2π)2ζd(2a)||∇ logµ||2L2(vol)

+22d(2π)4ζd(2a− 2)



CHAPTER 3. REGULARIZED LAPLACIAN 56



Chapter 4

Approximation of a
Wasserstein diffusion

4.1 Riemannian metrics on the space of box-

type measures

Definition 4.1.1 (Box-type measures). Fix n ∈ N. We denote the space of all
sequence s = (si)

n
i=0 with 0 =: s0 ≤ s1 ≤ s2 . . . sn ≤ sn := 1 by Sn. The set of

sequences in Sn which are strictly increasing is denoted by
◦
Sn.

We write Σn−1 := {λ ∈ Rn : λi ≥ 0,
∑n
i=1 λi = 1}.

For x ∈ [0, 1] we define probability measures

m(s)(x) :=

n∑

i=1

(
1

n(si − si−1)
1{si−si−1>0}1[si−1,si)(x)dx +

1

n
1{si−si−1=0}δsi(x)

)
.

We write

Gn := m(Sn) resp.
◦
Gn:= m(

◦
Sn)

for the space of box-type measures with n boxes. Both spaces are dense in P with

respect to the quadratic Wasserstein distance.
◦
Gn is a totally geodesic subspace

of P equipped with the Wasserstein distance. We may consider the bijection
Sn ≃ Σn−1 given by si − si−1 7→ λi which in turn let us associate to every
element λ ∈ Σn−1 a probability measure

m(λ) :=

n∑

i=1

(
1

nλi
1{λi>0}1[

∑i−1

k=1
λk,

∑
i
k=1 λk)

(x)dx +
1

n
1{λi=0}δ∑i

k=1 λk
(x)

)
.

Lemma 4.1.1. Gn is geodesically convex.

Proof. Each measure m(λ) ∈ Gn can be written in terms of quantile functions
q in the following way

q(x) := inf{t ∈ [0, 1] :

∫ t

0

m(λ) > x},

57
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i.e.

q(x) :=
∑

i≥1

gi(x)1[ i−1
n
, i
n
)(x)dx

where

gi(x) = nλix+

i∑

j=1

λj − iλi

For two given quantile functions q1 and q2 (with weights λ and λ̃) the Wasser-
stein geodesic γt linking q

1 to q2 is given by

γt := (1− t)q1 + tq2.

(see Theorem 7.2.8 in [AGS08]).

But for fixed n ∈ N the curve γt can again be written as

γt(x) :=
∑

i≥1

fi(t, x)1[ i−1
n
, i
n
)(x)dx

where

fi(t, x) = n((1− t)λi + tλ̃i)x +

i∑

j=1

((1 − t)(λj − iλi) + t(λ̃j − iλ̃i))

= n((1− t)λi + tλ̃i)x +

i∑

j=1

((1 − t)λj + tλ̃j)− i((1− t)λi + tλ̃i),

i.e. for every t ∈ [0, 1] we obtain a box-type measure with weight

(1− t)λ+ tλ̃.

Lemma 4.1.2 (Wasserstein distance between two box-type measures.). Given
two measures µ = m(λ) and µ̃ = m(λ̃) for λ, λ̃ ∈ Σn−1 then

dW (µ, µ̃)2 =
1

3n
||λ− λ̃||2Rn +

1

n

n∑

k=1

∑

i≤k;j≤k−1

(λi − λ̃i)(λj − λ̃j).

Proof. For probability measures on the unit interval the quadratic Wasserstein
distance equals the L2 distance of the respective quantile functions, hence

dW (µ, µ̃)2 =

n∑

k=1

∫ k
n

k−1

n


n(λk − λ̃k)x+

k∑

j=1

λj − λ̃j − k(λk − λ̃k)




2

dx.
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But the integrand equals

( kn )
3 − (k−1

n )3

3
n2(λk − λ̃k)2 + ((

k

n
)2 − (

k − 1

n
)2)n(λk − λ̃k)




k∑

j=1

λj − λ̃j − k(λk − λ̃k)


+

+
1

n




k∑

j=1

λj − λ̃j − k(λk − λ̃k




2

=

=
3k2 − 3k + 1

3n
(λk − λ̃k)2 +

2k − 1

n
(λk − λ̃k)




k∑

j=1

(λj − λ̃j)− k(λk − λ̃k)


 +

+
1

n




k∑

j=1

λj − λ̃j − k(λk − λ̃k




2

=

=
1

3n
(λk − λ̃k)2 −

λk − λ̃k
n

k∑

j=1

(λj − λ̃j) +
1

n




k∑

j=1

(λj − λ̃j)




2

which entails the result.

Definition 4.1.2 (Tangent vectors). For i = 0, . . . , n+ 1 we are given Vi ∈ R

such that V0 = 0 and Vn = 0. Consider a sequence s ∈ Sn resp. λ ∈ Σn−1

Vs(x) :=

n∑

i=1

(
si − x
si − si−1

Vi−1 +
x− si−1

si − si−1
Vi

)
1[si−1,si)(x)

Vλ(x) :=

n+1∑

i=1

(∑i
j=1 λj − x
λi

Vi−1 +
x−∑i−1

j=1 λj

λi
Vi

)
1[

∑i−1

j=1
λj ,

∑
i
j=1

λj)
(x)

and set Vλ(1) := 0.

The heuristics behind this definition of tangent vectors is as follows: Each box-
type measures has a quantile function that is piecewise linear on each of the
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intervals [i/n, (i+1)/n). Displacement interpolation between two box-type mea-
sures by Wasserstein geodesics translates to quantile function as convex combi-
nation of two functions which are each piecewise linear on intervals [i/n, (i +
1)/n). Consequently moving mass of box shape according to optimal transporta-
tion consists in moving the parameters λi horizontally (as in the above graphics)
with the only constraint that no mass should be moved on the boundary.

Define the tangent space

Tµ(λ)Gn = {Vλ(x);Vi ∈ R, i = 0, . . . , n}

Lemma 4.1.3. With the above definition we obtain a Riemannian metric on
the n− 1-simplex:

Proof.

||Vs(x)||2dx =
n∑

i=1

∫ si

si−1

Vs(x)
2 dx

=

n∑

i=1

∫ si−si−1

0

(
si − si−1 − y
si − si−1

Vi−1 +
y

si − si−1
Vi

)2

dy

=

n∑

i=1

1

λ2i

∫ λi

0

((λi − y)Vi−1 + yVi)
2
dy

=
n∑

i=1

1

λ2i

∫ λi

0

y2
(
V 2
i + V 2

i−1 − 2Vi−1Vi
)
+

+y
(
2Vi−1Viλi − 2λiV

2
i−1

)
+ V 2

i−1λ
2
i dy

=

n∑

i=1

λi
3

(
V 2
i + V 2

i−1 + Vi−1Vi
)

= V tAn(λ)V

for the n× n matrix

Ani,j(λ) := δi,j
λi + λi+1

3
+ δj,i+1

λi+1

6
+ δj+1,i

λi+1

6

Transposition of V is to be understood in the sense of the Euclidean scalar
product restricted to the (n− 1)-simplex.

