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Chapter 0

Introduction

Damit der Mensch sich irre,
muf er schon mit der Menschheit konform urteilen.
L. Wittgenstein: Uber Gewissheit.

The main object of interest in the present thesis is P(M) — the space of proba-
bility measures on a Riemannian manifold (M, g) endowed with the Wasserstein
distance: Let us fix g and v in P(M) and give ourselves a (lower-semicontinuous)
cost function ¢ : M x M — Ry U {+oc0}. We denote by II the set of all
product probability measures 7 on M x M such that 7(E x M) = u(E) resp.
m(M x E) = v(E) for all Borel measurable sets E, in other words II denotes
the set of all product probability measures with fixed marginals p and v. The
problem of optimal transport is to find

inf / c(z, y)m(dx, dy). (1)
HEIL S ar M

In the 1940s Kantorovich developed a technique (see [Vil08] and [RR9IS8] for a
contemporary account on Kantorovich’s contribution) that led to the following
conclusion: If M happens to be a Polish space, i.e. a complete separable metric
space and ¢ a lower-semicontinuous cost function, then there exists a unique
optimal transport plan 7 such that

/MXM oz, y)7(dz, dy)

is minimal. If for some p € N we have c¢(x,y) = dy4(z, y)?, then

dyw (p, V)P = inf/ dg(z,y)Pn(dz, dy)
MxM

mell

is a metric, the so-called p-Wasserstein! distance on the space of probability
measures. The space (PP(M),dw ) -defined as the space of all Borel probability

Tt was the Soviet mathematician L. N. Vasersthein who used the 1-Wasserstein distance
in his 1969 publication on ”Markov processes over denumerable products of spaces describing
large system of automata”; even though the earliest and most foundational contributions to
this subject are due to Kantorovich, we stick to the misspelled and historically inacurate
naming which appears throughout the contemporary literature.
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measures with finite p-th moment- is called p-Wasserstein space. If not stated
otherwise in this work we assume that M is a complete, simply connected Rie-
mannian manifold without boundary. Additionnally we will restrict ourselves
to the 2-Wasserstein distance and henceforth omit any superscripts, i.e. if not
stated otherwise (P(M),dy ) denotes the 2-Wasserstein space over a complete,
simply connected Riemannian manifold without boundary.

If we restrict ourselves to P,., the space of absolutely continuous probability
measures, it was proved by [Bre91] and [McCO01] (using Kantorovich’s duality
to prove a polar factorization of vector valued maps) that the optimal transport
plan 7 is actually an optimal transport map, i.e.

7 (dw,dy) = (id x T)#p
for T being a p-almost unique map from M to M which has the following form

T'(z) = exp,(—V(2)),

where ¢ is a p-almost ungiue convex function on M. As a corollary it is shown
that T'(z) = exp, (—V¢*(z)) is the inverse optimal transport map from v to p,
* means the Legendre transform with respect to the Riemannian metric g.

In the last decade Wasserstein spaces have come in touch with many differ-
ent areas of mathematics:

e In the field of PDEs it was possible to prove that a huge class of diffu-
sion equations happens to be gradient flow equations (see [AGS08]) on
P(M) which made it possible to show contractivity for the corresponding
diffusion semigroups and theorems on logarithmic Sobolev and Poincaré
inequalities (see [Vil08§]).

e In the field of metric geometry the convexity properties of Boltzmann
and Renyi entropies along Wasserstein geodesics (where the underlying
space M is not any longer a Riemannian manifold but just a geodesi-
cally complete length space) led to a consistent generalization of lower
Ricci curvature bounds on metric spaces which is stable under Gromov-
Hausdorff convergence of families of metric spaces (see [Stu06a], [Stu06b]
and [LV09]).

e In the field of infinite differential geometry [Ott01] introduced for the
first time the subspace P°°(M) of smooth, positive probability densities
on M = R? as infinite-dimensional Riemannian manifold and calculated
geodesic equations and sectional curvature bounds on this space. In the
sequal [Lot08] developed formulas for Riemannian curvature on P> (M) in
case that M is a complete, simply-connected Riemannian manifold with-
out boundary and [GKP10] made clear how differential forms on Wasser-
stein spaces look like and proved that the first deRham cohomology group
vanishes on P(R?).

e In the field of stochastic analysis it was [SvR09] who constructed a con-
tinuous time Markov process X; which is reversible with respect to the
so-called entropic measure P? on P([0,1)) resp. P([0,1]). Since the tran-
sition semi-group p¢(z, dy) satisfies the following short-time asymptotics

2
limtlog/ / pe(z, dy)PP (da) = _dw(4, B)”
AlB 2

tl0

6
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for Borel subsets A and B of P([0,1)) resp. P([0,1]) (with respect to the
Wasserstein topology) and the square-field operator with respect to the
correponding generator equals the square norm of the Wasserstein gradi-
ent, the process X; is called Wasserstein diffusion. The entire construction
of this process relies on Dirichlet forms on the space of non-decreasing
functions from the interval to itself: this space and its differentiable struc-
ture can be mapped isometrically to the Wasserstein space. The Dirichlet
form and the integration by parts formula involve the entropic measure
QF, which is nothing but the measure subject to the Dirichlet process. It
defines P? as the image under the forementioned isometry. The resulting
process is then mapped to the space of probability measures.

In this thesis several of the above mentioned areas are treated:

In chapter 1 we give the most basic topological facts on the interplay between
weak convergence and Wasserstein distance on P, additionally we introduce a
locally convex topology on P and identify this space as infinite dimensional
manifold in the sense of [KM97].

In chapter 2 we develop further the Riemannian calculus on P resp. P> where
the different approaches (calculus of variation, Riemannian geometry on spaces
of smooth mappings and analysis on metric spaces) are shown to be equivalent
on P,

In chapter 3 we restrict ourself to tori as underlying manifolds and give calcu-
lations of renormalized (connection) Laplacians on the respective Wasserstein
spaces, seen as the Hilbert-Schmidt trace of the Hessian: This stems from the
fact that the only locally finite translation invariant measure on any Banach
space is the trivial measure, which applies also to P> C P, consequently we
cannot give a proper meaning to neither the Hodge Laplacian nor to the usual
connection Laplacian. The forementioned Hilbert-Schmidt trace depends on a
real parameter s > 3/2. When calculating explicitely this trace for the Wasser-
stein space above the unit circle we are able to give the analytic continuation
of the trace as a function of s € C\ {1}. This analytic continuation allows us
to calculate the value of the trace at s = 0: It is shown that the resulting oper-
ator Apes(r1) has a square-field operator which equals the squared Wasserstein
gradient times the volume of the unit circle.

In chapter 4 we give an approximation of the Wasserstein space P([0,1]) by
spaces of box-type measures (i.e. probability densities which are piecewise con-
stant and have constant weight on each set of any n-size partition of the inter-
val). This space is geodesically convex (in the sense of Wasserstein geometry)
and can be mapped isometrically (via a mapping m~!) to the (n — 1)-simplex
where a sticky diffusion process X' (with respect to a non-Euclidean metric) in
the spirit of Tkeda-Watanabe is constructed. We show that the family of pro-
cesses {m(X[");n € N} is tight in C(R4; P([0,1])) with respect to the Skorohod
topology.

In the last chapter we restrict ourselves to the space of histograms on the unit
interval (i.e. probability densities which are piecewise constant and have vary-
ing weights; here the subsets of the partition are of uniform length). This space
is not geodesically convex (in the Wasserstein sense) but we can calculate the
Wasserstein distances numerically and obtain again a Riemannian metric on
the n-simplex. We investigate explosion behaviour of the respective diffusion
processes in dimension 1 and 2.
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The present thesis lacks in each of its chapters of ground-breaking results —
it is still very much work in progress, we mention therefore the most important
open questions:

The main open issues in chapter 3 is the question in how far we can general-
ize the regularization procedure to Wasserstein spaces above arbitrary compact
manifolds and if one can use this procedure to give a theory of stochastic flows
with interaction as sketched in section 3.3 — an issue which has been worked
on by LeJan and Raimond with completely different techniques (see the survey
article [LRO5] for Brownian flows on the unit circle and [LR04]). Another inter-
esting question is if the regularization procedure can produce explicit formulas
for a regularized Ricci curvature on Wasserstein spaces.

In chapter 4 the main issue is the identification of the limiting process: How far
is its generator related to the regularized Wasserstein Laplacian?

In chapter 5 the unhandy Riemannian metrics obtained by projecting Wasser-
stein geodesics to the space of histograms give completely different boundary
behaviour of the corresponding Brownian motion when comparing only dimen-
sion 1 and dimension 2. Since computational issues are still far behind the
achievements of the abstract theory of optimal transport it would be interesting
to shed more light on this question.

Acknowledgements. The author would like to thank first of all Anton Thal-
maier for constant institutional and mathematical support at the university of
Luxembourg. Karl-Theodor Sturm and Josef Teichmann are kindly acknowl-
edged for discussions on the subject at various occasions. Max-Konstantin von
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on chapter three and four.

Of course I am indebted to my parents and my sister for constant moral backup.
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Hutterer, Bruno Mounikou, Nicolas Genest, Ninel Kameraz-Kos, Ilona Kryszkiewicz,
Fatoumata Faye, Jean-Francois Grassineau, Yero Bobo Bah and all those I for-
got for discussions on mathematics, birds, fish, gods and poetry, for hiking
the mountains, for making and teaching me music and for cooking and eating
together.



Chapter 1

Topologies of probability
measures

In this chapter we will introduce the space of all probability measures on a
Polish space and its various subsets, among them the space of smooth, positive
probability densities on a compact Riemannian manifold. In addition to the
weak topology we put on the latter a coarser topology: the final topology with
respect to all smooth curves into the space of smooth, positive densities. In
contrast to the weak topology, which makes the space of all probability mea-
sures on a compact space itself into a Polish space, the so-called topology of
smooth curves is a priori only definied on he space of smooth, positive probabil-
ity densities; and this subspace is not complete for the weak topology. But from
the point of view of infinite-dimensional differential geometry, the topology of
smooth curves makes the space of smooth, positive densities into a topological
(and even smooth) open submanifold of a locally convex space. The reason for
choosing a locally convex space and not a Banach one as modelling space lies in a
theorem by [Omo78], which states that any Banach Lie group acting effectively
on a finite-dimensional compact manifold is necessarily finite dimensional itself.
Hence the group of smooth diffeomorphisms cannot be modelled on a Banach
space. As we will see later the space of smooth positive probability densities
can be seen as a topological space with a foliation given by the left action of the
smooth diffeomorphism group on it - the group action is locally free when we
mod out the subgroup of volume preserving diffeomorphism- and the topology
of smooth curves on the diffeomorphism group is inherited in this way by the
space of smooth, positive probability densities.

Thanks to Urysohn’s theorem we know that the space of probability measures
on a Polish measurable space (X, F) is metrizable; among the many notions of
distance we mention the following ones:

Definition 1.0.1. For u,v € P(X) we define

e Total variation distance

drv (p,v) = sup{|u(A4) —v(A); A € F}
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e Hellinger distance

2
1 [ du [ dv
2 [ — _ —_
du(p,v)" = 2 / < dwol dvol) dvol

o Wasserstein distance: Given p,v € P: II:={r € P(X xX): m(Ax X) =
w(A); m(X x B) = v(B) for all Borel sets A, B}.

dw (1, v)? := inf /d(x,y)%r(dz,dy)
mell

is called quadratic Wasserstein distance and the metric space (P,dy) is

called Wasserstein space. The existence and uniqueness of the variational

problem was proved by Kantorovich introducing a duality technique, for a

survey see [Vil03].

Whereas the total variation distance (widely used in statistics) metrizes strong
convergence (with respect to the total variation norm) Wasserstein distances
can be used more widely since it metrizes weak convergence (by testing against
bounded continuous functions). Recently in [MHO08] a spectral gap for Markov
semigroups in an infinite-dimensional setting has been shown by using Wasser-
stein distances rather than total variation distances, since usual (Harris) con-
ditions failed. Last but not least, from a geometric point of view the (quadratic)
Wasserstein distance can be understood as geodesic distance and calculated as
the infimum of the energy over all paths linking two distinct probability measures,
see chapter 2 for a precise meaning of this paraphrasing.

Definition 1.0.2. Given a complete simply connected finite-dimensional
Riemannian manifold M without boundary with its geodesic distance d we

define:

o P(M) := {u Borel probability measure on M such that [,, d(xo,z)*p(dz) <
oo}. If we don’t need to emphasize the underlying manifold we write short-
hand P.

o P (M) :={u€P:p<voly}
e Define

d
P®(M) = {ji € Poe : m(z) := dm‘;M (z) > 0; for a.e. x € M,m € C®(M)}

For all measures in P,.(M) (when not stated otherwise) we use henceforth
the symbol pu both for the measure and its density function.

o 3, ={AeRY": SN =1}

o Given a finite partition A = U_, A; of M, where each A; is a measurable
set (with respect to the volume measure of M ) that has non-empty interior.
To each \ € X,,_1 we associate a probability measure (*histogram’) on M
having the following density functions with respect to the volume measure:

flx):= Z%lfh(z); reM
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We denote the set of all histograms (with respect to a fized partition) by
H,.

e In the case when M is an interval (e.g. [0,1]) we define a (box-type
measure’ ) by associating to each A € ¥,,_1 the following density functions
with respect to the volume measure:

n

1 1
g(x) ==Y (Hl{A»o}l[E;g AeSi o (@)dr + SLpu=0p0% /\k(‘r)) ; xeM
i=1 v

We denote the set of all box-type measures (with n boxes) by G,,.

Lemma 1.0.1 (Probabilistic glueing). [Vil03] Let 1, pa, us be probability mea-
sures supported in the Polish spaces X1, Xo, X3 respectively and let mo € TI(p1, p2)
and ma3 € TI(pa, us). Then there exists a probability measure m € P(X7 x Xa X
X3) with marginals w2 on X7 X Xy resp. maz on Xao X X3.

Proof. Consider the probability measures w2 and me3 with common marginal
2. By the disintegration theorem there exist measurable mappings:

T12,2 ° X2 — P(Xl)a
ma3,2 : Xo — P(X3)
such that:
Mg = / (71‘1272(,(62) & 5$2) dMQ(‘TQ)’
Xo

g = / (02, ® m23,2(22)) dpiz(z2)
X2

in the sense that for all measurable A C X7 x X5 :
m2(A4) = / T12,2(22) (A" )dpz (w2)
Xo

with A" = {z; € X1 : (z1,22) € A}. In order to construct a probability
measure on X7 X Xo X X3 we set:

T = / (7T1212(1'2) ® 5&02 oy 7T23.,2($2)) dMQ (:CQ)
X2

We check that 7 is indeed a probablity measure: For any measurable set A C
X7 x X9 x X3 write pris resp. prog for the projection onto X; x Xs resp.
XQ X Xg.

m(A) :/x m12,2(22)[(pr12(A)) "] 723 2(22) (P23 (A)) 2] dpz(22).

Since for dug-almost every s mi22(z2) and ma3 2(x2) are probability measures
the total mass of m equals one.

We check that 7 has marginal 12 on X7 x Xs5: Take any measurable set A C X7,
then:

(A x Xy x X3) = /X T12,2(@2)[(A X X2)"2]ma3 2(22)(X3) dua(w2)

= /X T12,2(22)(A) dpz(22)

= p2(4),
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for marginals of m on X3 x X3 an analogous calculation applies. O

1.1 Weak topology and optimal transport dis-
tance

Theorem 1.1.1 (Topological properties). [Vil03] Let M be a metric space and
P(M) be equipped with the Wasserstein distance dy , then:

1. P is a metric space.

2. Convergence in Wasserstein distance is equivalent to weak convergence
plus convergence of second moments.

3. If M is Polish, then the Wasserstein space P(M) is also Polish.

Proof. 1. (P is a metric space.) Symmetry and non-negativity is clear
by definition and it holds for all p € P(M) that dw(p, ) = 0. Let p,v €
P(M) be given and suppose that dy (1, v) = 0. Let 7 € TI(ps, v) be an optimal
transport plan, i.e. [, d(z,y)? 7(dz,dy) = dw(p,v)? = 0, it follows that 7
is supported on the diagonal. From this and by the marginal condition it follows
that for all ¢ € Cp(M) :

| eoutdn) = [ gl mtdn.ay
= / o(y) m(dz, dy)
M x M
= /so(y)V(dy),
M
hence p =v.