We write g(n) for the metric tensor on the (n − 1)-simplex induced by the
matrix Ani,j , i.e. in a global chart we have g(n)ij = Ani,j .

Lemma 4.1.4. Given a probability measure µ on [0, 1] and a sequence of box-
type measures µn which converges weakly to µ and given a non-constant function

f ∈ TµP := C∞([0, 1])
L2(µ)

then there exists a sequence of functions fn ∈
Tµn

P ⊂ TµP such that ||fn||µn
→ ||f ||µ.

Proof. Since the set of box-type measures is dense in the Wasserstein space
over [0, 1] we know that there exists a sequence of box-type measures µn ≡ µ(λ)
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which converges weakly to any given µ. The sequence fn arises as projection
of f to Tµn

Gn ⊂ Tµn
P : For a given orthonormal basis {enk ; k = 1, . . . , n}

of Tµn
Gn = m∗(TλΣn) we obtain fn :=

∑n
k=1〈f, enk 〉µn

enk . More precisely,
each enk (x) is given by a vector (V0, . . . , Vn+1) ∈ {0} × Rn × {0} such that
enk (x) = Vλ(x), normalization of enk amounts to dividing enk by V tAn(λ)V . By
Schmidt orthogonalization with respect to the inner product 〈., .〉µn

we obtain
the orthonormal basis. By the definition of fn we know that there exists a
vector Ṽ ∈ {0} × Rn × {0} such that||fn||2µn

=
∑n

k=1〈f, enk 〉2µn
= ||Ṽλ||2. For

each n ∈ N the inner product 〈., .〉µn
is a strong Riemannian metric on the

subspace Gn (modeled on Rn), in addition this spaces are geodesically convex,
i.e. the notion of action minimizing curves between any two points in this
subspace is well-defined, hence there exists limn→∞ ||fn||2µn

. Since the family
{(TGn, 〈., .〉µn

)} is dense in TP we have limn→∞ ||fn||2µn
= ||f ||2µ.

Remark 4.1.1. By the above lemma and Theorem 7.2.8 in [AGS08] it follows
that the geodesic distance induced by the (strong) Riemannian metric g(n) on
Gn equals the Wasserstein distance when restricted to Gn.

4.2 Sticky diffusion processes on the simplex

Denote the Laplacian with respect to the metric g(n) by

Lnf :=
1√

det(g(n))
∂j(g(n)

−1
√
det(g(n))∂if) =

n∑

i,j=1

aij∂i∂jf +

n∑

k=1

bk∂kf

for any f ∈ C2(Σn−1) and functions aij , bk ∈ Cb(Σn−1), i.e.

aij = Ani,j

and

bk =
1√

det(g(n))
∂j

(
g(n)jk

√
det(g(n))

)
.

Note that

bk =
1√

det(g(n))

∂jg(n)
jk 1√

det(g(n))
− g(n)jk∂j 1√

det(g(n))

(
√

det(g(n)))−2

= ∂jg(n)
jk + g(n)jk

1

2
tr(g(n)−1∂jg(n))

=
1

3
+

2

6
+ g(n)jk

1

2
tr(g(n)−1∂jg(n)).

Define for any r = 1, . . . , n the projection

πr : Σn−1 ∋ λ 7→ (λ1, . . . , λr−1, λr+1, λr+2, . . . λn+1) ∈ ∂rΣn−1.

On the face ∂rΣn we obtain by the above lemma a restricted Riemannian metric:
π∗
rg(n) = Ani,j(π(λ)) for i, j = 1 . . . , r − 1, r + 1, . . . , n. Note that the matrices
π∗
rg(n) are positive definite in (∂rΣn−1)

◦.
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Example 4.2.1. Riemannian metric on the 3-simplex:

A4(λ) =




λ1+λ2

3
λ2

6 0 0
λ2

6
λ2+λ3

3
λ3

6 0

0 λ3

6
λ3+λ4

3 0
0 0 0 0




=




λ1+λ2

3
λ2

6 0 0
λ2

6
λ2+λ3

3
λ3

6 0

0 λ3

6
1−λ1−λ2

3 0
0 0 0 0




Example 4.2.2. Riemannian metric: Projecting from the 3-simplex to ∂1Σ3

and ∂4Σ3:




λ1+λ2

3
λ2

6 0 0
λ2

6
λ2+λ3

3
λ3

6 0

0 λ3

6
1−λ1−λ2

3 0
0 0 0 0




π1∗→




λ2+λ3

3
λ3

6 0
λ3

6
1−λ2

3 0
0 0 0




resp.




λ1+λ2

3
λ2

6 0 0
λ2

6
λ2+λ3

3
λ3

6 0

0 λ3

6
1−λ1−λ2

3 0
0 0 0 0




π4∗→




λ1+λ2

3
λ2

6 0
λ2

6
λ2+λ3

3
λ3

6

0 λ3

6
λ3

3




In the same manner as before we write the π∗
rg(n)-Laplacian (on ∂rΣn−1)

in global coordinates:

Lnr f :=
n−1∑

i,j=1

αijr ∂i∂jf +
n−1∑

k=1

βkr ∂kf

for f ∈ C2(Σn−1) and αijr , β
k
r ∈ Cb(∂Σn−1). Since π∗

rg(n) is a Riemannian
metric on ∂rΣn−1 we know that the matrix (αijr )

n−1
i,j=1 is symmetric and non-

negative definite on (∂rΣn−1)
◦. We assume additionally the existence of δr, ρr ∈

Cb(∂Σn−1) which satisfy δr(∂Σn−1) > 0 and ρr(∂Σn−1) ≥ 0. We define ad hoc
another operator (which turns out to be a boundary operator of Wentzell-type)

Bnr f := Lnr f + δr∂rf − ρrLnf.

Note that ∂n = −∑n−1
i=1 ∂i to obtain normal vector on ∂nΣn−1 pointing into

the interior of the (n − 1)-simplex, whereas for ∂1, . . . ∂n−1 we have the usual
partial derivatives in Rn.