The triangle inequality: Let p1, po, s and s, ma3, ™ be as in Lemma 1.0.1 and
m13 the marginal of m on X; x X3. Then using the Minkowski inequality:

2

dw (p1, pu3) < </ d(zl,zs)QdW13($17$3)>
X1><X3

- </ d(xy,13)* dﬁ($1,$2,$3))
X1><X2><X3
(/ (d(z1,22)* + d(z2, 73))* dﬂ($1a$2ax3))
X1><X2><X3
(/ $1,$2)2 de(SCl,ZCQ,ZC?,))
X1><X2><X3
+ (/ d(xa,23)? dﬂ($17$2,$3))
X1><X2><X3
(/ d(zy,29)? d7T12(301a302))
X1><X2

+ (/ d(xa, 23)? dﬂ23(3€27$3))
XoXxX X3
= dw(ﬂl,uz)erW(ﬂ%MB)'

N[

1
2

IN

2

IN

W=

1
2
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2. (Wasserstein distance metrizes weak convergence.) Let (i )ren
be a sequence of probability measures in P(M). Assume p € P(M). The fol-
lowing statements are equivalent:

1. hmkﬁoo dW (,LLk, ,LL) =0

2. limy 00 i = p weakly, i.e. for all measurable ¢ € Cp(X) :

lim gaduk:/ pdpu.
M M

k—o0

and the sequence (uy)ren satisfies the following tightness condition: for
some xg € M:

lim limsup/ d(zo, x)* dug(z) = 0 (1.1)
d(zo,z)>R

R—=oo koo

3. limg_, o pr = p weakly and there is convergence of the moment of order
2: for some xg € M:

klglgo y d(xg,2)? dug(z) = /M d(xo, x)* du(z). (1.2)

4. For all p € C(M) with |¢(z)| < C(1+ d(xo,x)?) for some zo € M, C € R:

lim gaduk:/ pdpu.
M M

k— o0

Note that by the triangle inequality for d we can extend the statements in 2.
and 3. to any xzg € M.

(4. = weak convergence.): Assuming 4. we obtain convergence for all con-
tinuous bounded functions, i.e. weak convergence.

(2. = 4.): Assume that 2. is satisfied for some xg € M and take any ¢ satisfying
the growth condition in 4. For R > 1 write

pr(z) = inf{p(z), C(1 + R} Vr(z) = @(x) — @r(z),

the latter being pointwise bounded by C d(xg,x)? 14(z0,2)>r- It holds that:

[ e@dn@ = [ p@dual < | [ on) i)
+C d(xg, 2)? dug (z)
d(zo,x)>R

+C d(xg,2)* du(x).
d(zo,x)>R

By assumption we have weak convergence also for the second moment, we con-
clude:

k—o0 M k—o00

limsup| [ (@) duw(z)— / ¢(x) du(z)| < C limsup / d(zo, )? (dpx+dp)(z),
M d(xo,x)>R
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letting R go to infinity we obtain by assumption that the right-hand sides goes
to zero, which implies convergence in 4.

(3. = 2.): Tt holds by assumption:

Jim [ (d(zo,2) A RY? dy () = / d(z0,7) A R)? du(a),
0 JM M

and by monotone convergence:

Jin [ (deo.) n R dute) = [ dao, ) dute)

which yields:

lim lim [d(zo,2)? — (d(xo,2) A R)P] duk(z) =0

R—ook—oo | x

Assume that d(zo,z)? > 2R. Then

d(zo,2)2 — B2 = d(zo, )2 <1 - 61(372‘36)2)

It follows that:

lim lim d(zo,z)? dug(z) = 0.
R—00 k—o0 d(zo,2)>2R

(1. = 3.): We want to show that convergence in the Wasserstein distance
implies weak convergence. As a preliminary note that weak convergence implies

/d(xo,:n)Qd,u(ac) = lim lim [ (d(zo,z) A R)?dug(z)
X R—oo k—oo [x
< hrninf/ d(xo, x)* duy(z),
k—o00 X
and
timsup [ d(oo.2)* o) < [ d(ao, ) du(o), (1.3)
k—oco JX X

is equivalent to convergence of the second moment in 3.
Take a sequence (ug)ken in P(X) with:
k—o0

and an optimal transference plan 7y transporting uy to p. For any € > 0 there
exists a constant C, > 0 such that for any xg,z,y € X:

d(an 1')2 < (1 =+ €)d($0, y)2 + Ced(l', y)2
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By the marginal condition on 7y, it follows:

/ d(xg, z)* dry(z,y) = /d(zo,z)Qduk(x)
XxX p's

IN

(1+ 6)/ du(y) + C- d(x,y)? dmy(x, y)
X M x M

(1+e) /X du(y) + Cedw (pr, 1),

Letting k£ tend to infinity the Wasserstein distance goes to zero and we obtain:

li]?i)sip /M d(xo,z) dug(z) < (1+¢€) /M d(zo,x)” du(x)

and with ¢ — 0 we obtain the claimed convergence of the p-th moment.

Claim B. In order to prove (1. = weak convergence) and (3. = 1.) it is
sufficient to prove only the case where d is bounded.

Proof of claim B. Defined = dA1 and let WQ be the Wasserstein distance as-
sociated to d. By definition dy > Wg, hence in order to prove (dy -convergence
= weak convergence) it is sufficient to prove (Wg—convergence = weak conver-
gence).

Assume now that 3. holds and that (ux)ren converges in Ws. We want to show
that (ur)ren also converges in dy . By elementary geometric reasoning for all
x,y € (M,d) it holds that for every R > 0 and 2y € M:

d(z,y) < d(z,y) NR+2d(x,70) Laz,e0)>r/2 + A(20,Y) Li(eo,y)>Rr/2-

and there exists a constant C, > 0:

d(z,y)* < Cy ([d(z,y) A R)* + d(x,20) Li(z 20)>r/2 + A0, Y)* La(ug,p)>R/2) -

Let 7, be an optimal transference plan for transporting px to g with cost func-
tion dP. For R > 1:

dW(IU/ka M)Q =

/ d(SC, y)2 dﬁk (SC, y)
XxX

< G [d(z,y) A R]* dry.(2,7)
XxX
+Cp d(z,0)* dmi(z, y)
{d(z,20)>R/2} XY
+Cp/ d(zo,y)* dmy,(x,y)
{d(zo,y)>R/2} x X
S R2 WQQ (l’[’kv M) + CQ / d(:c7 :CO)Q dﬂ'k (SC, y)

{d(z,z0)>R/2}x X

+Cp d(zo,y)” dmi(z, y).
{d(z0,y)>R/2} x X

Now let £k — oo and using assumption 3. let R — oo we obtain convergence in
the dy, sense.
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ged. Claim B.

Assume that d < 1. In this case all distances dy (with cost-function d(x,y)?)
are equivalent, we prove the case p = 1. Assume that the sequence (uk)ren
converges to p in the 1-Wasserstein distance. Since we are in the case where
¢ is a metric, the Kantorovich-Rubinstein theorem applies and convergence in
1-Wasserstein distance reduces to

lim  sup /Msau)d(ukfu)(z):o. (1.4)

k=00 gl Lip<t

We want to prove weak convergence, that is for all ¢ € Cy(M),

lim soduk(w):/ @ du(z),
M M

k—o0

which is true (by the Kantorovich-Rubinstein theory) if ¢ is 1-Lipschitz and
replacing ¢ by W in the case ¢ # 0 convergence holds even for all Lips-
ip

chitz functions. For every bounded function on (M, d) there exist (ap)nen and
(bn)nen of uniformly Lipschitz functions such that (a,) resp. (b,) is pointwise
increasing resp. decreasing in n and:

lim a, = ¢ = lim b,.

It follows that

1imsup/ edug(z) < liminflimsup/ by, djig
M M

k—00 n—=00 ko0

= 1iminf/ b, du
n—oo M

/M (@) dp(a),

the last equality follows from dominated convergence. Analogously it holds that

k—o00

1iminf/ o(x) dug () 2/ o(z) du(x),
M M
which proves weak convergence.

(3. = 1.): Assume that (ur)ren converges in the weak sense towars p. We
want to prove convergence in the sense of Kantorovich-Rubinstein theory, i.e.
(1.4). Take any xo € M and denote the space of all Lipschitz functions on M
with Lipschitz constant less or equal 1 such that ¢(z9) = 0 by Lip1,5,(M), and
it suffices to prove:

lim  sup / @d(pr —p) =0
M

k=00 e Lipy,ag

in order to show (1.4). From Prokhorov’s theorem we know that (ux)ken is
a tight family of probability measures on X: Take an increasing sequence of
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compact sets in M: (K, )pen with e = 1, ie. for n > 1:

p(Ky) <

S|
S|

sup ug(Ky,) <
keN

Without loss of generality we may assume xg € K. Of course for all n > 1 :

{90 1k,; (RS Lipl;mo(M)}

is a subset of Lip1,,, (M), the latter being a pointwise bounded equicontinuous
family of functions on M. Due to separability of M Arzela-Ascoli applies: From
any sequence (¢r) in Lipi,.,(M) we can extract a subsequence (y,) which
converges uniformly on Lipy.,,(K,,) for K, compact and by taking the diagonal
(with index k; and n) there exists a subsequence which converges uniformly on
every K, towards a measurable function 1 defined on | J K,, which is bounded
Lipschitz since () is uniformly bounded and uniformly Lipschitz, i.e. the limit
1 is also 1-Lipschitz and can even be extended from | J K, to the whole M by
setting: ~
b@) = inf {uly) +dlz.y)}.

yEU K
It remains to show that

lim [ o d(pe — p)

k—o00

Note that
/‘Pkd(ﬂk —pn) < I/ (or — ) d(prx — p)]
K,

+1 [ (or — ) d(pr — p)]

c
n

K
+ I/ (ks — p)l-
M

We claim that all three terms on the right-hand side go to 0 for n — oo and
then £ — oco. The first one goes to zero for fixed n and k — oo since the py’s
converge uniformly on each compact K, towards ). The second term: All p’s
and ¢ are uniformly bounded by some constant ¢ > 0 and the tightness of (p)
and g yields:

(K5 + (D)) < 2

Taking the limit in n one obtains convergence towards zero uniformly in k.
The last term converges to zero since we assumed weak convergence of (puy)
towards .

3. (M Polish entails P(M) Polish)

We have to show that there exist a countable dense subset of P(M). For this
purpose we take a dense sequence Y := {yi; k € N} C M and write K as the set
of all probability measure of the form )", a;0,, where a; are rational numbers
and the z;’s are finitely many elements in Y. We claim that K is the countable
dense subset of P(M) in question:

Let € > 0 be given, and let zp be an arbitrary element of Y. If 1 lies in P(M),
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then there exists a compact set L € M such that fM\L d(zo,x)?du(z) < €.
Cover L by a finite family of balls B(xzx,€/2),1 < k < N, with centers 2, € Y
and define

By = B(a, ¢/2)\ | Blxj,€/2).

i<k
Then all By are disjoint and still cover L. Define a function f on M by
f(BeN L) = {xx}, f(M\ L) = {xo}.

Then, for any « € L,d(x, f(z)) <e. So

/d(m,f(m))2d,u(ac) < GQ/LdM(ﬂﬁ) +/M\L d(xo,x)* du(x)
< E4e2=2

Since (Id, f) is a transport plan from p to f#u, dw (i, f#1)? < 2€%. f#u can
be written as ) a;0,,,0 < j < N. This shows that y might be approximated,
with arbitrary precision, by a finite combination of Dirac masses. To conclude,
it is sufficient to show that the coefficients a; might be replaced by rational

coefficients, up to a very small error in Wasserstein distance. By Theorem 6.15
in [Vil0§]

N N N

1 1

dW(Z aj(smj,zbﬁzj) < 2% Hiale(xkaxl) Z laj — a7,
j=1 j=1 ’ j=1

and obviously the latter quantity can be made as small as possible for some
well-chosen rational coefficients b;.

Completeness: Let {ur;k € N} be a Cauchy sequence in P(M). By a con-
sequence of Prokhorovs theorem it admits a subsequence {u } which converges
weakly to some measure . Then

/d($0,$)2du($) < lliclgri}glof/d(xo,x)Qdukf () < 400
so p belongs to P(M). Moreover, by lower semicontinuity of dy ,
dw (p, pur) < 1]1€Hi>1§10f dw (p s pur),
so in particular

lim sup dW (:u‘v /’Ll’) < lim sup dW (:u’k’ ) /’Ll’) = 07

k' —o0 Kl —o0

which means that u; converges to u in the dy sense. Since uy is a Cauchy
sequence with a converging subsequence, it follows by that the whole sequence
is converging. (|

Proposition 1.1.1. Let M be compact, then

1. {H,;n € N} C P is dense with respect to dyy .
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2. {Gp;n € N} C P is dense with respect to dyy .

3. P C P is dense with respect to dw, hence P,. C P s also dense with
respect to dyy .

4. None of the above subspaces is complete with respect to dw . Only {H,;n €
N} and {Gp;n € N} are countable.

Proof. We prove the first statement: Since M is compact we define disjoint
finite cover {By;k =1,...n} as in part three of the preceding theorem:

By = B(zy,¢/2)\ | B(z;,€/2).

i<k

We define a mapping f : M — M such that f(BpyNM) = ByNM and f#u(BiN
M) = u(Bx N M), ie. fis a (not necessarily monotone) rearrangement of each

. . . BinM)1p, Au(x
cell BN M which should additionally verify %’i(xﬂgmM — ';r;l(])gki’;w;{( ).

This map verifies all criteria of an admissible transport map (although it is
difficult to construct it for most concrete examples). Obviously d(z, f(z)) < e.
So

duw 1y [ #0)° < / d(e, f(2)Pdp(z) < & /Mdm)
< &

And by construction f#u € H,. Similar arguments apply to G,, and to P.
The lack of completeness is illustrated for the subspace (P>, dw) C (P, dw):
Convolution of a positive smooth density with rescaled Gaussians converges in
Wasserstein distance to a Dirac measure. On the space of histograms we define
weights a; = 172% and as, . . . a, such that Z?Zl aj = 1, then the corresponding
sequence of histograms converges in dy to a Dirac measure. O

Remark 1.1.1. If M is compact, then P(M) can be made into a compact metric
space ("Watanabe compactification’) P(M) U {oow } with respect to a topology
defined by

un%MEP(M)é/fun%/fu
and

un%oowé/lun%oo.

See remark 3.2.2 in [Daw93]

1.2 Topology of smooth curves

Complementary to the weak topology we put another topology on the subspace
P in the flavor of [KM97]:

Definition 1.2.1 (Topology of smooth curves). Let E be a locally convex (Haus-
dorff) vector space. We say that a curve ¢ : R — E is differentiable if the limit
d(t) :=limg—o 2(c(t + s) — c(t)) exists. The curve is called smooth if all iter-
ated derivatives exist. A set A C E is called ¢ -open if for any smooth curve
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c: R — E the set c7'(A) C R is open. We write ¢> for the topology of
smooth curves, i.e. for the topology whose basis consists of c*-open sets. Let
U C E bounded. By Ey we denote the linear span of U in E, equipped with
the Minkowski functional py(v) :=inf{\ > 0:v € A.U}. (Ey,pvu) is a normed
space. A locally conver vector space E endowed with the ¢ -topology is defined
to be complete if any Mackey-Cauchy sequence is convergent in the following
sense: A sequence is {xy;n € N} in E is called Mackey convergent to x if there
exists a bounded, absolutely convex U C E such that {x,;n € N} converges to x
in the normed space Eyr. Note that convergence statement in Ey is equivalent to
the existence of a real-valued sequence {y, > 0;n € N} converging to zero which
satisfies x, € yn.U. We can thus paraphrase: A sequence {x,;n € N} in E is
called Mackey-Cauchy if there exists a bounded absolutely conver U C E and a
net {y(n.ny; (n,n') € N*} in R converging to zero such that x, — xn € Yn,n)-U-
By Theorem 2.14 in [KM97] we know that a convenient space is also character-
ized by the following condition: If ¢ : R — E is a curve such that loc: R — R
is smooth for all continuous linear functionals | € E*, then c is smooth.

Definition 1.2.2 (Smooth manifolds). Let X be a set. A chart (U,u) on X
is a biection u : U — w(U) C Ey from a subset U C X onto a ¢™-open
subset in Ey. For two charts (U, ua) and (Ug,ug) on X the mapping uapg 1=
Ug © ugl cug(Uag) = ua(Uag) for a, B € A is called the chart changing, where
Uap := Uy NUg. A family (Uy, ua)aca of charts on X is called an atlas for X
, if the Uy form a cover of M and all chart changings uas are defined on c>-
open subsets. An atlas (Uy, ua)aca for X is said to be a C*-atlas, if all chart
UaB = Uq oulg1 s ug(Uag) = ua(Uag) are smooth. Two C*-atlas are called
C>-equivalent, if their union is again a C*-atlas for X. An equivalence class
of C*°-atlas is sometimes called a C*°-structure on X . The union of all atlas in
an equivalence class is again an atlas, the maximal atlas for this C'°°-structure.
A C*-manifold X is a set together with a C*°-structure on it.

Remark 1.2.1. Let M be compact. Then C*°(M) is a convenient vector space:
It is a vector space over R, and with respect to the topology of smooth curves it
is Hausdorff. Addition and scalar multiplication are continuous (they are even
smooth) and the function 0 has a basis of neighborhoods consisting of convex
sets. It is complete with respect to the topology of smooth curves: We have to
verify that for each continuous linear functional I on C*°(M) the curve l o c is
smooth from R to R. It is sufficient to prove that t — fM wervol is smooth (for
p € C°) which is true since we can put differentiation with respect to t inside
the integral.

Definition 1.2.3 (Kinematic tangent bundle). Consider a manifold M with a
smooth atlas (M D U, Pein Ey)aca- On the disjoint union

UUaanx{a}

a€cA

we define an equivalence relation
(z,v,0) ~ (y,w, B) & =y and d(uap)(ug(z))w =v

and denote the quotient set by T M which we call kinematic tangent bundle of
M which embeds as subbundle into the so-called operational tangent bundle - a



21 CHAPTER 1. TOPOLOGIES

notion, which we will not belabour here but which is equivalent to the kinematic
tangent bundle in the case of finite-dimensional manifolds. The name ’kinematic
tangent bundle’ comes from the fact that there exists a bijection from TM to
C>®(R; M),/ ~ where two curves ¢ ~ e if and only if ¢(0) = e(0) and in one

chart (U,u) with ¢(0) € U we have %|o(uwo c)(t) = Llo(uoe)(t).

Henceforth when we talk about the tangent bundle of P> we use exclusively
the notion of kinematic tangent bundle.

Definition 1.2.4 (Tangent map). Given a smooth mapping f : M — N between
manifolds (i.e. smooth curves in M are mapped to smooth curves in N ), then
[ induces a linear mapping T(f)(x) : TuM — TyyN: for each g € C*°(N D
{f(®)},R) andx € M

(T(f)(2)(X2))(9) = Xalg o f) = d(g o f)(x)(X).

The differential is understood in the sense that there exist a smooth curve ¢ in
M with initial speed vector ¢(0) = X. Therefore we also write short-hand

T(f)(x)(&(0))-

The most prominent example of an infinite-dimensional manifold is the group
of all smooth diffeomorphism on a compact manifold modelled on the space of
all smooth mappings from the manifold to itself. Its tangent space at identity is
the space of all smooth vector fields, hence equipped with the L?-inner product
the group becomes an infinite-dimensional Riemannian manifold. The reason for
choosing a locally convex space and not a Banach one as modelling space lies in a
theorem by [Omo78], which states that any Banach Lie group acting effectively
on a finite-dimensional compact manifold is necessarily finite dimensional itself:
no way for the group of smooth diffeomorphisms to be modelled on a Banach
space.

We return our attention to the space of smooth probability densities by noting
several remarks:

Proposition 1.2.1. Let M be compact. Then P>(M) is a smooth manifold
with respect to the topology of smooth curves, more precisely P (M) is a ¢>-
open submanifold of C>(M).

Proof. 1. Modelling space C*°(M):
Fix p € P>*(M). A smooth chart v on U, C P*(M) bounded is given by a
bijection that maps each smooth positive density in U, to a smooth positive
function; u(U,,) is a ¢>°-open subset of the linear span of U, in C*°(M).

O

Remark 1.2.2. P* is contractible, i.e. the identity map on P is homotopic
to a constant function; in other words given any probability density Ty P,
there exists a family of diffeomorphisms ¢y (given by a global flow to a smooth,
fully supported vector field) such that ¢4 = vol for some t € [0, +0o0], so P>
can be shrinked continuously with respect to the c*°-topology to the point vol.

Remark 1.2.3 (Wasserstein space as stratified manifold). As remarked in
[GKP10] P>*(M) may also be viewed in another way as infinite-dimensional
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manifold, again M is assumed to be compact. Recall that the push-forward of a
probablity density p by a Borel map ¢ from M to itself is defined as

PH#u(A) = (6™ (A))
for any Borel set A. Then the map
Diff>™*(M) x P*°(M) — P>(M)

given by
(¢, 1) = oF#p

defines a left action of Diff>* (M) on P> (M) and is smooth (in the sense of the
topology of smooth curves). We denote by

O, :={v € P®(M) : v = ¢#pu for some ¢ € Diff*(M)}
the orbit and by
Diff*(M),, := {¢ € Diff*(M) : ¢p#p = p}

the stabilizer of any fired measure p. Note that the latter is itself a Lie sub-
group of the diffeomorphism group - its Lie algebra is the space of vector fields
whose divergence with respect to the measure p equals zero. The quotient space
Diff>> (M), Diff** (M), can be mapped one-to-one to O, via j : [¢] — ¢#p.
This mapping can be lifted to the respective tangent bundles: By Hodge theory
for the L?(u)-closure of the space of all vector fields we can decompose each
vector field into its p-divergence free part and its gradient part. For the tangent
map this means that

T(j): X(M),/ Ker(div,) = O,

is a bundle isomorphism. This construction is also valid for the more general
case when replacing diffeomorphisms by homeomorphisms and in this way P
becomes a stratified manifold, i.e. a topological space with a foliation and a
differentiable structure definied on each leaf of the foliation: the foliation is
induced by the action of Diff*(M) on P. On the other hand O, = P>(M)
for € P>(M) shows that for the subspace of smooth positive densities there
exists a single leaf and P>°(M) becomes a homogenous space with the quotient
Diff>** (M) ,/ Diff>* (M), acting faithfully on P>(M) for any p € P> (M).

Remark 1.2.4 (Wasserstein space as embedding in the space of linear forms).
Another point of view (as advocated by [Lot08]) is

P(M) C (C=(M))7,

i.e. for every ¢ € C>°(M) we define a functional F,(p) := [ puvol on P> (M)
which is point-seperating and smooth (in the sense of the topology of smooth
curves). The functions F,(u) can be thought of as coordinates of the point pi.
For a reason which is explained by Proposition 2.2.1 tangent vectors act on
smooth functions on P (M) by

(VoF) () = (s — bl (V)
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for o € C®(M) given. As in the original paper of [Ott01] we obtain a bundle
isomorphism

C*¥(M)/R — TP>*(M),
where the latter is the kinematic tangent bundle.

Not the following

Remark 1.2.5. Let M be compact. If a sequence {pui;k € N} in P>(M)
converges weakly to some p € P> (M) then {ux; k € N} converges with respect
to the topology of smooth curves to p .

Proof. Since C* C Cp, we know that limy_,o0 pr (@) 1= limp—so0 [ dpur = (@) Voo €
Cp implies limy_s o0 p1x (@) = p(@) Vo € C. O
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Chapter 2

Riemannian geometry of
probability measures

Starting from an energy variation formula for paths in P,. we report results
about the characterization of Wasserstein geodesics and its links to partial dif-
ferential equations. We present a Riemannian geometry on P,. from two view-
points: At first from a analytical one using calculus of variations and PDEs.
Secondly we develop a formal Riemannian geometry on P,. which will be shown
to be rigorous when we restrict ourselves to P> equipped with the topology of
smooth curves. Within this framework we show new and known formulas for
the Levi-Civita connection, Riemannian curvature and parallel transport. Ad-
ditionnally we mention results from [AGS08] which are rather in the flavor of
Lipschitz analysis and geometric measure theory.

2.1 Wasserstein geodesics

As Kantorovich laid the foundations of existence and uniqueness of the optimal
transport problem and hence the well-definedness of Wasserstein distances for
convex cost functions it was Brenier and McCann who in [Bre91] and [McC01]
laid the foundations of the characterization of optimal transport maps, i.e. the
map T : M — M that is actually realizing the infimum in (1). We cite the
following

Theorem 2.1.1. Given u,v € P,., then the optimal transport plan w (for the
cost function (x,y) — d(z,y)?) realizing the Wasserstein distance between
and v is given by a map T : M — M such that

duw (1, )? = / e T(@)Pp(d)

where T'(z) = exp,(—=V(x)) and ¢ is a p-a.s. unique convex function on M.

Proof. For the case M = R? the theorem was proved in [Bre91], in the case
where M is a connected compact, C3-smooth Riemannian manifold a proof can
be found in [McCO01]. For the non-compact case a similar statement can be
found in [Fig07]. O

25



CHAPTER 2. RIEMANNIAN GEOMETRY 26

The following theorem showed for the first time a connection between fluid
dynamics and optimal transport, i.e. we think of pg and p; as the density of
particles in a given region in R? at time t = 0 and t = 1. If we assume that for
every t € [0,1] there exists a smooth resp. uniformly Lipschitz vector field v;
which describes how particles move around in a given area we can describe the
time evolution of the particles’ position by

% = ’Ut(Xt) (21)

Under regularity assumption on the vector field vy we obtain for a given initial
value ro € R? a unique solution X,, (¢) for (2.1) on the whole time interval [0, 1];
moreover the map (¢,29) — X,,(t) is globally Lipschitz and one-to-one. Thus
(TY)o<i<1 = (x — X4 (t))o<t<1 is a locally Lipschitz family of diffeomorphisms
and the characteristics method for the linear transport equation applies:
we = Ty 10 is a weak solution to

Ore + div(psv) =0 (2.2)
ot
The quantity div(usv;) describes the flow density under v;. The total kinetic
energy up to a factor 3 is E(t) = [pu ft¢|v¢|*dz. The energy one needs to move
particles around from time 0 to time 1 according to v, is defined as Afu,v] =
) E(t)dt.

Theorem 2.1.2.

inf Alp,v] =d 1), 2.3

et [k, 0] = dw (po, p1) (2.3)

where V (po, p1) is the set of all pairs (p1,v) := (s, vt)seo,1] Satisfying the
following conditions:

1. u € C([0,1], Poe(RY)) where Poo(RY) -the space of absolutely continuous
probability measures- is endowed with the weak-x-topology, i.e. lim;_, o v; =

viff [ v, — [ v forall o € C°.
2. v € L*(du(x)dt)
3. Useo,1) supp(pe) is bounded
4. %% + div(pvy) =0, d.e.
Joa (Bep(t, )it + [oa(Vep(t, ), 00) e = 0 for all ¢ € C°(Ry. x RY).
9. p(t=0,) = po(), plt=1,)=p()

Proof. See [BB00] O

Formula (2.3) can be seen as geodesic equation on the space of probability
measures from two points of view: Firstly, as generalization of action minimizing
curves, which are no longer deterministic but random and secondly, as realiza-
tion of the minimum in the energy variation formula for Cl-curves (known from
finite-dimensional Riemannian geometry) if we endow P with a Riemannian
metric and can make clear what the tangent bundle above P should be.
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Remark 2.1.1 (Displacement interpolation). As already mentioned in the in-
troduction the Wasserstein distance is realized by the optimal coupling between
two probability measures g and py. The notion of coupling may be extended to
time-dependent optimal transport. We call every random curve v : [0,1] = M,
such that law(yo) = p1 and law(y1) = pa, a dynamical coupling of po and py.
Any probability measure on C([0,1]; M) is called a dynamical transference plan.
In chapter 7 in [Vil08] a fairly general machinery of Lagrangian action function-
als with respect to semi-continuous cost functions on Polish spaces (for continu-
ous, not necessarily differentiable curves) is developed. We give only the example
of kinetic energy for the case of a finite-dimensional Riemannian manifold: For
any continuously differentiable curve v we define A(y) := %fol 17(5)](s)ds and
among all Ct-curves we define the subset I of action minimizing curves (note
that we do not fiz starting and end points). Denote by e, : I' — M the eval-
uation functional e;(y) = v(x). A dynamical optimal transference plan is a
probability measure I1 on I' such that

7= (eg, e1)#II

is an optimal transport plan from g to py1. The following theorem shows that
dynamical optimal transference plans are minimizing curves for Lagrangian ac-
tion functionals on P.

Theorem 2.1.3. For a continuous curve (fi)o<i<1 in P such that the Wasser-
stein distance between py and py is finite, the following statements are equiva-
lent:

1) For each t € [0, 1], uy is the law of v, where (vt)o<i<1 s a dynamical optimal
coupling of (u,v).
2) The path (p)o<i<1 is a minimizing curve for the action functional A defined
on P by

Ap) = nf EA(y)

with law(yy) = e for each t € [0,1]. Note that the inf is taken over all random

curves (i.e. random variables with values in C([0,1]; M) ) such that law(v;) = pr
for0 <71 <1.

A curve (p)o<i<1 in P fulfilling one of the above conditions is called displace-
ment interpolation between pg and py. The displacement interpolation is unique
if there is a unique optimal transport plan 7 between pg and p; and if any two
points xo,x1 € M are joined w(dxg, dxy)-almost surely by a unique geodesic.

Proof. [Vil0§] O

Definition 2.1.1 (Geodesics). On any complete, locally compact metric space
X we define geodesics vy between two points vo and 1 as paths that realize the
distance, i.e. paths which attain the minimum in

n

L(/y) ‘= sup sup Zd(vtm’yttwrl)a
n 0=t1<t2<...<tpy1=1 1
such that
d(yo,71) = inf  L(y)

yeC([0,1];X)
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There is an important corollary to the preceding theorem:

Corollary 2.1.1. Given ug, 1 € P(M), M a compact Riemannian manifold,
and a continuous curve {p;t € [0,1]}. With the above definition of geodesics
the following statements are equivalent:

1) t — p is a geodesic in P

2) uy is the law of ¢, where «y is a random geodesic on M, such that (vo,v1) is
the optimal coupling from po to p1, i.e. the random variables vy and vy, induce
a product measure which solves the optimal transport problem from g to .

The above characterization of Wasserstein geodesics as laws of random geodesics
on the underlying space rises further questions (for instance whether the geodesic
between two given measures may be branching), which we will no belabor here,
recently there has been developed a variational approach to this issue in the
spirit of Benamou-Brenier’s theorem (see [BBS10]). We turn our attention to
the second point of view, i.e. we endow P with a Riemannian structure and
prove formulas which are very much inspired from finite-dimensional Rieman-
nian geometry.

2.2 Otto’s Riemannian metric
Definition 2.2.1. Given u € P(M). We define the tangent space to j as

T,P = Voo e o))

note that if M is compact, then the compactness requirement on support of
smooth functions is omitted.

Lemma 2.2.1. Let u € P. A vector v € L?(u) belongs to T, P iff

[[v+wllp2 ) = [|vllz2(w (2.4)

for all w € L?(p) such that div(pw) = 0. In particular for every v € L*(u) there
exists a unique I1(v) € T, P in the equivalence class of v modulo divergence-free
vector fields, T1(v) is the element of minimal L*(p1)-norm in this class.

Proof. See Lemma 8.4.2. in [AGS08]: Convexity of the L?(;) norm entails that
(2.4) holds iff [, (v, w)p = 0 for any w € L*(p) such that div(uw) = 0, and this
is true iff v is in the L?(p) closure of {Vp;p € C2°(M)}.

O

Proposition 2.2.1. If y € P>, then
T, P> ={p(.) € C*(R4; P); u(0) = p}/ ~,

where for two p(.),v(.) € C°(Ry; P™®) we say that p(.) ~ v(.) if both u(.) and
v(.) solve the continuity equation (2.2) for the same given vector field vt, i.e.
that the tangent space coincides on P with the kinematic tangent space defined
in definition 1.2.3
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Proof. To prove the proposition we make use of theorem 8.3.1 in [AGS08], where
it is shown that for every absolutely continuous curve p there exists a Borel
vector field v; with L?(j;)-norm bounded from above by the metric derivative

li dw (Mt+h, Ht)
m —---
t—0 |h|

of p such that the continuity equation is satisfied and this applies in particu-
lar to smooth curves with values in P*°. By a variational selection principle
(lemma 2.2.1) it is then shown that there exists a unique projection of v; to
the equivalence class of vector fields modulo divergence-free vector fields with

minimal L2 (p)-norm, i.e.
/ (ve, wepy =0
M

for any w; € L?(u;) such that div(uswy) = 0 which is the case iff v; belongs
to the L?(u;) closure of {Vy;p € C(M)} since div(psw;) = 0 means that
J Vo, w)pe = 0. Since for two curves being in the same equivalence class means
to solve the continuity equation for the same vector field (which we proved to
be the unique vector field of gradient type with minimal L?(p;)-norm) the proof
of

T, P> 2 {u(.) € C*(Ry; P7); pu(0) = p},/ ~,
is achieved. For the converse inclusion we cite again theorem 8.3.1 in [AGS08],
where it is shown that any continuous curve satisfying the continuity equation
for some Borel vector field has a metric derivative that is less or equal than the

L?(us)-norm of the vector fields, we then apply again the lemma already cited
to conclude. O

Definition 2.2.2. The (kinematic) tangent bundle T P> is defined as the dis-
joint union
U z.p~.
pepee

Note that this definition coincides with definition 1.2.8 using the global chart of
the embedding P> C C°.

Definition 2.2.3. We define on the kinematic tangent space T, P> a Rieman-
nian metric denoted by

it = [ ool
M

where p(.) is in the equivalence class of smooth curves satisfying (0) = p and
the continuity equation (at t = 0) with respect to the gradient-type vector field
Vo, . €.

. d A
fo:=—lon = —div(pvo)

Proposition 2.2.2 (Wasserstein Gradient formula). Let F': P* — R U {o0}
such that

P = [ futa)wo
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for a twice differentiable function f : Ry — R and let p(.) be a smooth curve in
P> such that u(0) = p and o = —div(pv). Then

(97 Flu),oh = G loF(ult) = (V5 F(u).0)

Proof. In the spirit of the pioneering work [Ott01] we know that

o) = [

M

((f" o), fr)vol = */ (f" o p)div(pw)vol

M

which equals by integration by parts

[ o ) oyl

O

Definition 2.2.4. Vector fields on P> are defined as smooth (in the sense of
c>®-topology, see [KMY97]) sections of the kinematic tangent bundle TP, i.e.
V € T(TP™® < P>®) if V : pu v+ fi such that prps o V(u) = p. By proposition
2.2.1 we know that each equivalence class of curves corresponds to some element
in the L?(p)-closure of the space of gradient-type vector fields. We say that a
smooth functions v defined on the underlying manifold determines a vector field
V' on the space of smooth, positive probability densities if there exists some
representative of a smooth curve ¢ : R — P which passes at zero in u and
which verifies the continuity equation ¢ = —diw(uVv) at time zero for a smooth
function v. This means that V might be seen as (regular) distribution acting on
test functions in the following way:

For all ¢ € C*(M), a function v € C®(M) and mo = 2

V()le) = /M<V”’ Vo) wmo(z)vol (dz).