Definition 4.2.1. We say that the tupel (Ln,Bn1 , . . . ,Bnn) generates a diffusion
measure if there exists a family {Px;x ∈ Σn−1} of strongly Markovian probability
measures on (W(Σn−1),B(W(Σn−1))) such that the following conditions hold

• Px(ω : ω(0) = x) = 1
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• For r = 1, . . . , n + 1 there exists a function φr(t, ω) on R+ × W(Σn−1)
such that for a.a. ω, φr(0, ω) = 0, t 7→ φr(t, ω) is continuous and non-
decreasing and

n∑

r=1

∫ t

0

1∂rΣn
(ω(s))dφr(s, ω) = φr(t, ω)

Additionally we require that ω 7→ φr(t, ω) is Bt(W(Σn−1))-measurable for
all t ≥ 0.

• Furthermore

f(ω(t))− f(ω(0))−
∫ t

0

(Lnf)(ω(s))ds−
n∑

r=1

∫ t

0

(Bnr f)(ω(s))dφr(s, ω)

is a (Px,Bt(W(Σn−1)))-martingale for every f ∈ C2(Σn−1)

• and
∫ t

0

1∂Σn−1
(ω(s))ds :=

n∑

r=1

∫ t

0

1∂rΣn−1
(ω(s))ds =

n∑

r=1

∫ t

0

ρr(ω(s))dφr(s, ω)

Proposition 4.2.1 (Stochastic differential equations with stickiness and re-
flection on the boundary of the simplex). For i, k = 1, . . . , n we choose σik ∈
C(Σn−1) such that

aij(x) =

n∑

k=1

σik(x)σ
j
k(x).

Likewise, for i, k = 1, . . . , n− 1 and r = 1, . . . , n we choose τ ik(r) ∈ C(∂rΣn−1)
such that

αij(x) =

n−1∑

k=1

τ ik(r)(x)τ
j
k (r)(x)

For any vector X ∈ Σn−1 we denote by X r̂ = (X1 . . . , Xr−1, Xr+1, . . . , Xn).
Given {Bit, i = 1, . . . n} standard n-dimensional Brownian motion on the fil-
tered probability space (Ωn,Fn,Fnt ,P) we denote by {B̃kt , k = 1, . . . n− 1} time
changed Brownian motion (i.e. dB̃itdB̃

j
t = δijdφr(t)) which is mutually inde-

pendent from {Bit , i = 1, . . . n}.

Then the following system of stochastic differential equations is a (Ln,Bn1 , . . . ,Bnn)-
diffusion:

(I) dX r̂
t =

n∑

k=1

σr̂k(Xt)1◦

Σn

(Xt)dB
k
t + br̂(Xt)1◦

Σn

(Xt)dt+

+

n−1∑

k=1

τ r̂k (r)(Xt)1∂rΣn−1
(Xt)dB̃

k
t + βr̂(Xt)1∂rΣn−1

(Xt)dt

(II) dXr
t =

n∑

k=1

σrk(Xt)1◦

Σn

(Xt)dB
k
t + br(Xt)1◦

Σn

(Xt)dt+

+δr(Xt)dφr(t)
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(III) 1∂rΣn−1
(Xt)dt = ρr(Xt)dφr(t)

The function δr indicates the magnitude of reflection on ∂rΣn−1 whereas ρr
indicates the time of sojourn of Xt in ∂rΣn−1 (stickiness).

Proof. The proof follows the one of Theorem 7.2. in [IW89] p222ff. We need
to ensure that σ and b are bounded and Lipschitz continuous on Σn−1: In a
first step we verify that by the choice of the Riemannian metric g(n) it follows

that on
◦
Σn the functions aij resp. bk are positive polynomial resp. rational

functions in λ1, . . . , λn, consequently both σ and b are bounded and Lipschitz
on the interior of the simplex. By the same reasoning for πr∗g(n) we conclude
that τ and β are bounded Lipschitz on (∂rΣn−1)

◦. Since we want the process to
be reflecting (and possibly sticky) we may set without loss of generality δ ≡ 1.
Without detailing we assume for the moment that ρ is bounded continuous on
the boundary of the simplex. As a last condition we have to guarantee that
there exists a positive constant C such that arr ≥ C on the boundary of the
simplex which is the case since by definition arr = 1

3 (λr + λr+1) =
1
3λr+1 > 0

for λ ∈ (∂rΣn)
◦. To conclude we remark that with probability one boundary

elements of dimension less than n− 1 will not be hit when starting the diffusion

in
◦
Σn. This justifies verification of boundary conditions only on (∂rΣn)

◦.

Lemma 4.2.1. Let Xx
t denote the solution of the stochastic differential equation

(4.2.1). Then Xx
t is a Σn−1-valued continuous Feller process.

Proof. For each n ∈ N define An as the algebra of bounded functions Cb(Σn)
over C∞(Σn). Since Xx

t is an elliptic diffusion process on a bounded domain

(the interior of the simplex)the semigroup Ptf(x) = E(f(Xx
t )|X0 = x ∈

◦
Σn) has

the following property
||Ptf(x)||Lp ≤ ||f(Xt)||Lp

for some p ≥ 1 and all f ∈ An, i.e. the semigroup is contractive and obvi-
ously strongly continuous and positive up to the first hitting time τr of Xx

t

at a boundary ∂rΣn−1. Then we use again ellipticity of the diffusion process
subject to the boundary operator Lnr and obtain that the semigroup P rt f(x) =
E(f(Xx

t )|Xτr = x ∈ ∂rΣn−1) for τr ≤ t < er (where er denotes the exit time of
the process Xt leaving ∂rΣn−1 to the interior of the simplex) is again strongly
continuous, positive and contractive on An.

4.3 Tightness

Starting from a diffusion process λ solution to the stochastic differential equa-
tion (4.2.1) on the simplex we obtain a stochastic process m(λ) on Gn by the
continuous (and almost everywhere differentiable) mapping

Σn−1 ∋ λ 7→ m(λ) ∈ Gn,

where Gn is equipped with the weak topology.

We define Z as the space of all functions

F (µ(λ)) ≡ F (λ) := Φ(〈f1, µ(λ)〉, . . . , 〈fd, µ(λ)〉) ≡ Φ(〈f, µ(λ)〉)
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where Φ ∈ C2(Rd), f1, . . . , fd ∈ L2(dx) and µ(λ) ≡ m(λ).

Lemma 4.3.1. The process t 7→ µt ≡ m(λt) is a Gn-valued continuous Feller
Markov process.