We write short-hand

V() = —div(p Vo),
We emphasize that the smooth functionv : M 3 x — o(mo(z)) € R forv : Ry —
R is a possible choice, i.e. take v(x) = log(x)+1, then Vv(z) = V (log(mo(x))+
1) gives the vector field associated to the entropy via the Wasserstein gradient:

VI [ mo log(mo) vol(dz) = div(p V v)
M

2.3 Levi-Civita connection

Recall the notion of tangent map. For a smooth mapping F': P> — R and any
smooth curve ¢: (—a,a) — P such that ¢(0) = g and ¢(0) = —div(p V u) the
tangent map

T(F): TP* R xR
(1, ¢(0)) = (F(n), T(F)(n).¢(0)) := (F(), flo(F o c)(t))
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Proposition 2.3.1 (Smooth Lie bracket [Sel06]). Given U,V € T'(T'P*>® <«
P). Since vector fields are not complete we have to construct their respective
flows explicitely: For 0 < a < € we define FIY | FIY : (—a,a) x P® — P> by

%Fl?(u) = U(FI (1))
= —div(FI (n)Va(FIY (1))
resp.
DR = vy w)
ot '

= —div(FIY ()Vo(FIY (1))

Then the Lie bracket reads as follows:

UV = dio(V() V) — din(U (1) Vo) +
din( VT (u) (1)-V (1)) — div( VT (0) (1)-U (1)

Here T(u)(u) is the tangent map of u at u, since u is a real-valued function on
P> it is the differential of u at p.

Proof. As a prerequisite we calculate

2 (k1%

i.e. the expression we differentiate is the tangent map of Flgt at p. By the
product rule applied to the flow equation:

0

ET(F&)(M)

T (%FlUt) (1)
= -7 (~div(1%,¥ {woF”,})) ()
= div [T ) ()V {uo P} ()] +
+div [(F12) )V {T(woF1Y,) } ()]
= div {T(Flgt)(u)v {uom?t} (u)} +

div [ (F1Y,) (1) {7 (0) (E1, ()T (B1) 1)}
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By definition

0

UV = eloFI) V()

— %O(T(Flﬂ) oV oFL) (k)

- <%|OT(F1Ht)(V oF1§f|0)> (1) + T(F1Z))]o 0 <%IOV oFl?) (1)

= DWTEL)W () + ooV (1Y ()
= div V() un)] +div [0V {7 ()()V ()] +
+%|0 (—div [FlU( )Vv(FlU(u))D
= i V)V )]+ div [V {0V ()] +
v [U () ()] — div [V (7()().U ()]

This formula generalizes formulas obtained by [Lot08] (where the functions
v do not depend on the density). In view of the Lie bracket we define the
Levi-Civita connection on P> and show that it is Riemannian and torsion-free.

Proposition 2.3.2 (Smooth Levi-Civita connection).

VoVip) = —div[U()Vo(u)] = div[n V(T(@)(p).U ()]
= div[div(p V u(p))Vo(u)] — div[p V(T (0)(1).U(w))],

i.e. for all p € CX(M) :

V) = /M<v<w, Vo)e, Vat)opi(da) + / (VE©).U(0), Than(da)

Proof. We have to show that

UV, W), = (VuV, W)+ (V,VuW),,
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ie. for I(p) = (V (1), W(p))u
U(v, W>u =
T(I).U

= %|0 ; {(Vo((d + 1tV u(p)#p), Vo((id + YV u(p))#u)), x

x (id + tV u(p))#p) }
- /M<%|OVU((id+tVu(u))#,u),Vw(M)> p(dz)

x

[ {50t oV w0l + 67 w0t

x

+ /M (V((V o), Vw(p))s), Vu(n))a

- /M<v T(0).U, Vw(ys))s plde) + /N (Y 00, Y T(@)0). o)

+/ (VVU,Vu}ﬁ,Vuﬂu—i—/ ((Vo,VV W), Vu),

M M

= vV T)D), w) — (div(e Y Tw).D),0),
+(div(div uV )V v),w), + (div(div uV v)V u), v),

= (VuV, W)+ (V,VuW),..

Taking some Riemannian connection V definied in terms of the Koszul formula

UVGV, W), = UV, W), + VWU, — WU, V), + (W, [U,V]),: (2.5)
7<Va [Uv W]># - <U7 [Va W]>#

and substituting the Lie bracket and the calculations of U(V, W), into this

formula shows that V = V. It is the Levi-Civitd connection since V is torsion-
free by definition. O

Remark 2.3.1. Note that ViV (u) € T, P> since
®oVwle) = /N AV V(G (V.0 uda' ) ()
n / (Vo V(T(0) (1)U (1)) ()
M

by lemma 4.14 in [Lot08]. Here G, denotes the Green operator for did on
L*().

Remark 2.3.2. [Gig09] developed notions in order to generalize covariant deriva-
tives to the case of wvector fields on P,. by introducing parallel transport of
absolutely continuous vector fields along regular curves. Regular curves c :
[0,1] — P,. are those whose velocity vector field vs (given by the solution of
the continuity equation) satisfy the Lipschitz condition fol Lip(vy) dt < 0o and
fol |vt|§(t)dt < 00. Absolutely continuous vector fields ug are those for which the

translation 77 (ug) from L?(c(t)) to L*(c(s)) are absolutely continuous in t for
any s. It is shown the the angle between tangent spaces varies smoothly along
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the regular curves, i.e. the translation of a vector field from L*(c(t)) to L?(c(s))
along such curves is almost in the tangent space to P,. when s and t are close.
With the help of the parallel transport 7?+h Ty, P — T, P the covariant
derivative is defined as

t+h

D, Faltis) o
dt " hs0 h ’

It is shown in [Gig09] that on the space of smooth positive densities this notion
of covariant derivative and the formulas obtained in proposition are the same.

Let us return to the case of smooth positive densities on a compact manifold:
Proposition 2.3.3 (Parallel transport).

Proof. With the help of the Levi-Civita connection on P> we are able to for-
mulate parallel transport reminding finite dimensional Riemannian geometry.
Given a curve ¢(t) € P> and a vector field V' along this curve in the sense that
there exists a smooth time-depending function v; such that

dc .
i —div(e(t) Vo) = Vi(e(t)).

To transport a vector field parallely along a given curve c(t) is equivalent to
asking for a time-depending vector field W; on P> (given by another smooth
time-depending function w;) such that

(Vv Wa)(e()) = 0.

By a basis {E,;a € N} of C*° we obtain a global basis of T P> given by a
family of vector fields {E,;a € N} on TP*. We write

Wi = wi Ealcr

By the derivation rule for the covariant derivative this gives the following formula
evaluated at c(t):

0=V Wi = Vv, (Wi Ey) = (Vw0 Vi) o) Ba + Wi Vv, Eq

which is equivalent to

d -
(g™ (), Vile(®)) ey Ba + i VviBa =0,
ie. J
div <c(t) (Vawta + (Vuy, V2w5‘>)) =0
with respect to the basis F,. See also [Lot08]. O

This formula will be applied to obtain a

Proposition 2.3.4 (Geodesic equation). [Lot08] The curve c¢(t) € P> is a
geodesic if
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i.e. for a mon-constant time-depending function ¢ € C> which solves

99 1o o _

such that
¢ = —div(c(t)Vor)

fort € [0,1]. Note that this formula recovers a result that was known by calculus
of variation, see [Ott01].

Proof. Put Wy = V; = —div(c(t)V¢:) in the above formula. O

We turn our attention to the Riemannian curvature operator on P*°:

2.4 Riemannian curvature

Definition 2.4.1. For smooth functions ¢ and ¢ we define I1,, as the orthogonal

projection onto Im(d) in Qiz(u) and Tyy := (1d—1I1,)(¢'¢"dx). We use the letter
R for the Riemannian curvature operator on the underlying manifold, i.e.

R(X,Y)Z =VxVyZ —-VyVxZ —Vxy|Z

Theorem 2.4.1 (Riemannian curvature operator). [Lot08] Let ¢1, pa, 3, s €
C* determine respective vector fields Vi, V2, V3, Vy € D(TP). The curvature
operator R is given in p € P> by

ROV, Vo) Vi, Vi), = /w {R(1,6a)en, 1) () ~
~2(T41605 Tospa)n + (Lootss Tonpa) i — (T ds> Tooda) i

Proof. Tterate Koszul’s formula (see (2.5)) to obtain

(RVi, Vo)V, Vi) = ViV, Va, Vi) — (Vv Vs, Via Vi) —
VoV, V3, Vi) + (Vv, Va3, Vi, Vi) —

—(Vivi, v Va, Va)

The rest of the calculations follow directly from Remark 2.3.1. (|
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Chapter 3

Zeta function regularized
Laplacian

In this chapter we continue the Riemannian calculus on P> by calculating for-
mulas for the Hessian of a functional. For the example of P>(T¢) we calculate
explicitely the trace of the Hessian by intertwining a Hilbert-Schmidt operator
on I'(T'P*°) in order to make the trace (which depends on an additional param-
eter) convergent: this is called renormalization. By a procedure known from
mathematical physics we consider the analytical continuation (in the parameter
variable) of the trace to the complex plane and obtain an expression for the trace
when taking the parameter to zero (with the help of the residue of this function
at zero). The resulting operator is called zeta function regularized Laplacian:
Its iterated square field operator (see [BE85] ) is calculated. Relations to the
generator of Sturm-von Renesse’s Wasserstein diffusion are shown.

3.1 Second order calculus

In [Ott01] the Hessian of the entropy functional Ent(u) = [, plog(u) vol(dx)
with respect to Kantorovich-Rubinstein metric was calculated by second order
variation of the entropy functional along constant speed geodesics. We will
calculate the Hessian with respect to the Levi-Civita connection on P*° for any
smooth functional £ : P> — R of the type

E(u):/Me(m(x))vol(dz), jv‘f)l(z):m(z), e:R. >R

This will be done in normal coordinates, i.e. covariant derivatives are calculated
in directions U € T'(T'P*°) giving rise to geodesics: U(u) = —div(p V u) for some
u € C*°(M) depending not on m.

Proposition 3.1.1. [The Hessian: a variational approach] Given a functional
E:P,.(M)— R of the type
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where e : Ry — R is twice differentiable we define

plp) = pe'(p) —e(p)
p2(p) = wp'(p) —p(p).

By Hess""" E(f, 1) we denote the second order variation of E along a geodesic
path t — py in P, of the form

O + V.(%Vga) =0

By I's we denote the iterated square field operator with respect to A: Define
Fgf,g) 7 A(fg) —gAf—fAg, then To(f) =Ta(f, f) == AL(f, f) =T (f,Af) =
T'(f,Af).

Then
Hess B i) = [ Talea)plme Vool [ (LooPpalye Vool ()
M M

Proof. See [Vil08], p441f.
By the formula for the Wasserstein gradient we have for first order variation
that

d
EE(M) = /<V(Ptave/(ﬂt)>MtV01
M

= / (Vepr, Vip(pt))vol
M

= - / (At )p(pe)vol
M
Differentiating once again
d2
G =~ [ @agapmvol~ [ (Be)p(u)avol
dt M M
\V4 2
= /A<| g” >p(ut)vol/ (D) (12) Dy e vol
M M
Note that

_/M(A%)P/(Mt)atMtVOl /M(A@t)PI(Mt)V-(MtVSDt)VOl

(V((Ag)p'(pe)), Vi) pevol

I
|
g E

(V(Ap:), V) () pevol — [ (Ape)p” (p1e) e (V e, Vepr)vol
M
= — | (V(Ap), Vo) () pevol — [ (Ag)(Vpa (i), Vipr)vol
M
and using integration by parts
—/ (Ap)(Vp2(ut), Vpr)vol = — (/ <V((A<pt)p2(ut))7vsot>vol—/ <V(Asot),V<pt>p2(ut)v01)
M M M

- / (Ar)?pa(jue)vol + / (V(Apr), Vior)pa(pe)vol
M M
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Collecting all terms we get

S8 = [ o (TR s+ [ @p0mmuivo

dt 2 M

+ /M<v<Asot>, Vioe)pa(p)vol — / (V(A0), Ty vl

- /MA<%) p(“t)v"”/M(A%)sz(ut)vou

/MW(A%% Vpr) {p2(pie) — p' (1) 1 } vol
—p(pe)
- /M (A (|V(§t|2) — <V(A90t)7v90t>) p(e)vol + /M(A@typz(ut)vol

Ia2(¢t)

Remark 3.1.1. In Villani’s book this proposition is referred to as ”formula” in
order to caution the reader against the so called ”formal Riemannian calculus”
on P,.. Indeed Otto’s Wasserstein gradient formula requires a restriction to the
(non-complete with respect to the weak topology) subspace P C P the above
calculations are rigorous due to the formalism developed in chapter 1.

O

3.2 Zeta function regularized Laplacian on P>(T")

The trace of a symmetric bilinear form B on a Riemannian manifolds (M, (-, ))
dim(M) C T, M is

.....

definied as
dim(M)
tr(B)(z) == Y (Bei,ei)a.
i=1

The functional ¢r is by definition invariant under change of the basis by any
orthogonal matrix O € O(dim(M)). In order to make the definition a global
one one has to clarify how an element e, of O,, the set of all orthonormal bases
of T, M, changes in dependence on the basepoint x: Any basis e, will be moved
by parallel transport along a smooth curve to a point e, € O,. In infinite di-
mension two questions arise immediately: Firstly, how can one make the series
> o2 (Bei, e;), converge, and secondly, what should be meant by invariance of
the trace under some group O(c0)? In the case of Hilbert manifolds M mod-
elled on H*-Sobolev completions of T'(T'M <+ M) for sufficiently large s € R and
Hilbert-Schmidt operator A acting on I'(T'M < M) one can remedy the con-
vergence question in defining the A-trace by tr*(B)(p) = Y1 (A*BAe;, €;)p
with p € M and {e;}?, a complete orthornomal system of 7}, M. Since the op-
erator B is bounded and the Hilbert-Schmidt norm ||A||fg := Yo, (Ae;, Ae;)p
is finite, the A-trace is convergent. In the sequal we adopt a similar point of
view in the case of P>°.
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Proposition 3.2.1 (Renormalized Laplacian on P*(T?)). Given a functional
E : P°(T') = R of the type

() = / () vollda),

where e : Ry — R is C3. For an orthonormal system {er (1) }ren of

T, P(TY) = o (T) g "

we define an operator A on T, P> (T") by diagonalization in the basis {e;(1) }ken

Azep(p) =, |k/2] er(pn); ke{2,3,...}, a> ;

For the first mode we define A : e1(p) — 27v/2e1(p). Let HessE be the Hes-
sian operator associated to the the (variational) Hessian Hess"*"E(.,.)(u). The
renormalized Wasserstein Laplacian in an open neighbourhood of 1 as de-
fined below is finite:

Apoo(']Iq)E Z H@SSEA@]C Aek( )> < 0
k=1
Proof. For the inner product (ex,er)vol = (€k, €x)H1 (vol) = ﬁ(e;,ewy on

TP (T?), we are given a complete orthonormal system on Tyo P (T) by

ear () = V2 k= tsin 2rka, keN
eart1(x) = V2k Ycos2rkx, keN

e1(z) =1.
Likewise by
ear (1) (x) such that Leor(p)(z) = m%egk(ac), keN
eak+1(1)(x) such that %€2k+1(ﬂ)($) =_A %62]94,1(1'), keN

e1(p)(x) such that ey (p)(x) = —2

with inital data

{ ean(1)(0) =0, keN
e2r+1(p)(0) =0,

we are given a complete orthonormal system of THP"O('H‘l): On the torus we
can solve the defining differential equation by integration and orthonormality
of {ex () }ren is given by definition. To show that {ej (1)} ren C T,P(T") we
consider a vector field u such that div,u = 0. We have to show that ez (p) L u
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with respect to (.,.), for all k € N:

/ﬂq en(p)up = /ﬂq €U/ 1t
_ ,/Tl(\/ﬁ/u)ek.(uu)’+[rl(ekuu)

p1 € C(T)

w
0+/ ek up =0
11‘1< 2\/M3>
—_———

@b for ¢ € C°(T)

/

I
2/

since [ pu.¢’ = 0 for any ¢ € C2°(S'). Note that at this place it is crucial to
deal with differentiable densities with full support. The function 5 is obtained
by integration.

Given a functional F : P® — R and a distribution U € TP such that
(U(w)¢) = Jpu u'¢’p for smooth, compactly supported functions u and ¢. Ac-
cording to ([Vil08]):

Hess™ B(UU)(0) = [ T ) (0) —e(u))vol-+ | () (up! ) = pla)vol,
with
p(x) = ze'(z) — e(z) and p'(z) = ze'’ () + €' (x) — €' (z) = we' (x)

and I'2 the iterated carré du champ operator with respect to A = Aqp = %.
Then

Hess"™ E(U,U)(n) = /T (W) (e () = e(p))vol + /T (W) (e () = e’ (1) + e(p))vol
= [ e vl
’]1‘1

and
ApeB(n) = /Tl?(27r)2((e1(u)) )2pPe” (p)vol(dz)
+Z / [k/2] 72 ((en (1)) u?e” ()vol (dx)
= Z/}h k—2a(((ﬂ_1/26’2k)l)2 + ((u -1/2 e2k+1) )2),U2€H(M)V01(dx)
o [ ((ogp))* 5,
+2(2m) /]1‘1 T,LL e’ (u)vol(dx)
Since e, = 2mke), | resp. ey, | = —2mkes;, and (ehp)? + (€I2k+1)2 — 2(27)2

follows that

(™ 2en) ) + (0 Penpn))? = () + (ehig) )L/ (1)) +

(
((eqr)? + (62k+1)2)(ﬂ_1(2ﬂk)2)+

oo (—p 2 22wk + P P 2rk)
S (L 4 k)
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Consequently
Apoe(ryE(p) = Z/ﬂq k=2%2(2m)% {1/4p (1) + p~ ' (27k) };LQ "(p)vol(dw)
+2(27)? /Tl Wu%”(u)vol(dm)
= 2(277)22k3_2“/ {1/4((log p)")* + (2mk)?} pe” (p)vol(dz)
k=1 L
+2(2m)? /ﬂq Mue”(u)vol(dz)
< o0

I[((log 1)) pe” (1) oo < +o00
e ()] oo < 400,

which is guaranteed since the densities are supposed to have full support and

to be sufficiently regular.
O

For the Riemann zeta function (f(s) = Y77, 7&,R(s) > 1 there exists a
meromorphic continuation to the complex plane with single pole at s = 1 which
was proved by Riemann himself in 1859 by the following functional equation:

¢f(s) = 2°7 tsin %1—‘(1 —8)CR(1 —5); s€C\ {1}

which enables us to calculate a specific value:

1 ST
R o IRT . o R o
¢t(0) = 7ril_}r%sm—2 (1 —s)¢""(1—s)
— l] ﬂ7537r3+ ,14, f,l
= 48 s )2

We used that Res((, 1) = limg_,1 (s — 1)¢®(s) 1 and the Laurent series

=1=
reads (fi(s) =307 L an(s—1)"ie (i1 —s) =

a_
1y
Definition 3.2.1 (Zeta function regularized Laplacian).

Apeo () E(p) == ilg% Aoy B (1)

is called (Zeta function) regularized Laplacian.

Proposition 3.2.2. Given a functional E : P*(T') — R of the type

B0 = [ elu(@))voi(da),
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where e : Ry — R is C3. Then
A B() = 2200 +1) [ {(og ) /2P he ()} volda)
7 [ Allog )Y e wyvoldo)

We used additionally the fact that for the analytical continuation of the Zeta
function (F(—2) =0 holds.

Example 3.2.1. For Ent(u) = [, p(z)log p(z) vol(dx) we have
A poe(pr) Bnt(p) = || (log 1)’ [[72 (o)

Example 3.2.2. For functionals E(p le x)vol(dx) with f a measurable
function on T we have A peo(p1yE(p ) =0 for all u € P™.

Remark 3.2.1. Set E(u) = & [, pi®vol, then
Ap<E(u) = 7°([V"" Ent(u)|[7
for all p € P,

Proposition 3.2.3. Given a functional F : P>°(T!) — R of the type

Fp) =@ ((f,m)
where f € Cy(T!) and ® € Cp(R). Then
Ap=F(p) = 202m)*"((f, m)IIf vl
and the square-field operator with respect to A ps applied to functionals F' reads:
D(F) =202m)* V77 F(u)I}

Proof. We denote the L?(p) inner product by (,),,, if no measure is specified we
consider the inner product on L?(vol). Following ([Lot08]) a geodesic (4ut)iefo,7]
in P°° starting at pug = u satisfies

[ = —div(u: Vo)
where the smooth function v; satisfies

— [V |?
-

Uy =
The second order variation of F' along (f4¢)¢e[o,7] reads

L)) = L@ ) )

= )i+ V(S ) )
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Remark since 0; = —vjv; and fi; = —(uev))

%(f,/'m = i/f'viutvol
= {f', v e + vy fu)
= (" () e + pi(v7)?)
= (/" ((v})?pe)")

2

Hess(F)(v',v")(p) = %tzo‘b(gaﬂt»

= O"({fom)(f 0 + @ (fo)) (" () )

In this formula at the place of v' we plug in (here for s > 1/2) k= %ey(u)
the proof of Proposition 3.2.1 in order to calculate

" as in

oo

Aoy F (1) = D " ((f,m) (k™ *en(w) )7, + @' (o i) (", (K *en(p))? 1)
k=1
which equals
O ((F,10) S kS 262 + 2(2m)20 (F, 1) (F7, 1€ (25)
k=1

Since ((2s) is finite for 2s > 1 and we now that (f”,1) = 0 the second term
vanishes and by the functional equation for ¢ we define again

Apee ey F(p) = 1m Ap oo 1) F (1)
which equals

tim @ (£, 1))2(2m)2 || f'1 2[5 = @ ((F.m)22m)? || f 1212
Note that the limit is taken for s € C.
The square-field operator I'*(F') with respect to Aj. is defined by
1
S Abe (F2) — Fibe (F).

In a first step we remark that

37 (P = (P + F ) G5 F )
and so
S (F () ~ B (F () = (5 F(u))? = (# (i) ')
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which entails
Po(F) = (@' (i) ken()))? = 22m)>(@ ((F, )2 (1117
k=1
But
: 7112 _ 7112
tim (1712, = 1122,
and consequently

lim T°(F) = 2(2m)2||V"™ F(w)||?

s—0

O

Remark 3.2.2. By the chain rule the formulas for the reqularized Wasserstein
Laplacian can be extended to the set of test functions

3= {F() =@ ((fn) ;@ € CRY, [=(fi,....fa) € CTIRY e PE(TY
d 1
ApFln) = Y0 00,9 (L) [ St

Remark 3.2.3. Observe that within the class 3 there are test functions ®(z) =
e’ for d =1 such that

Apocei i fn — _gifn fu/ (f)2p

']1‘1

Proposition 3.2.4 (Iterated square-field operator). Let F' € 3 with d = 1:
1 oo oo o
[o(F) := §Apx||vp FI[Z = (V" Ap=F, V" F),
Then T'y(F) equals
202m)* {(@")?|I£'|l}, + " (f", ((F)%) )}
(compare to [BE8SH]).

Proof. Let u; be a geodesic and consider at first test functions in 3 of type
F(u) = ®({f, u)) = . Remember that

pee 2 / N2 "2 7112
IV FIL = 1@ il = ()71l
Then

& pe d
ElIIVUFIL = Q@ E )l fI[E + (@), )
= 2" (f, w215 + 20" (f, @) F117 + 20" (f, i) LfII
AV (f, i) ((F)?, i) + (D) ((f1)%, 1)

Taking the regularized trace we obtain
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Ap=||VPTFI2 = 2(9")%2(2m)2|| f/[| + 20'®"2(2m)?| | /]| + 20'@" (", 1)]| £'||22(2)?
+2(2m)%4®" D" (f', ((f')*)")u + (@) *(((f)?)", 1)2(2m)?
= 202m) {2(@")*||f'1];, + 22" || 1], + 4" (f', ((f')*)) }
On the other hand
(VP Ap=F,VETF), = 22m)2®' " (f, )17+ 22m) 2" " (£, (1)) )u

So
1 oo oo oo
5Apoo||vP FI2 = (V"7 Ap=F, VYT F),

equals
2(2m)% {(@")?[ S Il + @@ (F, ((f)))u} -
The formula for the iterated square field operator generalizes by the chain rule

to any F € 3.
O

Remark 3.2.4. Let G be the space of non-decreasing functions on T'. Remark
that G C L?(vol) is convex. We know (see [SvR09]) that there exists an isometry
¢ between G and the space of all probability measures on T' equipped with the
Wasserstein distance given by 1(g) = (g~ '). Denote by H C G the dense
subspace of strictly increasing smooth functions on the unit sphere. On H we
define test funtions F(h) := ®([ f o hvol) where ® resp. f are smooth function
on R resp. on T'. We can easily calculate the L?-Hessian:

HessF(N(E6) = loF (1) = 2o(@([ fom) [ 170+ i)

_ d)”(/foh)(/(f’oh)f)Q—i—‘I)'(/th)/(f”Oh)EQ

The Zeta function reqularized L*(vol) Laplacian on H is given by

A2F(h) = lim Y k™ 2*HessF(h)(e},e})

s—0

= (I)N oh oh oh 27r oh ”Oh
([ 1omisons w([rom [(7on)

By 1.(F)(p) :== F(1=(p)) we obtain test functions on P and can see
Le(AL2F(h)) = Apsot (F) (1) = (V77 0 F (1), V7 1 Eni(p)) .,

Remark 3.2.5. [SuR09] construct a Markov process with values in P([0,1]) via
a Dirichlet form (using the Wasserstein gradient) with respect to the so called
entropic measure P?. This dubbing stems from the heuristic approach of defining
a Gibbs type measure on the space of probability measures

dPP — Le—ﬂEnt(u)dP
Zp
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for some normalizing constant Zg and some non-existing uniform distribution IP.
Since every probability measure on the unit interval can be mapped isometrically
(for the Wasserstein distance) to G, the space of non-decreasing functions from
the unit interval to itself, the above measure may be considered as a probability
measure on this path space. In analogy to Feynman’s construction of the Wiener
measure on the space of all continuous functions from the unit interval to the
real numbers two differences appear:

Firstly Feynman chooses as discretized Hamiltonian the free energy of a path,
the anology in [SvR09] fixes a finite partition 0 =ty < t; < --- < t, =1 and
define the discretized Hamiltonian for g € G by

9t; — Gt
H(g)=— Zlog ﬁ(ti —ti—1).

From optimal transport one learns that a solution to the heat equation is also
solution to a gradient flow equation on the space of probability measures and
the functional for which the heat flow realizes its steepest descent is the Boltz-
mann entropy. Since [SvR09] want to construct a Wasserstein diffusion as a
stochastically perturbed heat flow the choice of the Boltzmann entropy for the
Hamiltonian reveals to be the right one.

Secondly Feynman chooses as reference measure for the finite-dimensional dis-
tribution of his Gibbs type measure on the path space the uniform distribution.
This finite-dimensional distributions constitute a family of consistent probability
measures and by Kolmogorov’s extension theorem Feynman can show that the
limiting measures equals the Wiener measure. In analogy [SvR09] choose

dry...dz,

x1(x2 — 1) (Ty, — Tp—1)(1 — 24)

Qn(dzla s ,d.an) =C"

as finite-dimensional reference measure. This measure (it is not a probability
measure!) turns out to be the only one on G which is invariant under rescaling

of any subset of the partition {xy < --- < 1} by x — (x; — x)x + ) and which
has continuous density.

Combining the two ingredients one obtains as consistent family of finite-dimensional
distribution the Dirichlet-Poisson measure QP (9¢, € day,...,9t, € dxy) which
equals

n+1

1 dri,...,x
i — €T Bti—ti—1) 1, s dn
7 I I T — Ti_
B,n i:1( 1) $1($2 - -Tl)(l'n — xn_l)(l — -Tn)

and the measure PP is defined as the push-forward of QP under the isometry
between G and P. The Dirichlet form built with this measure gives a generator
L8 of a continuous Markov process with the Wasserstein distance as intrinsic
metric for B> 0. Define

31 ={F() =2 ((f,m);PeC*RY), f=(fi,.-,fa) € C}([0,1;R?); f{(0) = f(1) = 0}.
For F € 3, the generator LP equals

LPF =1L,F + LoF + SLsF,
with
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L,F = Zaa@/fdu /ffdu

7,7=1

)+ FIL)  FIUD) — fIT)] F20) + 10
Lo = ai0( [ g ga%m[ USET USRI )|1| <+>] O+ £/0)

Lstzd:@@(/idu)/f{’du
i=1

gaps denotes the set of intervals I = (I-,1;) C [0,1] of mazimal length with
w(I) = 0 and |I| denotes the length of such an interval. From this it follows
that the reqularized Wasserstein Laplacian is equal to the generator of Sturm-
von Renesse’s Wasserstein diffusion with inverse temperatur 5 = 0 and periodic
boundary conditions.

3.3 Zeta function regularized stochastic flows on
the torus

Let {Bf,k € N} be a family of independent Brownian motions on R and s a
positive real number. For every (u,z,t) € P™ x T! x R} we define a random
field (compare to Proposition 3.2.1):

2 2nk
F(p,x,t) = V2 B} + Z \/\_/ﬂ-_ {Bf’C sin 2rkx + B2 cos 2rka} .

i@

The process t — F(u(.),.,t) is a continuous local martingale with values in
C/(TYHR) for j < s — 1.
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The quadratic variation V*(u, z,y,t) of F(u,z,t) — F(u,y,t) equals

E [(F(pa,t) — F(p,y,1))?] =
2( 1 o 1 )2 n
V() \/—
+ tY 2027)%k R

{Bfk sin 27ky + Bfk‘H cos 27rk:y}

{B2 sin 2wkx + B2chr1 cos 27Tk$} —

2
1

Vi(y)
= 2(2m)%( L 1 )2+ t2(27)? i L2 {L 4+
Vi) v/ uy) P u(@)  p(y)

(sin 27k sin 27ky + cos 2mka: cos 27Tky)}

1 1
2 -
Vul(x) \/M(y)
a1 1
v e Z’“ oA

1 1 . 9 T —y
— —_— — 481N ﬂ'k
2\/u(fc) V() <1 2ok ))}

which is finite and Lipschitz continuous for s > 3/2 (since the densities are
smooth and positive). As [Fan02] remarks one can construct with this random
fields (with = 1 or not) Brownian motion on Diff' (T') by using the theory of
stochastic flows (see [Bax84] and [Kun90]). The border case s = 3/2 could be
treated by looking into [Fan02], where it is proven that there exists a constant
c>Osuchthatfora110<9::zfy§%

= 0
> kT sin2(27rk§) < 6 log .
k=1

As was already shown in [Mal99] by means of heat kernel regularization (and
for p = 1) the random field F in the case of s = 3/2 gives rise to Brownian
motion on the space of homeomorphisms of T!. The parameter s = 1 would
correspond to the metric used in Wasserstein geometry; but this case cannot be
handled by the regularization techniques used in [Mal99].

Let us consider the analytic continuation of the quadratic variation s — V*(u, z,y, t)
to the complex plane:

Note that

2 — exp(4mikx) — exp(—4mikx)
1 .

sin? 2nkx =

The polylogarithm

s+ Lig(z ;kz_ lz] <1
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has an analytic continuation (in s) to the complex plane and satisfies the fol-
lowing well-known identity (see [AS70] and [Apo76])

(2mi)"

Lin(SQﬂim) + (71)”Lin(672ﬂm) P o

B, (x)

forzx € R, n=0,1,2,... and B, (z) being the Bernoulli polynomial; in partic-
ular ' .
Lio(e%mz) + Lio(e—Qmm) —

. . 1
Li2(€27rzw) + LiQ(e—QWzm) — 27'('2 (.’L‘2 x4+ g)

which entails

> sin?(27kd) 1 1
li T i)+ = =0.
slﬁ%k:l I 2¢O+

< sin?(27k? 1 1 1 172 1 1
li 3 S CTRE) ((2)-52r° <92 9+—> =D Cop? (929+ 6) .

552 e 2 6 26 4
k=1

For the analytic continuation of the infinitesimal covariance as(u,x,y) =

limp o (V (1, ,y,t)/t) at s € C we define ao(p, z,y,t) = as(p, ,y)|s=o0 resp.
as(f, x,y,t) = as(p, x,y)|s—2 and conclude

ao(p, z,y) =

(1 1Y
(&) <\/u(:c) \/my))

Note that ag(p, z,z) = 0. Resp.
9 27T2 1 1 ’ 9 272 9
GQ(U7$7y) = ((27T) + (27T) F) (\/m - m) + 8(27T) (77 (9 - 9))

Unfortunately both a;(u,x,y) and az(p, z,y) are not positive definite for any
fixed z,y € T'.

Definition 3.3.1. Given the random field F as above with s > 3/2 (for fixed
w € P(TY) it is a random field with local characteristics (0,a) in the sense
of [Kun90]), we define a generalized Kunita stochastic differential equation with
interaction to be a process

t = (o1, ) € Diff(T") x P=(T")
which is a simultaneous solution of
dpy = F (e, pe, dt) (3:2)

Bt = P 1o- (3.3)

The first equation is a Kunita SDE with values in Diff*(T') and the solution
of the second equation is a P> (T')-valued stochastic process.