Proof. We verify in a first step that µ(λ) is Feller. For F ∈ Zn

||(PtF )(µ0)||Lp(Σn−1) = ||E(F (µt))|m(λ0) = µ0)||Lp(Σn−1) ≤ ||F (µt)||Lp(Σn−1)

since λ 7→ F (λ) is in An and by Lemma 4.2.1. Continuity follows since m is a
continuous function and the process on the simplex has continuous trajectories.
The Markov property follows directly by Dynkin’s criterion: Given two λ0, λ̃0 ∈
Σn−1 such that m(λ0) = m(λ̃0) it follows that the law of m ◦ λ is the same
under Pλ

0
and Pλ̃0

since m is one-to-one and λ is Markov.

Lemma 4.3.2 (Generator of the measure-valued process). Let λt be a solution
to the stochastic differential equation in Proposition 4.2.1. Let F ∈ Z and define

(AnF )(µ(λ0)) := lim
t→0

1

t
E(F (µ(λt))− F (µ(λ0)))

Then if λ0 ∈
◦
Σn

(AnF )(µ(λ0)) = ∂k∂lΦ(〈f, µ(λ0)〉)∂i〈f l, µ(λ0)〉∂j〈fk, µ(λ0〉aij(λ0) +
+∂kΦ(〈f, µ(λ0)〉)∂i∂j〈fk, µ(λ0)〉aij(λ0) +

+∂kΦ(〈f, µ(λ0)〉)∂j〈fk, µ(λ0)〉bj(λ0)

We use Einstein’s summation for i, j = 1, . . . , n and k, l = 1, . . . , d. By ∂i resp.
∂j we mean ∂

∂λi
resp. ∂

∂λj
whereas ∂k and ∂l are partial derivatives on Rd.

If λ0 ∈ ∂rΣn−1

(AnF )(µ(λ0)) = ∂k∂lΦ(〈f, µ(λ0)〉)∂i〈f l, µ(λ0)〉∂j〈fk, µ(λ0〉αij(λ0) +
+∂kΦ(〈f , µ(λ0)〉)∂i∂j〈fk, µ(λ0)〉αij(λ0) +

+∂kΦ(〈f, µ(λ0)〉)∂j〈fk, µ(λ0)〉[(1 − δjr)βj(λ0)ρr(λ0) + δjrδr(λ0)]

Again we use Einstein’s summation for i, j = 1, . . . , r− 1, r+1, . . . , n and k, l =
1, . . . , d. By ∂i resp. ∂j we mean ∂

∂λi
resp. ∂

∂λj
whereas ∂k and ∂l are partial

derivatives on Rd.

Proof. Using Ito’s formula (on open sets of Rn)

dF (λt) = ∇F (λt) dλt +
1

2
∇2F (λt) dλtdλt

in
◦
Σn it holds

dλitdλ
j
t =

n∑

k=1

σik(λt)σ
j
k(λt)dt = aij(λt) dt

∇F (λt) dλt
M
=

n∑

i=1

d∑

k=1

∂kΦ(〈f, µ(λ)〉)∂i〈fk, µ(λ)〉bi(λt)dt
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∇2F (λt) dλtdλt =

n∑

i,j=1

d∑

k,l=1

∂k∂lΦ(〈f, µ(λ)〉)∂i〈f l, µ(λt)〉∂j〈fk, µ(λt)〉aij(λt) dt+

+

n∑

i,j=1

d∑

k=1

∂kΦ(〈f, µ(λ)〉)∂j∂i〈fk, µ(λt)〉aij(λt) dt

and on ∂rΣn−1

dλitdλ
j
t =

n−1∑

k=1

τ ik(r)(λt)τ
j
k (r)(λt)dφ(t) = αij(λt) dφ(t)

∇F (λt) dλt
M
=

∑

i6=r

d∑

k=1

∂kΦ(〈f , µ(λt)〉)∂i〈fk, µ(λt)〉βi(λt)ρr(λt)dφ(t) +

+

d∑

k=1

∂kΦ(〈f, µ(λ)〉)∂r〈fk, µ(λ)〉δr(λt)dφ(t)

∇2F (λt) dλtdλt =
∑

i,j 6=r

d∑

k,l=1

∂k∂lΦ(〈f, µ(λ)〉)∂i〈f l, µ(λt)〉∂j〈fk, µ(λt)〉αij(λt) dφ(t) +

+
∑

i,j 6=r

d∑

k=1

∂kΦ(〈f, µ(λ)〉)∂j∂i〈fk, µ(λt)〉αij(λt) dφ(t)

Lemma 4.3.3. As long as µt ∈
◦
Gn the process t 7→ Yt := F (µt) satisfies the

following stochastic differential equation:

dF (µt) = ∂lΦ(〈f, µt〉)∂i〈f l, µt〉σik(m−1(µt))dB
k
t +

+∂kΦ(〈f, µt〉){∂i〈fk, µt〉bi(m−1(µt)) + ∂i∂j〈fk, µt〉aij(m−1(µt))}dt
+∂k∂lΦ(〈f, µt〉)∂i〈fk, µt〉∂j〈f l, µt〉aij(m−1(µt))dt+

and the quadratic variation process of the semi-martingale Yt reads

〈Y, Y 〉t =
∫ t

0

(∂lΦ(〈f, µs〉)∂i〈f l, µs〉)∂kΦ(〈f, µs〉)∂j〈fk, µs〉)aij(m−1(µs))ds

If µt ∈ m(∂rΣn−1) then Yt satisfies the following Skorohod stochastic differ-
ential equation:

dF (µt) = ∂lΦ(〈f, µt〉)∂i〈f l, µt〉τ ik(m−1(µt))dB̃
k
t +

+∂kΦ(〈f, µt〉){∂i〈fk, µt〉[(1− δjr)βj(m−1(µt))ρr(m
−1(µt)) + δjrδr(m

−1(µt))] +

+∂i∂j〈fk, µt〉αij(m−1(µt))}dφr(t) +
+∂k∂lΦ(〈f, µt〉)∂i〈fk, µt〉∂j〈f l, µt〉αij(m−1(µt))dφr(t)
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Note that

∂i〈f l, µt〉τ ik(m−1(µt)) =
1

n

r−1∑

i=1

{(f l)′(λ1(t) + · · ·+ λr−1(t))}τ ik(m−1(µt)) +

+

n∑

i6=r
∂i{
∫
f lµt(dx)}τ ik(m−1(µt))

and

∂i∂j〈fk, µt〉αij(m−1(µt)) =
1

n

r−1∑

i,j=1

{(f l)′′(λ1(t) + · · ·+ λr−1(t))}αij(m−1(µt)) +

+

n∑

i,j 6=r
∂i∂j{

∫
f lµt(dx)}αij(m−1(µt))

Proof. Use Ito’s formula.