We say that the process t — pg solves (3.2) and (3.3) iff the process t —
is a fix point of the mapping k : C(Ry; P>®(T1)) w C(Ry; P>(TY)), where
(k) == peFpo for o solution to dpy = F(ue, pr, dt).
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Proposition 3.3.1. Let t — u; be a solution to (3.2) and (3.8) with py €
P> (TY). Then t — uq is a diffusion process on P>(TY) with generator

L(UFad) = 5V () [ [ a9 5@V ) dnno(ay)

1
5V (UFono)) [ . 0)Af @)po(do)
Tl
for s > 3.
Proof. Use the generalized Ito formula in [Kun90] p92f. O

3.4 Renormalized Laplacian on P>(TY)

Recall ([Mal08]) that the topological dual of T? is Z¢, where the coupling be-
tween k € Z% and x € T? is given by (k,z) := exp(i(k,z)), with (k,z) =
Zle k;x;. The Fourier transform of a complex function on T? is given by
fk) = ﬁfw f(z)(=k,z)dx and any f € LQ(ﬁVOI) can be written as
f(x) = Y 4cpa f(k)(k,x). The function f is real if and only if f(—k) = f(k). De-
note Z% ¢ Z% such that each equivalence class of the equivalence relation defined
by k ~ k' if k = —k’ has a unique representative in Z?. Note that in contrast

to the one-dimensional case the choice of Z¢ is not unique. The Fourier ex-
pansion for real valued functions then reads f(x) =23, .54 R(f(k)) cos(k, z) —

S(f (k) sin(k, z).
Proposition 3.4.1. Given a functional E : P™°(T%) — R of the type

B0 = [, elula)wol(dz),

where e : Ry — R is C3. For an orthonormal system {ex(1), ex (1)} peza of
T, P°(T¢) we define an operator A on T, P> (T?) by diagonalization in its basis:

- 3
A:ep(p) — k| %er(p); ke, a> 5 +d, d>1

Let HessE be the Hessian operator associated to the the (variational) Hessian
Hess"™ E(.,.)(). The renormalized Wasserstein Laplacian in an open
neighbourhood of p as defined below is finite:

oy B1) 1= 3 (HessEAeq (), Aey (1)), < o0
kezd
Proof. We define an orthonormal system of C°°(T?) with respect to the inner
product Hl(ﬁdz) by
er(x) =242 k| sin(@nk, x), ke Z%\ {|k] <1}
er(@) := 292 k| cos(2mk, ), ke Z\ {|k| <1}
and define smooth functions ey () resp. ex(p) by integration
Ver(p)(z) = =Ver(r) keZ'\{lk <1}
Ver(u)(@) = LV ep(@) ke Zh\ (K < 1}

S
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with inital data -
{ ex(p)(0) =0, keZ\{|k| <1}
ex(1n)(0) =0, keZ\{lkl <1}
The ingredients to calculate for the Hessian formula are again T's(er) and
(Aga(er))?.

Do(en(n)) = > (9:0en(n))?

]

2O [0
=2 |k[? {

27k;0; .

2. e cos? (2rk, ) + % sin(27k, x) cos(2mk, x)+
27k, )?

(2rki)” sin?(27k, x>}

Vi,V
= 2%(2n)? {% cos®(2mk, )+
27 (k, V)

12

(2m)* k|

sin(27k, x) cos(2mk, x) + sin?(27k, x>}

and
d 2 2
@nater)? = (DL cooni
2m(Vu, k)|k|?
12
La(ex(p))

by Cauchy-Schwarz. Given a distribution Ey € TP (T¢) such that (Ex(u)|¢) =
de<Vek (1), Vo) for smooth, compactly supported functions ¢ we have

(2m)?|k[*

sin(2wk, ) cos(2rk, x) + sin?(2nk, x)}

IN

Hess™ E(Ey, Bx)(1) = /T [ Talen(u)){ne’ () — e(u)hvol +

(Al ) = ) + e ol

S R
T
= 2d(27r)4|k|2/ sin?(27k, ) e’ (p)vol +
Td
2%(2m)?
(47T) /Td |gradlog p|? cos® 2k, z)p " () vol +
2d(27r)3/ (gradlog u, k) sin(27k, ) cos(2rk, x)pe” (1) vol
Td
27)?2
< IR e () oo + 2 e ()9 Log o
< 4o
if we are able to control
||ue” (1) grad log p?[| o < 400 (3.4)
e (1)l grad log ] [oe < +00 (35)

e (10)]]oe < +o0, (3.6)
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which is the case since u € P>°(T?). Passing from ey (i) to € () we remark
that T'y(ex(p)) is obtained by exchanging sin and cos and by a change of sign
of the the term involving both sin and cos in the formulae of T's(ex (1)) and
(A(er(1)))?. Again we have (A(ex(n)))? < I'a(€r(n)) and we can prove finite-
ness of Hess"™ F(E},, E) with the same arguments.

In order to show finiteness of the renormalized Wasserstein Laplacian we in-
troduce a d-dimensional analogue of the zeta function: For d = 2,3,... and

seR
1
= 2 T

kEZA\{|k|<1}

and for j € {2,3,4,...} we estimate very roughly
hyi=#{kehj—1< |k <j} <™
Consequently
Ca(s) < Y =L < (s —2d),
i=2
and so

Apeo (ay B(p) <

24 21)?
S IR e () o+ e (1) ¥ o5 o

keZd\{|k|<1}

2 2
= Ca(20— D)l (n)lloe + 2 e ()] 10 )
2 2
< (20— 2 20)20m) " (1) o + 2 e ()] 7 Tog 2o

4
< o0

if
2 —2d—2>1sa> (3+2d)/2.

O

Remark 3.4.1. Estimating the number N(r) of lattice points in Z? inside the
boundary of a circle with given radius r is known to number theorists as Gauss’s
circle problem. Gauss showed that

N(r) =nr? + E(r)

with |E(r)| < 2v/271r. Today’s best known bounds ([Huxz03]) for the error term
are

|E(r)| < Crf

with
<< 131
— 208"

DN | =
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In the case of d = 2 we can obtain a better upper bound for (4(s) as in the
above proposition:

hy = {kEZ2,3—1<|kz|<3}
= SING) - NG -1}
< %{2J71ﬂ+0ma><{]2*(]*1)% %*(Jfl)%}}
< @I -Vt =00
Consequently

Apoo 2y E(p1) <

o KT e (1)l

keZ2\{|k|<1}

< @) lue" (1)l (C'¢(2a — 3) + C"¢(2a — 2))
< 0

(2)

" (1)|V log pf*|] oo

<

27)?
BT e ()9 1og

Remark 3.4.2 (Zeta function as Dirichlet series with respect to spectral repre-
sentations of operators). Given an operator in its (purely discrete) spectral rep-
resentation A = ) AP with eigenvalues {\,} having multiplicities {gn}
and projection operators P, one definies the associated zeta function by

=
neN "
For the above mentioned operator

A ep(p) — k| %er(p); k ez

each eigenvalue |k| has by definition multiplicity g, = #{j € 7% 5] = ||}
and hence

Ca(s) = Ca(s)
Open question 3.4.1 (Exact calculation of the Laplacian by measured zeta
functions). By definition
A‘};w(Td)E(u) =

ST Ik { Hess B(Ex, By) () + Hess™ E(Ex, By) (1)}
keZA\{|k|<1}

d(91)2 o 2
= |k~ 2a/ {pe’ (1) — e( )}2 (42,u) {|V1ogu|2 <7<V1|§|u,k>> }vol

kGZd\{|k|<1}

] 21(2m)? [ |(V log i, K2
2a 2 1 , 9d(9)2 (k|2
+ E k| /11‘ wie” (p) { AE + 2%(2m)°|k|" ¢ vol

keZd\{|k|<1} :
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Hence we need explicit expressions for the term called measured zeta function:
_9s Viog u, k 2
GoiB = 3 k[ Fen { TR
KEZA\ (Kl <1} :
for
1 / 2 1
Fle,p) = ;{6(/0 — pe'(p) + pe” ()}
In the case of the Boltzmann entropy functional F' = 0 and:

Afpoe pay Ent(p) - = 277%(2m)2Ca(2a)[|V log l[72 40y
+2%4(27)4¢4(2a — 2)
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Chapter 4

Approximation of a
Wasserstein diffusion

4.1 Riemannian metrics on the space of box-
type measures

Definition 4.1.1 (Box-type measures). Fix n € N. We denote the space of all
sequence s = (s;)I_y with 0 =: 59 < 51 < s2...8, < 8y :=1 by S, The set of

sequences in Sy, which are strictly increasing is denoted by S,.
We write X1 :={A € R : \; > O,Z?:l A =1}
For z € [0, 1] we define probability measures

- 1 1
m(s)(z) = (771(3- P Lsimsim1>0 s 1,00 (2)d2 + L5 1 =0} s, (x)) :
i=1 v

Gy, :=m(Sy,) Tesp. (o}n:: m(é?n)

for the space of box-type measures with n boxes. Both spaces are dense in P with

respect to the quadratic Wasserstein distance. (O}n is a totally geodesic subspace
of P equipped with the Wasserstein distance. We may consider the bijection
Sp >~ X,_1 given by s; — s;—1 — A; which in turn let us associate to every
element A € Xp,—1 a probability measure

/1 1
m(d) =) <n—Ai1{Ai>0}1[zzﬁ oSy a0 (D47 + 1=y 05, (z>> :
=1

Lemma 4.1.1. G,, is geodesically convez.

Proof. Each measure m(A) € G,, can be written in terms of quantile functions
q in the following way

q(z) :=inf{t € [0,1] : /0 m(A) >z},

o7
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i.e.

4@) = 3 (@)1 o (2)de

i>1

where

Jj=1

For two given quantile functions ¢! and ¢* (with weights A and i) the Wasser-
stein geodesic v, linking ¢! to ¢? is given by

vei=(1— t)q1 + t¢%.

(see Theorem 7.2.8 in [AGS08]).
But for fixed n € N the curve ; can again be written as

W(@) = filt )l 1) (@)de

i>1
where

fitt,m) = n((1=tX+th)z+ > (L= t)(A; —ihi) + (X —iA))
j=1
= n((1 =X+ tA)z + D (L= 1A + A7) —i((1— )i + tAy),
j=1
i.e. for every t € [0, 1] we obtain a box-type measure with weight

(1—tA+tA

O

Lemma 4.1.2 (Wasserstein distance between two box-type measures.). Given
two measures p = m(A) and it = m(A) for A, A € ¥,,_1 then

_ 1 < 1 & - .
dw (p, 1)* = 3_n||A—A||12Rn + oD =Xy =)

k=1i<k;j<k—1
Proof. For probability measures on the unit interval the quadratic Wasserstein
distance equals the L? distance of the respective quantile functions, hence

2

n k
dW(M,ﬂ)2 :Z/k71 n()\k —)\k)l'-i-Z)\j — A —k()\k _)\k) dx.

k=17 "7 j=1
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But the integrand equals

(%)37(%;1)32 T \2 k2 k/’—12 ~ k ~ ~
— e (= A ()7 = (=) )n(k = Aw) SN =N ke =) | +
j=1
2
1 [ . .
+— Z)\j—)\jfk()\kak =
Jj=1
3k — 3k +1 - 2% — 1 - k N B
= — M)+ M = A) [ D5 = A) = kO = M) | +
j=1
2
k
el DY P YD VI OV D I
j=1
- k & 2
1 ~ A — Ak ~ 1 ~
= S_(Ak*Ak)Q* n Z(AJ*AJ)jLE ZO‘J*AJ)
Jj=1 j=1
which entails the result. O

Definition 4.1.2 (Tangent vectors). Fori=0,...,n+ 1 we are given V; € R
such that Vo =0 and V,, = 0. Consider a sequence s € S, resp. A € X1

(i T —8i-1
Vs = Vi + V) 11,
_(.Z‘) 1_21(51511 1+5i*5i71 ) [si_1, 1)(1‘)
n+1 Zi'f N — 2 1'_21:1)\
1=1 T i - _

and set Vy(1) := 0.
Box - tyre muasune st

A

The heuristics behind this definition of tangent vectors is as follows: Fach boz-
type measures has a quantile function that is piecewise linear on each of the



CHAPTER 4. APPROXIMATION 60

intervals [i/n, (i 4+ 1)/n). Displacement interpolation between two box-type mea-
sures by Wasserstein geodesics translates to quantile function as conver combi-
nation of two functions which are each piecewise linear on intervals [i/n, (i +
1)/n). Consequently moving mass of box shape according to optimal transporta-
tion consists in moving the parameters \; horizontally (as in the above graphics)
with the only constraint that no mass should be moved on the boundary.

Define the tangent space
Ty3)Gn = {Va(z);V; € R,i=0,...,n}

Lemma 4.1.3. With the above definition we obtain a Riemannian metric on
the n — 1-simplex:

Proof.
W@l = / V,(2)? da

SiTSicl o g | — 2
/ (liyvi_ﬁLVi) dy
Si — Si—1 Si — Si—1

1
—2/ (N —y)Vier +yVi)? dy

1 2 2

= (V2 + V2, —2Via Vi) +
y (2%71%&- — 2\ VE) + VA dy

= XV e viam)

=1 3
= vianQ)
for the n x n matrix
" i + N\ i i
Ai,j(A) = 0; 7373 +l 6j,i+1 g—l + 05 i1, gl

Transposition of V' is to be understood in the sense of the Euclidean scalar
product restricted to the (n — 1)-simplex.
O

We write g(n) for the metric tensor on the (n — 1)-simplex induced by the

matrix A}, i.e. in a global chart we have g(n)" = A7 ;.

Lemma 4.1.4. Given a probability measure p on [0,1] and a sequence of box-
type measures [, which converges weakly to p and given a non-constant function

f e T,P = C>=([0, 1])L W then there exists a sequence of functions f, €

Ty P C TP such that || fallu, = [[f]]u-

Proof. Since the set of box-type measures is dense in the Wasserstein space
over [0, 1] we know that there exists a sequence of box-type measures p,, = ()
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which converges weakly to any given pu. The sequence f,, arises as projection
of f to T,,Gn C T,,P: For a given orthonormal basis {e};k = 1,...,n}
of T,,,Gn = m*(I»X,) we obtain f, := >, _,(f,e})u.er. More precisely,
each e} (z) is given by a vector (Vp,...,Vh41) € {0} x R™ x {0} such that
el (z) = Va(z), normalization of e}’ amounts to dividing e} by V*A"(A\)V. By
Schmidt orthogonalization with respect to the inner product (.,.),, we obtain
the orthonormal basis. By the definition of f,, we know that there exists a
vector V€ {0} x R™ x {0} such that||f,|[2, = Y p_,(f.ep)2 = [|VAl|>. For
each n € N the inner product (.,.),, is a strong Riemannian metric on the
subspace G,, (modeled on R™), in addition this spaces are geodesically convex,
i.e. the notion of action minimizing curves between any two points in this
subspace is well-defined, hence there exists limy, o0 || fn|[7, . Since the family
{(TGn, (. )u,)} is dense in TP we have lim, o0 || full7, = |If][7- O

Remark 4.1.1. By the above lemma and Theorem 7.2.8 in [AGS08] it follows
that the geodesic distance induced by the (strong) Riemannian metric g(n) on
G, equals the Wasserstein distance when restricted to G,.

4.2 Sticky diffusion processes on the simplex

Denote the Laplacian with respect to the metric g(n) by

crf = maj(g(n)lx/det@(n))aif) = 3" @00, + S ont
et(g(n ij=1 k=1

for any f € C%(X,,_1) and functions a™,b* € Cy(X,_1), i.e.
o'’ = A7,

and

Note that
1 99yt ——— — g(n)’* 0 ———
P — Vdet(g(n)) Vdet(g(n))
V/det(g(n)) (/det(g(n)))—2
. o1
= 9;9(n)’* + g(n)’* §tr(g(n)’1aj9(n))
1

= b gy Strle(n) Dy (n).

Define for any » = 1,...,n the projection
Tyt En—l = A = ()\13 R )\7‘—1? )‘r-i-la )\7‘-‘1-2) B )\n—i-l) € a7"271—1-
On the face 9,.X,, we obtain by the above lemma a restricted Riemannian metric:

mrg(n) = A7 ;(m(A)) fori,j =1...,7—1,7+1,...,n. Note that the matrices
75 g(n) are positive definite in (9,3,_1)°.
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Example 4.2.1. Riemannian metric on the 3-simplex:

Atde 22 0 0
4 Az Aa+A3 A3 0
) = | T TR !
6 3
0 0 0 0
A1t A2 0 0
i A2 ‘?)\3 Az 0
= 8 ,\33 17,\?42 0
6 3
0 0 0 0

Example 4.2.2. Riemannian metric: Projecting from the 3-simplex to 0133
and 8423.'

A1tAo % 0 0 Aot Aa A 0
Az AztAs Az 0 S 3 6
6 3 6 RN A3 -2
0 ﬁ 1—X1—)Xo 0 6 3
6 3 0 0 0
0 0 0 0
resp.
A1+A2 % 0 0 A +A A 0
pYy A2+A3 Az 0 3 6
6 3 6 Tax Az AoFAs  As
0 Az 1-XA1—Xs 0 6 3 6
6 3 0 Az Az
0 0 0 0 6 3

In the same manner as before we write the 7 g(n)-Laplacian (on 9,%,_1)
in global coordinates:

n—1 n—1
Lrf=> alod;f+Y Brouf
k=1

ij=1

for f € C3(Z,_1) and ¥, 8% € Cp(9%,_1). Since 7} g(n) is a Riemannian
metric on 0,%X,_1 we know that the matrix (a?)f;:ll is symmetric and non-
negative definite on (9,%,_1)°. We assume additionally the existence of d,, p, €
Cp(0X,,—1) which satisfy 6,(0%,-1) > 0 and p,(0%X,,—1) > 0. We define ad hoc

another operator (which turns out to be a boundary operator of Wentzell-type)
BIf = LI +6,0,f — po LS.