By virtue of a Σn−1-valued process λt we obtain for each n ∈ N a probability
measure on the Skorohod space DP := D([0,∞), P ) of càdlàg functions (which
is in turn a Polish space when equipped with the Skorohod topology, see for
instance section 3.6. in [Daw93]):

Pn(A) := Pλ
0
(ω : m(λt)(ω) ∈ A; t ≥ 0)

for all Borel sets A in DP . The set of functions Z (when restricted to Gn)
is a family of real continuous functions on P which is closed under addition
and separates points. Given F ∈ Z we obtain a mapping F̃ : DP → DR by
(F̃m(λ))(t) := F (m(λt)).

Lemma 4.3.4. The family of probability measures {Pn}n∈N on DP is tight, i.e.
it satisfies the following tightness criterion (see Theorem 3.7.1 [Daw93]): For
each F ∈ Z such that F (µ) =

∫
fµ the sequence

Qn := {Pn ◦ F̃−1}

of probability measures on DR is tight.

Proof. We consider the Doob-Meyer decomposition of the semimartingale Yt =
Mt +At as defined in Lemma 4.3.3 with Φ = id. Then

〈Y 〉t = 〈M〉t =
∫ t

0

∂i〈f, µs〉∂j〈f, µs〉aij(m−1(µs))ds.

In order to verify in a first step that there exist Lipschitz estimates of the
quadratic variation that are uniform in n we assume the existence of a scaling
function κ(n) and define µκt := m(λtκ(n)) resp. Y κt := F (µκt ). We suppose
κ(n) = 1 whenever the superscript κ is omitted in µt.
Set f = g′. Let us look closer at

∂

∂λi

∫
fµ(λ) =

∂

∂λi

n∑

j=1

∫ 1

0

f(x)
1

nλj
1[

∑j−1

k=1
λk,

∑j

k=1
λk)

(x)dx, (4.1)
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this equals

− 1

nλ2i

{
g(

i∑

k=1

λk)− g(
i−1∑

k=1

λk)

}
+

n∑

j=1

1

nλj

{
g′(

j∑

k=1

λk)
∂

∂i

j∑

k=1

λk − g′(
j−1∑

k=1

λk)
∂

∂i

j−1∑

k=1

λk

}

which is

− 1

nλ2i

∫ ∑i
k=1

λk

∑i−1

k=1
λk

f(x)dx+

n∑

j=1

1

nλj

{
g′(

j∑

k=1

λk)1i≤j − g′(
j−1∑

k=1

λk)1i≤j−1

}

i.e.

| ∂
∂λi

∫
fµ(λ)| ≤ 1

nλi
||f ||∞ +

1

nmin{λj ; j = 1, . . . , n}||f
′||∞. (4.2)

Thus

|〈Y κ〉t − 〈Y κ〉s| ≤ κ(n)

∫ t

s

|∂i〈f, µu〉∂j〈f, µu〉aij(m−1(µu))|du

≤ κ(n)
2n− 1

n2
(t− s)C(||f ||∞ + ||f ′||∞)2

for some positive constant C.

Choosing κ(n) = n2

2n−1 we obtain Lipschitz constants that are uniform in n.
Since Y κt is conservative we obtain for some fixed time T > 0 the Lyons-Zheng
decomposition (see [FOT94] Theorem 5.7.1)

Y κt − Y κ0 =
1

2
(Xt − (X̃T − X̃T−t)),

here X is a Ft = σ(λsκ; 0 ≤ s ≤ t)-martingale and X̃ is a F̃t = σ(λ(T−s)κ; 0 ≤
s ≤ t)-martingale for 0 ≤ t ≤ T . Then for the quadratic variation of X we have

〈X〉t − 〈X〉s = κ(n)

∫ t

s

∂i〈f, µs〉)∂j〈f, µs〉)aij(m−1(µs))ds ≤ C|t− s|

For the quadratic variation of X̃ a similar estimate holds by symmetry.

Then

E|(F (µκt)− F (µκs)| =
1

2
E|Xt −Xs|+

1

2
E|X̃T−t − X̃T−s|

≤ 1

2
(E|Xt −Xs|2)

1
2 +

1

2
(E|X̃T−t − X̃T−s|2)

1
2

≤ 1

2
(E|〈X〉t − 〈X〉s|)

1
2 +

1

2
(E|〈X̃〉T−t − 〈X̃〉T−s|)

1
2

≤ C|t− s| 12

Tightness follows by Theorem 7.2 in chapter 3 of [EK05]. On the boundary we
use the same reasoning: replace a by α and remark that for formula (4.1) the
same estimate holds (the function f is integrated with respect to a box-type
measure where at least one indicator function is replaced by a Dirac measure
but since f was supposed to have bounded derivatives, an estimate as in formula
(4.2) holds.)



Chapter 5

Finite-dimensional diffusion
processes via projections

5.1 Riemannian geometry of the space of his-
tograms endowed with Wasserstein distance

Definition 5.1.1 (Histograms with respect to a fixed partition). Let A =⋃n
i=1Ai denote any finite partition of a compact Riemannian manifold M where

each Ai has non-empty interior and is convex.
To each λ ∈ Σn−1 we associate a probability measure on M which has the fol-
lowing density function with respect to the volume measure

ι : λ 7→ µλ(x) :=

n∑

i=1

λi
vol(Ai)

1Ai
(x); x ∈M

We denote PA
2 (M) := ι(Σn−1) ⊂ P2(M) dense with respect to the quadratic

Wasserstein distance. The map ι gives by construction an isometry between the
spaces (PA

2 (M), dW ) and (Σn−1, d) where d(λ, λ
′) := dW (ι(λ), ι(λ′)).

To each partition A we associate a projection operator

Pr : P (M) ∋ µ 7→
n∑

i=1

µ(Ai)

vol(Ai)
1Ai

(x) ∈ PA

2 (M)

Lemma 5.1.1 (Wasserstein distance of histograms on the unit interval via
quantile functions). Henceforth we confine ourselves to M = [0, 1] and the fol-
lowing

ι : λ 7→ µλ(x) :=

n∑

i=1

nλi1[ i−1
n
, i
n
)(x); x ∈ [0, 1].

To each probability density µλ we associate its cumulative distribution function

cµ
λ

(t) := µλ([0, t))

and its quantile function

qµ
λ

(t) := inf
{
s ∈ [0, 1] : µλ([0, s]) > t

}
, inf ∅ := 1

69
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which is a nondecreasing, piecewise linear function from [0, 1] to [0, 1]. For

λ ∈
◦
Σn−1

qµ
λ

(t) =

n∑

k=1

{
t

nλk
+
kλk −

∑k
j=1 λj

nλk

}
1[

∑k−1

j=0
λj ,

∑
k
j=0

λj)
(t),

with the convention λ0 = 0 and qµ
λ

(1) = 1. Whenever there exists a λl = 0
then the quantile function reads

qµ
λ

(t) =
l∑

k=1

{
t

nλk
+
kλk −

∑k
j=1 λj

nλk

}
1[

∑k−1
j=0 λj ,

∑
k
j=0 λj)

(t)

+
n∑

k=l+1

{
t

nλk
+

(k − 1)λk −
∑k−1
j=1 λj

nλk

}
1[

∑k−1
j=0 λj ,

∑
k
j=0 λj)

(t)

=

l∑

k=1

{
t

nλk
+
kλk −

∑k
j=1 λj

nλk

}
1[

∑k−1

j=0
λj ,

∑
k
j=0

λj)
(t)

+

n∑

k=l+1

{
t

nλk
+
kλk −

∑k
j=1 λj

nλk

}
1[

∑k−1

j=0
λj ,

∑
k
j=0

λj)
(t)

This generalizes to higher dimensional boundary parts of simplices: We assume
that λ ∈ ∂Σn−1, λαl

= 0 and λj > 0 for j 6= αl with l = 1, . . . , L. This means
that the point λ is in a (n − 1 − L)-dimensional part of ∂Σn−1. The quantile
function of µλ reads

qµ
λ

(t) =
∑

k∈{1,...,n}\{α1,...,αL}

{
t

nλk
+
kλk −

∑k
j=1 λj

nλk

}
1[

∑k−1

j=0
λj ,

∑
k
j=0

λj)
(t).

Henceforth we denote Ik = [
∑k−1
j=0 λj ,

∑k
j=0 λj) resp. Ĩk = [

∑k−1
j=0 λ̃j ,

∑k
j=0 λ̃j).

Given λ, λ̃ ∈ Σn−1 one calculates the quadratic Wasserstein distance via quan-
tile functions:

dW (µλ, µλ̃)2 =

∫ 1

0

|qµλ

(t)− qµλ̃

(t)|2 dt

In a first step we calculate

(
qµ

λ

(t)− qµλ̃

(t)
)2

=

[
n∑

k=1

{
t

nλk
+
kλk −

∑k
j=1 λj

nλk

}
1Ik(t)−

{
t

nλ̃k
+
kλ̃k −

∑k
j=1 λ̃j

nλ̃k

}
1Ĩk(t)

]2

and observe that we will have to integrate terms of the type

Ik =

{
t

nλk
+
kλk −

∑k
j=1 λj

nλk

}2

1Ik(t), Ĩk =

{
t

nλ̃k
+
kλ̃k −

∑k
j=1 λ̃j

nλ̃k

}2

1Ĩk(t)

and

IiĨk =

{
t

nλi
+
iλi −

∑i
j=1 λj

nλi

}{
t

nλ̃k
+
kλ̃k −

∑k
j=1 λ̃j

nλ̃k

}
1Ii∩Ĩk(t)
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For the terms of type II we distinguish two different cases. Either

(λ, λ̃) ∈ Bik :=





k−1∑

j=0

λ̃j <

i∑

j=0

λj ∧
i−1∑

j=0

λj <

k∑

j=0

λ̃j



 ⊂ Σn−1 × Σn−1

then the intersection

Ii∩Ĩk = Aik := [

i−1∑

j=0

λj ,

i∑

j=0

λj)∩[
k−1∑

j=0

λ̃j ,

k∑

j=0

λ̃j) = [

i−1∑

j=0

λj∨
k−1∑

j=0

λ̃j ,

i∑

j=0

λj∧
k∑

j=0

λ̃j) 6= ∅,

or
(λ, λ̃) /∈ Bik

then Aik = ∅ for all i 6= k. Note that in general Bik 6= Bki and that IiĨk 6= IkĨi.

∫ 1

0

Ikdt =

∫ 1

0

{
t

nλk
+
kλk −

∑k
j=1 λj

nλk

}2

1Ik(t)dt

=
(
∑k

j=0 λj)
3 − (

∑k−1
j=0 λj)

3

3n2λ2k
+

+
kλk −

∑k
j=1 λj

nλk

(
∑k

j=0 λj)
2 − (

∑k−1
j=0 λj)

2

nλk

+λk
(kλk −

∑k
j=1 λj)

2

(nλk)2

= O(λ1, . . . , λn−1)

and

∫ 1

0

IiĨkdt =
(
∑i

j=0 λj ∧
∑k
j=0 λ̃j)

3 − (
∑i−1

j=0 λj ∨
∑k−1

j=0 λ̃j)
3

3n2λiλ̃k
+

+
(
∑i

j=0 λj ∧
∑k

j=0 λ̃)
2 − (

∑i−1
j=0 λj ∨

∑k−1
j=0 λ̃j)

2

2n2λiλ̃k


iλi −

i∑

j=1

λj + kλ̃k −
k∑

j=1

λ̃j




+


(

i∑

j=0

λj ∧
k∑

j=0

λ̃)− (

i−1∑

j=0

λj ∨
k−1∑

j=0

λ̃j)


 iλi −

∑i
j=1 λj

nλi

kλ̃k −
∑k
j=1 λ̃j

nλ̃k

= O(λ21, . . . , λ
2
n−1)

for λ̃ fixed. Finally

dW (µλ, µλ̃)2 =

∫ 1

0

n∑

k=1

(Ik + Ĩk) dt−
∫ 1

0

n∑

i,k=1

(IiĨk + IkĨi) dt

Example 5.1.1 (Σ1). Given λ, λ̃ ∈
◦
Σ1:

dW (µλ, µλ̃)2 =
|λ1 − λ̃1|2(2|λ1 − λ̃1|+ 1)

12(1− λ1)λ̃1
(5.1)
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Assuming λ1 = 0 and 0 < λ̃1 < 1:

dW (µλ, µλ̃)2 =
2λ̃21 + λ̃1

12

and

dW (µ(1,0), µ(0,1))2 =
1

4

In the following plot the dashed line shows the graph of w1 7→ dW
(
µ(0,1), µ(w1,1−w1)

)

for w1 ∈ [0, 1] compared to the plot of w1 7→ w1 represented by the doted line.