Note that 9, = — Z;:ll 0; to obtain normal vector on 0,%,_1 pointing into
the interior of the (n — 1)-simplex, whereas for 1,...9,-1 we have the usual
partial derivatives in R".

Definition 4.2.1. We say that the tupel (L™, BY,...,B) generates a diffusion
measure if there exists a family {Py,;x € X,_1} of strongly Markovian probability
measures on (W(En-1), BOW(X,-1))) such that the following conditions hold

e P(w:w(0)=2)=1
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e Forr =1,...,n+ 1 there exists a function ¢,(t,w) on Ry x W(Z,,_1)
such that for a.a. w, ¢p(0,w) = 0,t — ¢.(t,w) is continuous and non-
decreasing and

Z/ 1g,.3, (w(s))de,(s,w) = ¢r(t,w)

Additionally we require that w — ¢, (t,w) is Be(W(3,—-1))-measurable for
all t > 0.

o [urthermore
F((®) — Fw(0) - / (" f) dsfz / (B2 ) (w(s))dy (5. 0)

is a (P, BiW(X,_1)))-martingale for every f € C*(3,-1)

e and

/t Loy, (w(s))ds := i/t 15,5 ))ds = Z/ pr(w(s))do,(s,w)
0 o r=170 ' ”71

Proposition 4.2.1 (Stochastic differential equations with stickiness and re-
flection on the boundary of the simplex). For i,k = 1,...,n we choose o}, €

C(X,-1) such that
=Y oi(x)ol(x)
k=1
Likewise, for i,k =1,...,n—1 andr = 1,...,n we choose 7}.(r) € C(0,Xn_1)
such that

M |

(r)(z)

For any vector X € X,,_1 we denote by X" = (X1 .., Xo 1, Xpg1, -, X))
Given {Bi,i = 1,...n} standard n-dimensional Brownian motion on the fil-
tered probability space (", F", F{*,P) we denote by {BF k=1,...n—1} time
changed Brownian motion (z e. dBIdB] = 6;;d¢,(t)) which is mutually inde-
pendent from {B},i=1,...n}.

=

Then the following system of stochastic differential equations is a (L™, By, ..., BY)-
diffusion:

(I) dX{= I;UZ(Xt)lin(Xt)dBf +bf(Xt)1§:n(Xt)dt+

+ ZTk N(X)la,x, (X0)dBF + 7 (Xi)1a,x, , (X:)dt

(IT) dX] = ; oh(X)Lg (X:)dBF + O (Xe)1g (Xe)dt+
+6,(X;)do,(t)
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(I11) 1,3, ,(Xi)dt = pr(Xi)dor(t)

The function 9§, indicates the magnitude of reflection on 0.%,_1 whereas p,
indicates the time of sojourn of X in 0,%,_1 (stickiness).

Proof. The proof follows the one of Theorem 7.2. in [IW89] p222ff. We need
to ensure that o and b are bounded and Lipschitz continuous on >,_1: In a
first step we verify that by the choice of the Riemannian metric g(n) it follows

that on in the functions a” resp. b* are positive polynomial resp. rational
functions in Aq,..., A, consequently both ¢ and b are bounded and Lipschitz
on the interior of the simplex. By the same reasoning for 7% g(n) we conclude
that 7 and 8 are bounded Lipschitz on (9,3, _1)°. Since we want the process to
be reflecting (and possibly sticky) we may set without loss of generality 6 = 1.
Without detailing we assume for the moment that p is bounded continuous on
the boundary of the simplex. As a last condition we have to guarantee that
there exists a positive constant C' such that ¢ > C on the boundary of the
simplex which is the case since by definition o™ = %()\T + Ag1) = %)\TH >0
for A € (0,%,)°. To conclude we remark that with probability one boundary
elements of dimension less than n — 1 will not be hit when starting the diffusion

in in This justifies verification of boundary conditions only on (9,%,)°. O

Lemma 4.2.1. Let X} denote the solution of the stochastic differential equation
(4.2.1). Then X7 is a X,,—1-valued continuous Feller process.

Proof. For each n € N define 2,, as the algebra of bounded functions Cy(%,,)
over C*°(X,). Since X} is an elliptic diffusion process on a bounded domain
(the interior of the simplex)the semigroup P;f(x) = E(f(X})|Xo =« GEOJH) has
the following property

P f (@)l |ze < 1 (Xl

for some p > 1 and all f € A,, i.e. the semigroup is contractive and obvi-
ously strongly continuous and positive up to the first hitting time 7. of X}
at a boundary 0,.%,_1. Then we use again ellipticity of the diffusion process
subject to the boundary operator £ and obtain that the semigroup P} f(x) =
E(f(X?)|X:, =x € 0;X,—1) for 7, <t < e, (where e, denotes the exit time of
the process X; leaving 0,%,,_1 to the interior of the simplex) is again strongly
continuous, positive and contractive on 2,,.

O

4.3 Tightness

Starting from a diffusion process A solution to the stochastic differential equa-
tion (4.2.1) on the simplex we obtain a stochastic process m(A) on Gy, by the
continuous (and almost everywhere differentiable) mapping

Zn—l > A — m(A) S Gna

where G, is equipped with the weak topology.

We define 3 as the space of all functions

F(u(Q)) = FQ) = ((f1, nQ)), ..., (f*, n(Q))) = (£, n(A))
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where ® € C2(RY), f1,..., f4 € L*(dx) and pu()) = m()).

Lemma 4.3.1. The process t — p = m(\,) is a Gp-valued continuous Feller
Markov process.

Proof. We verify in a first step that u()) is Feller. For F € 3,

(P E) (o)l e (s, 1) = E(F (1)) [m(Xg) = po)ller(s,_1) < NEF(p)llor s, -1

since A — F(A) is in 2, and by Lemma 4.2.1. Continuity follows since m is a
continuous function and the process on the simplex has continuous trajectories.
The Markov property follows directly by Dynkin’s criterion: Given two )\, AO €
Yn—1 such that m(}),) = m(zo) it follows that the law of m o )\ is the same
under P ~and ]P’;U since m is one-to-one and A is Markov. g

Lemma 4.3.2 (Generator of the measure-valued process). Let A\, be a solution
to the stochastic differential equation in Proposition 4.2.1. Let F' € 3 and define

(AnF)(1(2g)) = lim = (R (A) = Fp(20)))

t—0 t
Then if Ay €5
(AnF)(1(A0) = wOP((f, 1 Ao)))O: (f1, 11(A0)) 0 (. m(Ao)a™ (Ag) +
+OP((f, 1(Ap)))0 5< (%)M”(Ao) +
+R®((f, 1(20)))05 (£, 1(Ap))D ()

We use Einstein’s summation fori,j=1,...,n and k,l=1,...,d. By 0; resp.
0; we mean % resp. % whereas Oy and 0 are partial derivatives on RY.
i J

IfAO € a7"271—1

(AnF)(1(2o) = ODPUS, 10))O(f, 11(20))05 (F, 1(A0)a (Ag) +
+OR®((f, 20005 (F*, ()0 (Xg) +
+OR®((f, 1(20))); (F*, o) (L = 8j5) B (A0)pr(A0) + 8507 (Ap)]

Again we use Einstein’s summation fori,j=1,....,r—1,r+1,...,n and k,l =
1,...,d. By 0; resp. 0; we mean ai)\i resp. ai)\j whereas Oy, and 0; are partial

o
o

derivatives on R®.

Proof. Using Ito’s formula (on open sets of R™)

dF()\,) = VF()d\ + = v2 F()\,) d)\dN,

in 3, it holds
dAdN = ol (Aol (A)dt = a (),) dt

3

(ks
]~
2
o
~
=
A
\_/
=
?
A
=
3
>
~—
&.

V() d,
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n d
VEEN) dNdN, = Y Y 00 ((f, (M) (1 (A5 (fF, w(A)a (A,) dt +

i,j=1k=1
and on 0,.%,_1
n—1
A\ =Y T () A)TL () A)de (1) = o’ (A) do(t)
k=1

d
VEQ) N, 23S d((f, s, 1)) B (A pr (A ) (t) +

i#r k=1

d
+ 3 R®((f, pA)D(FF, 1(X)5 (M) do(1)

k=1

VEQ A, = 3 Y G N 1)) k) () o) +

i,j#r k,=1

3 S BB 1N, (A ) )

i,j#r k=1

O

Lemma 4.3.3. As long as ju E(o;n the process t — Yy := F(u) satisfies the
following stochastic differential equation:

dF(ne) = @[ )0 (f' pe)or.(m™" (ue))dBf +
0P ((f, 1)) {0 (F*, )b (m ™" () + 0,05 (f*, pe)a™ (m ™" ()}t
+ORNP((f, 1)) 05 (¥, 1) 05 (f1, preya™ (m ™ (pue))dt+

and the quadratic variation process of the semi-martingale Y; reads

<Y,Y>t=/0 (O ((f, 1)) f', 1))@, 1)) 05 (f*, ps))a (m ™" (ps) ) s

If iy € m(0,X,,—-1) then Yy satisfies the following Skorohod stochastic differ-
ential equation:

dF (1) = O((f, )i (f', pe) i (m ™" (ue))dBE +
O ((f, ) {0 (FF, 1) [(1 = 62) 87 (m™ (p1e))pr (m ™ (12)) + 626 (m1
+0;0;(F*, e (m ™ () Y () +
FORNP((f, )i (¥, 1) 0 (f1, )™ (m ™ (pae) )b ()

)] +
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Note that
Oi(f!, pe) i (m ™ () = —Z{ A A1 () (T () +
+Za{/flut (da) i (m ™ (ur))
i#Er
and
0:0;(f*, p)a (m™ () = = Z{ ) (AL (t) + -+ A1 ()} (m™ () +
+Zaa{/futdz}a )
i,JF£T
Proof. Use Ito’s formula. [l

By virtue of a ¥,,_;-valued process A\, we obtain for each n € N a probability
measure on the Skorohod space Dp := D([0,00), P) of cadlag functions (which
is in turn a Polish space when equipped with the Skorohod topology, see for
instance section 3.6. in [Daw93]):

Po(A) :== Py (w:m())(w) € A;t >0)

for all Borel sets A in Dp. The set of functions 3 (when restricted to G,,)
is a family of real continuous functions on P which is closed under addition
and separates points. Given F' € 3 we obtain a mapping F' : Dp — Dy by

(Fm(Q)(t) = F(m(,)).

Lemma 4.3.4. The family of probability measures { P, }nen on Dp is tight, i.e.
it satisfies the following tightness criterion (see Theorem 8.7.1 [Daw93]): For
each F € 3 such that F(p) = [ fu the sequence

Qni={P,0 Z:—'_l}
of probability measures on Dy is tight.

Proof. We consider the Doob-Meyer decomposition of the semimartingale Y; =
M; + A; as defined in Lemma 4.3.3 with ® = id. Then

(V)= (M), = /o 0i(f, ms)0; (f, Ms>aij(m71(ﬂs))d3-

In order to verify in a first step that there exist Lipschitz estimates of the
quadratic variation that are uniform in n we assume the existence of a scaling
function (n) and define puf := m(A,,)) resp. Y = F(uf). We suppose
k(n) = 1 whenever the superscript x is omitted in p.

Set f = ¢'. Let us look closer at

0~ [! 1
ox ] MY =5y Zl /0 f@ s st w@de, (4
]:
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this equals

i i—1 n J J j—1 j—1
—% {g(z M) =90 Ak>}+2 % {g’(Z mg > an-g > mg ZAk}
g k=1 k=1 j=1 "1 k=1 v k=1 k=1 v k=1
which is
_L/Z?“Mf( )d +zn:i{ ’(zj:A Micj — ’(jiA )lic; }
n)\% — z)dr 2 oy g 2 k)Li<s — 9 2 k)Li<j—1
i
1
nmin{\;;j=1,..

e.
0 1
o [ < il +

Thus

—glflle @2)

IN

(Y = (Y7)s H(n)/ 10i(f, 1) 0, ) a™ (m ™" (pa)) 1 de

< w2 = O o+ 11 1)?

for some positive constant C'.
2
Choosing k(n) = 57— we obtain Lipschitz constants that are uniform in n.
Since Y} is conservative we obtain for some fixed time 7" > 0 the Lyons-Zheng

decomposition (see [FOT94] Theorem 5.7.1)

1
2
here X is a F; = 0(,,;0 < s < t)-martingale and XisaF = O'(A(T_S)K; 0<
s < t)-martingale for 0 < ¢ < T. Then for the quadratic variation of X we have

V- Y = o (X — (X — X1—t)),

() = (X). = () [ OLF )0y me))a’ m ™ (u))ds < Clt — o

For the quadratic variation of X a similar estimate holds by symmetry.

Then
1 1 - -
E'(F(:u%t) - F(,U/fis)| = EElXt - X&| + §E|XT—t - XT—s|
1 1 - -
< SEIXe = Xl*)2 + 5 (B Xroy — Xrf’)?
1 11 - - 1
< ELX) = (X)) + S ELX) -t = (X)7-s[)2
< Clt— s|%

Tightness follows by Theorem 7.2 in chapter 3 of [EK05]. On the boundary we
use the same reasoning: replace a by a and remark that for formula (4.1) the
same estimate holds (the function f is integrated with respect to a box-type
measure where at least one indicator function is replaced by a Dirac measure
but since f was supposed to have bounded derivatives, an estimate as in formula

(4.2) holds.) O



Chapter 5

Finite-dimensional diffusion
processes via projections

5.1 Riemannian geometry of the space of his-
tograms endowed with Wasserstein distance

Definition 5.1.1 (Histograms with respect to a fixed partition). Let A =
U?:l A; denote any finite partition of a compact Riemannian manifold M where
each A; has non-empty interior and is convex.

To each A\ € ¥,,_1 we associate a probability measure on M which has the fol-
lowing density function with respect to the volume measure

s

A () = — 14, (2); M
AR = Y s @) v
We denote Pi(M) = 1(3,_1) C Py(M) dense with respect to the quadratic
Wasserstein distance. The map v gives by construction an isometry between the
spaces (P3 (M), dw) and (X,_1,d) where d(\,\') := dw (t(Q), ())).
To each partition A we associate a projection operator

Pr:P(M)>p— Y U‘(L)E{Z?)

La,(z) € Py (M)

Lemma 5.1.1 (Wasserstein distance of histograms on the unit interval via
quantile functions). Henceforth we confine ourselves to M = [0,1] and the fol-
lowing

n
LA pA ) = Zn)\il[g_’l)(:r); z € 0,1].
— noom
To each probability density p> we associate its cumulative distribution function

¢ (t) == ([0, 1))

and its quantile function
q“A(t) = inf {s € [0,1] : p*([0,s]) > t},inf0:=1

69
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which is a nondecreasing, piecewise linear function from [0,1] to [0,1]. For

A ezozn—l

" ke — S0 0\
B (1) = _t F J=1"J
¢ (t) = £ {n)\k + Ak Ussin s, ) (0

with the convention A\g = 0 and q“i(l) = 1. Whenever there exists a \; = 0
then the quantile function reads

1 k
B — D5 A
S t k j=17Y
¢ () = E:{N)\k Nk 1[2?201 )\jvzf:o%‘)(t)

- NS DIV Sy
up> {n—)\k + o szt st (@)

P Y DY
_+@ Loty sk ()
n)\k TL)\k [Zj:() Jij:o 3)

" VI 3L}
_+¢ | PN,
TL)\k n)\k [Z;:o JvE;:o 5)

k=l+1

This generalizes to higher dimensional boundary parts of simplices: We assume
that A € 0%,,_1, Ao, =0 and X\j > 0 for j # oy with 1 =1,..., L. This means
that the point X is in a (n — 1 — L)-dimensional part of 0%,,—1. The quantile
function of p reads

YR Sy

B4y — o F g=1"9J

¢ (t) = Z {n)\kJr Nk 1[2;“;()1&1 ?:o*y‘)(t)'
ke{l,...n}\{a1,...,ar}

Henceforth we denote Ij, = [Z;:é Ajs Z?:o \j) resp. I = [Zf;é Aj, Z?:o Aj).
Given A,i € Y —1 one calculates the quadratic Wasserstein distance via quan-
tile functions:

dw (42, 1) = /0 1 (1) — ¢ (0) e
In a first step we calculate
ORI R G SV S P LV > P ’
(0 - 1) = [2 {H—Ak + T} 1,(1) - {K + T} 1I~k<t>]
and observe that we will have to integrate terms of the type
& 2 . Eov N2
T = {HLM MY _nij—l Aa‘.} L, (8),  Tp= {n%k MY _nij—l AJ’_} 1 (1)

and

_ YV DY P SV DY
L.Ik{ +@}{f+%}1]m@

n)\i n)\i n)\k n)\k:
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For the terms of type TT we distinguish two different cases. Either

k— i i—1 k
()\ )\ € B, = Z Z)\j Z)\j<zj\j CYpo1 X2p1
j=0 =0 =0 =0
then the intersection
i—1 i k—1 k i—1 k=1 k
LN = A =D 2D AN A ) VY TN TNAY DA #0,
=0  j=0 j:O =0 =0 j=0 j=0  j=o0
or .
(A, Q) & B

then A, = 0 for alli # k. Note that in general By, # By; and that T, 1k #+ TiZ:.