Remark 5.1.1 (Wasserstein geodesics and their projection to the space of his-
tograms). Given µ, ν ∈ Pac([0, 1]) by a general theorem of Brenier and McCann
([Bre91], [McC01]) we know that there exists a µ-a.s. unique (optimal) map

T : [0, 1]→ [0, 1] such that dW (µ, ν)2 =
∫ 1

0 (x − T (x))2µ(dx); in dimension one
we know even better: T = qν ◦ cµ, which is a monotonous mapping from [0, 1]
to itself (see [Vil03]). By ([AGS08] Theorem 7.2.2) the curve

s 7→ γs := ((1− s)id + sT )#µ

is a constant-speed geodesic in Pac([0, 1]). If we had started directly with µ, ν ∈
PA then the constant-speed geodesic γs = Ts#µ := ((1 − s)id + sT )#µ has as
quantile function qγs = (1−s)qµ+sqν (see [AGS08] 7.2.8) which proves that γs
does not stay in PA for s ∈ (0, 1) but is contained in a bigger space P B where B

is a refinement of A. Consider a geodesic γ ∈ Pac linking the histograms µ and
ν, then

s 7→ Γs := ι−1(Pr(γs)) = (γs(Ai))
n
i=1 ∈ Σn−1

which is the projection of the Wasserstein geodesic to the space of histograms.

Lemma 5.1.2. By the first order variation of the distance along projected

geodesics we obtain a Riemannian metric on
◦
Σ1⊂ R2 by

gp(V, V ) :=
|V |2

12(1− p)p
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Proof. Denote p := ι−1(Pr(µ))1 and consider at first the case of Σ1 with Ai =
[(i − 1)/2, i/2) for i = 1, 2. By (5.1) the first order variation of the distance d
along the curve Γ is

lim
t→0

d(p,Γ1
t )

t
= lim

t→0
1/t





−
√
3(p−Γ1

t )
√

−2p+2Γ1
t+1

6
√
1−p
√

Γ1
t

0 < p < Γ1
t < 1

√
3(p−Γ1

t )
√

2p−2Γ1
t+1

6
√
1−p
√

Γ1
t

0 < Γ1
t < p < 1

which equals √
3 limt→0

1
t |p− Γ1

t |
6
√
1− p√p =

√
3|Γ̇1

0|
6
√
1− p√p

|p| means 1√
2
||(0, 1)− (p, 1− p)||R2 and

Γ̇it =
d

dt
γt(Ai) =

d

dt

∫ 1

0

1Ai
((1− t)x + t(qν ◦ cµ)(x))µ(dx)

=

∫ 1

0

(∇1Ai
)(Tt(x))

d

dt
Tt(x)µ(dx)

=

∫ 1

0

(∇1Ai
)(Tt(x))((q

ν ◦ cµ)(x) − x)µ(dx)

=

∫

Tt([0,1])

(∇1Ai
)(y)((qν ◦ cµ)(T−1

t (y))− T−1
t (y))γt(dy))

=

∫ 1

0

(dδ(i−1)/2 − dδi/2)(y)((qν ◦ cµ)(T−1
t (y))− T−1

t (y))γt(dy))

= qν ◦ cµ(T−1
t ((i− 1)/2))− T−1

t ((i− 1)/2))− qν ◦ cµ)(T−1
t ((i)/2)) + T−1

t ((i)/2))

dδa denotes the Dirac measure at a. It is important that γt neither charges
points nor does it verify

∫
B⊃∂Ai

γt = 0 for any measurable B which is guar-
anteed by the fact that if µ and ν do have full support, then their displace-
ment interpolation γt does so. (Just look at the interpolating quantile functions
qγt = (1− t)qµ + tqν !) Finally

Γ̇i0 = qν ◦cµ((i−1)/2)−(i−1)/2−qν◦cµ(i/2)+i/2 in particular Γ̇1
0 = −Γ̇2

0

Note that for a fixed partition the velocity vector of the projected geodesic
depends on the quantile functions of the starting point µ ∈ PA and on the
quantile function of ν ∈ PA which determines the direction of the unit speed
geodesic. Within the set Pr−1(ν) ⊂ Pac we are free to choose a representative
which determines the velocity vector of the projected curve: Taking for instance
a smooth density ν̃ with Pr(ν̃) = ν gives rise to a projected geodesic Γ̃s which
is different from Γs for s ∈ (0, 1) but still

˙̃Γ1
0 = −qPr(ν̃) ◦ cµ(1/2) + 1/2 = Γ̇1

0.

By the above considerations the first order variation does not depend on the
representative of the velocity of the curve. We obtain a Riemannian metric on
◦
Σ1⊂ R2 by

gp(Γ̇
1
0, Γ̇

1
0) :=

|Γ̇1
0|2

12(1− p)p =
| − qν ◦ cµ(1/2) + 1/2|2

12(1− p)p ,
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By the same reasoning we obtain a Riemannian metric on the 2-simplex:

Lemma 5.1.3. Denote p := ι−1(Pr(µ))1 and consider the case of Σ2 with
Ai = [(i − 1)/3, i/3) for i = 1, 2, 3. We denote the vector X = Γ̇0. Then by
the first order variation of the Wasserstein distance along projected geodesic we
obtain a Riemannian metric on the 2-simplex:

h(X,X) = X ihijX
j

with

hij(p) = f(p)

(
3 p1 − 3 p1

2 − p22 − 3 p2p1 + p2
1
2 (3 p1 − p1p2 − 3p1

2)
1
2 (3 p1 − p1p2 − 3p1

2) p1 − p12
)
,

with f(p) = 1
27p1p2(1−p1−p2)

Proof. Note that by executing the Maple script (see chapter 6) we obtain that
limt→0

1
t dW (Γt, µ

w) equals

√
3

9

√
(3 p1 − 3 p12 − p22 − 3 p2p1 + p2)X1

2 + (3 p1 − p1p2 − 3p12)X1X2 + (p1 − p12)X2
2

p1p2 (1− p1 − p2)
.

I.e. in a global chart we obtain a Riemannian metric

hij(p) := f(p)

(
3 p1 − 3 p1

2 − p22 − 3 p2p1 + p2
1
2 (3 p1 − p1p2 − 3p1

2)
1
2 (3 p1 − p1p2 − 3p1

2) p1 − p12
)
,

with f(p) = 1
27p1p2(1−p1−p2) and it can be (numerically) verified that this matrix

is positive definite in the interior of the simplex.

5.2 (Non)-explosion of Brownian motion on the

simplex with respect to projected Wasser-
stein metrics - Case study

The 1-simplex. Obviously the Riemannian metric g is conformally equivalent
to the Euclidian metric, we denote the conformal factor by ϕ(p) = 1

12p(1−p) , fur-

thermore we write ∆g for the Laplacian with respect to the metric g, then([GKM68]
p.90)

∆gf =
1

ϕ

{
∆f +

(n
2
− 1
)
g (∇f,∇ logϕ)

}

i.e.

∆gf(x) = 12x(1− x)
{
f ′′(x) − 1

2
gx

(
f ′(x),− 12− 24x

(12x(1 − x))2 12x(1− x)
)}

= 12x(1− x)f ′′(x) +
1− 2x

2x(1 − x)f
′(x)

Let us consider the solution of the following SDE on Σ1

dXt = b(Xt)dt+ σ(Xt)dBt X0 = x ∈
◦
Σ1 (5.2)
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we write b(x) = 1−2x
4x(1−x) and σ(x) =

√
12x(1− x), which are Lipschitz on any

compact K ⊂ (0, 1). Hence the equation (5.2) has a strong solution Xt with
generator 1

2∆g. Let us fix c ∈ (0, 1) and define the function i.e. a(x) = σ2/2 =
12x(1− x)

H : Σ1 → R∪{±∞} H(r) = exp

{
−
∫ r

c

b(ρ)

a(ρ)
dρ

}
s(r) =

∫ r

c

H(ρ) dρ

According to( [HT94] p.343) the process Xt is recurrent if and only if

s(0) = −∞ s(1) =∞,

additionally this condition implies that Xt has infinite lifetime in (0, 1). Let us
verify this for a constant c = 1

10 and C > 0:

s(0) =

∫ 0

c

exp

{
−
{∫ y

c

1− 2x

48x2(1− x)2
}}

dy =

∫ 0

c

exp

{ −1
48(y − 1)

+
1

48y
− 25

108

}
dy

≤ −C lim
ǫ→0

∫ c

ǫ

exp

{
1

48y
− 25

108

}
= −∞ resp. s(1) = +∞

We can state

Proposition 5.2.1. g-Brownian motion is recurrent and has infinite lifetime
in the interior of the 1-simplex.

The 2-simplex. The Laplacian with respect to the metric h reads

∆h = F (u, v) {A(u, v)∂u +B(u, v)∂v + C(u, v)∂uu +D(u, v)∂vv + E(u, v)∂uv}

Where we denote F = −2v
√
2916

(3u2+3u+3uv−4v)2 and

A(u, v) = −6u2 + 3u+ 3u3 + 3u2v + 2v − 6uv

B(u, v) = −3u− v − 3v2 + 3u2 + 3u2v + 3uv2

C(u, v) = −6u3 + 3u4 + 3u2 + 3u3 − 7u2v + 4uv

D(u, v) = −18u3−4v3+9u4+4v2+9u2+3uv2−33u2v−18uv2+18u3v+12u2v2+15uv

E(u, v) = 18u3 − 9u2 − 9u4 + 24u2v + 4uv2 − 12u3v − 3u2v2 − 12uv

By Xt we denote the h-Brownian motion in
◦
Σ2 , i.e. for all f ∈ C∞(

◦
Σ2)

f ◦X − 1

2

∫
∆hf ◦Xdt

is a local martingale. In other words given a two-dimensional real Brownian
motion B then X is solution of the SDE

dX = β(X)dt+ σ(X)dBt, X0 = x ∈
◦
Σ2,

for

β = F

(
A
B

)
, σσ∗ = K := F

(
C 1

2E
1
2E D

)
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Proposition 5.2.2. The h-Brownian motion in
◦
Σ2 explodes, i.e. it has a.s.

finite lifetime.

Proof. We will apply an application of the comparison theorem (Theorem 3.1
in [IW77]) by Ikeda-Watanabe to explosion tests for non-degenerate diffusions
on open sets of Rd. Denote by πk : Σ2 ∋ p→ pk ∈ Σ1 for k = 1, 2 the projection
to the k-th face of the simplex. Some more notations are needed:

ak(x) :=
∑

i,j

Kij(x)
∂πk
∂xi

∂πk
∂xj

=
∑

i,j

Kij(x)δikδjk = Kkk;

bk(x) := ak(x)
−1
∑

i

βi(x)
∂πk
∂xi

= K−1
kk βk

a+k (ξ) = sup

x∈
◦

Σ2:πk(x)=ξ

ak(x); a−k (ξ) = inf
x∈

◦

Σ2:πk(x)=ξ

ak(x)

b+k (ξ) = sup

x∈
◦

Σ2:πk(x)=ξ

bk(x); b−k (ξ) = inf
x∈

◦

Σ2:πk(x)=ξ

bk(x)

We denote ξ++
k resp. ξ−−

k for diffusion processes on (0, 1) with generators

L++
k = a+k

(
1

2

d2

dξ2
+ b+k

d

dξ

)
; L−−

k = a−k

(
1

2

d2

dξ2
+ b−k

d

dξ

)

and with explosion times e+k resp. e−k . By Ikeda-Watanabe we know e+k <
eπk(X) < e−k . But for the diffusion processes ξ++

k resp. ξ−−
k we can apply the

Feller test. We will show that for k = 1, 2 the explosion times e−k are finite:
Define

Hk(r) := exp

{
−
∫ r

c

a−k (ρ)b
−
k (ρ)

1
2a

−
k (ρ)

dρ

}
= exp

{
−
∫ r

c

2b−k (ρ)dρ

}

We have to show that
∫ ci

c

Hk(r)

{∫ r

c

1

a−k (ρ)Hk(ρ)
dρ

}
dr <

{
∞ c1 = 0
∞ c2 = 1

Let us treat
∫ r

c

b−1 (ρ)dρ =

∫ r

c

inf
x2∈(0,1)

A(ρ, x2)

C(ρ, x2)
dρ

b−1 (r) ≈ −O(
1

r
)

Asymptotically this means thatH1(r) ≈ O(r) and so
∫ ci
c
H1(r)

{∫ r
c

1
a−1 (ρ)H1(ρ)

dρ
}
dr ≈

∫
O(r log r) ≈ c2i log ci + c2i which is finite when evaluated at the end points 0

and 1.

In the same manner
∫ r

c

b−2 (ρ)dρ =

∫ r

c

inf
x1∈(0,1)

B(x1, ρ)

D(x1, ρ)
dρ
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b−2 (r) ≈ O(
1

r
)

Asymptotically this means thatH2(r) ≈ O(1r ) and so
∫ ci
c
H2(r)

{∫ r
c

1
a−2 (ρ)H2(ρ)

dρ
}
dr ≈

∫
O( 1

r3 ) ≈ 1
c2
i

which is finite when evaluated at the end point 1 but infinite at

0. To prove finite lifetime of ξ−−
2 it is sufficient to know that

∫ 0

c
H2(ρ)dρ = −∞

which is the case since H2(r) ≈ O(1r ).
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