N 2
1 1 " kg — Z"f: s
/0 Todt — /0 {H_Ak P
k k—
(o M) = (C5 X
3n2Xz
k k k—1
LR - YN (oA = (50 N)?
nAg nAk
k
Y (RVEDD PV
(n\g)?
O\, A1)
and
i kg i—1 k—17
/1 Tt — (Xm0 X A 2j—o Aj)? = (Xm0 X V2o Aj)? n
0 ’ 3n2)\15\k
(Cimo N A T NP = (s A vV 22550 Ay)? : R
I = == = N= D N RN =D
2n2)\i)\k j=1 j=1
[ k 1—1 k—1 . 7 3 k
- N R D SR R D P
+ AAY A — AV = =
(;J 2) (X_;J X_;J) my —
J= J= J= J=
= O()‘%vaAi 1)
for X fized. Finally
1 n
dw (12 /0 sz +T1) dt—/o Z(IiIk—i—Iin) dt
k=1 ik=1
Example 5.1.1 (X;). Given A,i 62031:
5 A — AP — A+ 1
dw (i, by = LA A ) 5.1

12(1 — M)Ay
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Assuming A1 =0 and 0 < 5\1 < 1:

N 222 + A
dw (i, ) = S

and 1
dy (0, pD)? = -

In the following plot the dashed line shows the graph of wy — dw (,u(o’l), u(wl’l_“’l))
for wy € [0,1] compared to the plot of wy — wy represented by the doted line.

1-
0.8
0.6
J
—
~
Pie —
0.4 -
. —
—~
~
. ~
.’ ~
. ~
0.2 R
L
.
P
%
0+ T T T T )
0 0.2 0.4 0.6 0.8 1
W,

Remark 5.1.1 (Wasserstein geodesics and their projection to the space of his-
tograms). Given p,v € P,.([0,1]) by a general theorem of Brenier and McCann
([Bre91], [McCO01]) we know that there exists a p-a.s. unique (optimal) map
T :[0,1] — [0, 1] such that dw (u,v)* = fol(x —T(z))*u(dz); in dimension one
we know even better: T = ¢ o ¢, which is a monotonous mapping from [0, 1]

to itself (see [Vil03]). By ([AGS08] Theorem 7.2.2) the curve
s vs = ((1—s)id+ sT)#u

is a constant-speed geodesic in P,.([0,1]). If we had started directly with p,v €
P* then the constant-speed geodesic s = Ts#u := (1 — s)id + sT)#u has as
quantile function 7= = (1 —s)g" +sq” (see [AGS08] 7.2.8) which proves that s
does not stay in P* for s € (0,1) but is contained in a bigger space P® where B
is a refinement of A. Consider a geodesic v € P,. linking the histograms p and
v, then

s—= Ty = L_l(Pr('ys)) = (’73(141'))?:1 €¥n1

which is the projection of the Wasserstein geodesic to the space of histograms.

Lemma 5.1.2. By the first order variation of the distance along projected

(o)
geodesics we obtain a Riemannian metric on Y1 C R? by

V2

gp(V,V) = 20— p)p
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Proof. Denote p := ¢! (Pr(u))* and consider at first the case of ¥ with 4; =
[(i —1)/2,i/2) for i = 1,2. By (5.1) the first order variation of the distance d
along the curve I is

—V3(p—T})/—2p+2Ti+1 0<p< 1",‘} <1

_d(p,Ty) 6vI—py\/T}
}51% t }51% 1/t V3(p—T1)/2p—2T; +1 0<Tl<p<i
6vTp/TT eep
which equals
VBl tp=TY VAP

6yT=pyp  6/T—pyp
|p| means %H(O, 1) = (p,1 —p)||rz and

£ = )= 4 [ (0= e te o o) @)utas)

! d
= [ (VL) @E) G Tl
= [ VL@@ o )ie) —a(as)

- / (V1) @) (g o )Ty M) — T () ve(dy))
7,([0,1))

= /o (dS(i—1y2 — db;;2) () (¢ © )T () — T () e (dy))

= ¢ oIy ((i—1)/2) = Ty (i = 1)/2)) — ¢” o ) (T (1) /2)) + T ((0)/2))

dd, denotes the Dirac measure at a. It is important that 7, neither charges
points nor does it verify f BooA, Mt = 0 for any measurable B which is guar-
anteed by the fact that if © and v do have full support, then their displace-
ment interpolation 7 does so. (Just look at the interpolating quantile functions
g7 = (1 —1t)g" + t¢”!) Finally

If=q oct((i—1)/2)—(i—1)/2—q"oc"(i/2)+i/2 in particular T'j = —T'2

Note that for a fixed partition the velocity vector of the projected geodesic
depends on the quantile functions of the starting point p € P* and on the
quantile function of v € P* which determines the direction of the unit speed
geodesic. Within the set Pr~!(v) C P,. we are free to choose a representative
which determines the velocity vector of the projected curve: Taking for instance
a smooth density 7 with Pr(7) = v gives rise to a projected geodesic T’y which
is different from I'y for s € (0,1) but still

It = P10 o en(1/2) +1/2 = T,
By the above considerations the first order variation does not depend on the
representative of the velocity of the curve. We obtain a Riemannian metric on
$1C R? by
031> [—g"oer(1/2)+1/2
12(1-pp 12(1 - p)p ’

gp(f‘(l)a 1—‘(1)) =
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By the same reasoning we obtain a Riemannian metric on the 2-simplex:

Lemma 5.1.3. Denote p := 1= (Pr(u))! and consider the case of Lo with
A; = (i —1)/3,i/3) for i = 1,2,3. We denote the vector X = I'g. Then by
the first order variation of the Wasserstein distance along projected geodesic we
obtain a Riemannian metric on the 2-simplex:

h(X,X) = X'hj X’
with
3p1 —3p? —p2® —3pop1 +p2 2(3p1 — pip2 — 3p12))
hi’ = 2 ’
i) = F ) ( 1(3p1 — pip2 — 3p1?) p1—pi?
with f(p) = -

27p1p2(1—p1—p2)

Proof. Note that by executing the Maple script (see chapter 6) we obtain that
limy_0 %dW(Ft, ) equals

V3 [Bp1—3p12 —pa? = 3pop1 +p2) Xi® + Bp1 — pap2 — 3p12) Xa Xo + (1 — %) Xo”
9 pip2 (1= p1 —p2) '

I.e. in a global chart we obtain a Riemannian metric
3p1 —3p1® —p2® = 3papr +p2 531 — pap2 — 3p1?)
Bis(p) = 2 ,
l](p) f(p) ( %(3]71 _p1p2_3p12) I _p12
with f(p) = m and it can be (numerically) verified that this matrix
is positive definite in the interior of the simplex. [l

5.2 (Non)-explosion of Brownian motion on the
simplex with respect to projected Wasser-
stein metrics - Case study

The 1-simplex. Obviously the Riemannian metric ¢ is conformally equivalent

to the Euclidian metric, we denote the conformal factor by ¢(p) = m, fur-

thermore we write A, for the Laplacian with respect to the metric g, then([GKMG68]
p-90)

At == {ar+(5-1)9(V1 Vg )

ie.

20f@) = 1260 -0 {70 = g0u (7'0) ~ o o120t 0)) |

2 122(1 — 2))2
— 120(1- ) 0) + (0

Let us consider the solution of the following SDE on >

dX, = b(X,)dt + o(X,)dB, Xo =2 €x (5.2)



75 CHAPTER 5. PROJECTIONS

we write b(x) = 4;(*1—2_3) and o(z) = y/12z(1 — x), which are Lipschitz on any
compact K C (0,1). Hence the equation (5.2) has a strong solution X; with
generator $A,. Let us fix ¢ € (0,1) and define the function i.e. a(z) = ¢?/2 =
122(1 — x)

H:Sh - RU{to0}  H() = exp{—[ %d/}} o(r) = /CTH(p) dp

According to( [HT94] p.343) the process X; is recurrent if and only if
s(0) = —o0 s(1) = oo,

additionally this condition implies that X; has infinite lifetime in (0, 1). Let us
verify this for a constant ¢ = % and C > 0:

¢ 1 25
—Clig(l) i eXp{@ - r.&%} = —oo resp. $(1) = +o0

IN

We can state

Proposition 5.2.1. g-Brownian motion is recurrent and has infinite lifetime
in the interior of the 1-simplez.

The 2-simplex. The Laplacian with respect to the metric h reads
Ay = F(u,v) {A(u,v)0y + B(u,v)0, + C(u, v)0uy + D(u, v)0yy + E(t, )0y

Where we denote F' = € —2vv/2916 and

(Bu?+3u+3uv—4v)?
A(u,v) = —6u? + 3u + 3u® + 3uv + 2v — 6uv
B(u,v) = —3u — v — 3v* + 3u® + 3u?v + 3uv?
C(u,v) = —6u® + 3u* + 3u? + 3u® — Tu?v + 4uv
D(u,v) = —18u®—4v3+-9u +402 +9u>+-3uv? —33u v —18uv? +18udv+12u v +15uv
B(u,v) = 18u® — 9u® — 9u® + 24u?v + 4uv? — 12uv — 3u®v? — 12uv

By X; we denote the h-Brownian motion in %2 ,l.e forall fe C°°(§]2)
1
foX—i/Ahfont

is a local martingale. In other words given a two-dimensional real Brownian
motion B then X is solution of the SDE

dX = B(X)dt + o(X)dBy, Xo =z €X,

(A i __pm(C 3E
B—F(B), oo _K'_F(%E D)

for
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Proposition 5.2.2. The h-Brownian motion in §]2 explodes, i.e. it has a.s.
finite lifetime.

Proof. We will apply an application of the comparison theorem (Theorem 3.1
in [IW77]) by Ikeda-Watanabe to explosion tests for non-degenerate diffusions
on open sets of RY. Denote by 71, : o 3 p — pi. € ¥ for k = 1,2 the projection
to the k-th face of the simplex. Some more notations are needed:
= 3" Ky (@) 20T N e ()56, = Ko
ak(z) = zj: ij(w)a—ma—xj = Z ij(2)0ik 0k = Kpk;

]

b = arle) ™ Y Bila) 0k = Ky

af (€)= sup  ag(a); (€)= inf  ax(a)
zeEDQ:Trk(z):f €N (x)=E€

by (€) = sup bi(x); b, (&) = ) inf bi(z)
xG%z:ﬂ'k(m):g zEN ik () =€

We denote fljJr resp. &, for diffusion processes on (0,1) with generators

1 d? d 1 d? d
Lit =af (——+b+—); L, =a; (———i—b—)

and with explosion times ez resp. e, . By Ikeda-Watanabe we know ez <

€r,(x) < €. But for the diffusion processes §,j+ resp. §,~ we can apply the
Feller test. We will show that for k = 1,2 the explosion times e; are finite:

Define
Hy(r) := exp {— /: %dx)} = exp {— / Qbi(p)dp}

We have to show that

/Ccin(r){/: mdp}dr<{ z Z;i(l)

T 3 T ) A(p,.’L'g)
b d = f ——=2d
/c v (P / we(01) Clp,a2) "

—

Let us treat

br(r) = ~0(>)

Asymptotically this means that Hy(r) ~ O(r) and so [ Hy(r) {fcr mdp} dr ~

JO(rlogr) ~ c?logc; + ¢ which is finite when evaluated at the end points 0
and 1.

In the same manner

r B " . B(:Clap)
by (p)dp = b1 D(ar,p)”
/c 2 (p)dp /C e, D(ar,p) "
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by (r) ~ O(+)

r

Asymptotically this means that H(r) ~ O(+) and so [ Hy(r) {f! mdp} dr ~
a2 2

JO(%) ~ %2 which is finite when evaluated at the end point 1 but infinite at
0. To prove finite lifetime of £, ~ it is sufficient to know that fco Hy(p)dp = —c0
which is the case since Ha(r) =~ O(1).

O
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Chapter 6

Maple worksheets

Riemannian metrics on the 2-simplex
via symbolic computation of Wasserstein
distance

In part 1) we perform symbolic computions of the Wasserstein distance between two
histograms on the unit interval [0, 1] with partition points {0, 1/3, 2/3, 1}.

In part 2) we perform symbolic computions of a Riemannian metric obtained by
projecting a Wasserstein geodesic between two histograms on the unit interval [0, 1]
with partition points {0, 1/3, 2/3, 1}.

N := 4:; with(LinearAlgebra) :; with(DifferentialGeometry) :; with( Tensor) ;

1) Symbolic computation of Wasserstein distances

V= [O, Vi, Vo, 1 =W —VZ] W= [0, Wy, Wy, 1 —w, — Wz] 5

)
k i+1 i k+1
1 Wl j V0j d Vij Wi j
sk vw) ] L WU < 2 Vijland 2 VIl < 2 Wil
0 otherwise
k+1 3 k 3
(S (30)
1(k V) = | = 1=
ik V) 3-(V[k+1])2
k+1 k+1 2 k 2
[k VIk+1] - vu1]~[ vm] —[va] ]
4 i=1 J=1 i=
(VIk+11])?
k+1 2
k-Vik+1]— V[Jjl
+ i=1
Vik+1]
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k+1 3 k 3
[Zwm) —[ZWU]]
Jj=1 Jj=1
3-(W[k+1])?
k+1 k+1 2 k 2
{k~W[k+1]— Zwm]-[( ZW[J']] —(ZWU]J ]
Jj=1 1:1, Jj=1
(W[k+11)*
k+1 2
[k Wik+1]— Z m]

1

J2(k W) =

+

+

WikT 1)
i+ 3 i k 3
[mln[z ' ]]J —[maX[ZV[j], ZW[J]JJ
H(ikV, - = J=l =]
3 VIi+ 1] Wk+1]
i+1 k+1 2 i k 2
[mm(ZV[] ZW[] ]] —[max[le[j], ZJ/V[]]]] i+1
Jj= =
+ 2 Vit 1] Wik+1] [ Vi1l ZVU
i+1 k+1 i k
ko [min AL lemj —maX(ZlV[j], ZIW[J']]J
= Jj= i= i=
TR Wik+1] ZW J VIi+ 1 Wk+1]

i+1 k+1
-(i-V[H— 17— ZV[j]]~[k-W[k+ 11— > W[j]]
Jj=1

j=1

J1(k, V) Vk+1]>0
JILI(k V) = :
0 VIk+11=0
2(k, W) Wk+1]>0
20k W) = Ja(k, W) Wk +1] >0
0 Wk+1]=0

. H(ik VW) Wk+1]>0andV[i+1]>0
HH(i k, V, W) = :
0 otherwise

dist(n, V, W) = 5 > 710k V) + 1 > 2k w)- # > | > HHG kW) -g(i k

n k=1 n k=1 k=1\i=1

V,W))]:;
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sqd = unapply(dist(3, V; W), v;, V5, W, W, ) assuming 0 <v; <land0 <v, <1andO
<w, <landO0 <w, <13

Distances between different points in the simplex are studied and
compared:

Al = simplify(sqd(vy, Vo, W, W) ) assuming 0 <v; <v, <w; <w, <land1-v, -V,
>0and 1-w, - w,>0andw, <v, +V,; AAl = Simplify(sqd(vl, Vo, Wi, Wy) )
assuming0 <v; <v, <w; <w, <landl-v,-v,>0and 1- w-w,>0
andw, <v; +V,j;

% Wzvzwl(jl—kvz—l)
—4VZwa2—v2w1W§+9v1vzwi—12v%w;1v2—15v1v§v\;1+3wfvlwz-f—
Mﬁlvlw2—3vzwfwz—szwﬁlwg—ZVZ\A;’2W1—3V%WZ\421—3\;1WZW1+12
\€W2M21+6\?ngwl+2\/§W2W1+3Vfwzwl—6vzwzwl+\%wz\?2+5

(w‘f+6w§v1v2—v%w2v2—3\/%wlvz—Bvl\éwl (2)

vfwlv2+9\/iw1v§+7\}2w1v1+9\/1v2w2\4;1+6v1v2\4/§w1+5v1v2w2w1
—6\/%w2vzwl—15vlv§w2wl—3vzmﬁl—v?w2+v?wl+2vgwl+3wfvf+3
VW EV W =W = VW = W W, =3 WV =W v =2, W 3V W 46,
W =3V W —6 VW)

A2 = simplify(sqd(vy, Vo, W, W) ) assuming 0 <v; <w; <y, <w, <land1-v, -V,
>0and 1-w - w,>0andw, <v, +W,5;A2— Al

A3 = simplify(sqd(vy, vy, W, W) ) assuming 0 <v; <w; <y, <w, <land1-v, -V,
>0and 1-w, - w,>0andw, <v,+W,;

A4 = simplify( sqd(vy, Vo, W, W) ) assuming 0 <v; <v, <w; <w, <land1- v, -V,
>0and 1-w, - w,>0andw, >V, +W,;

A5 = simplify( sqQd(Vvy, Vo, W, W) ) assuming 0 <v; <v, <w; <w, <land1l- v, -V,
>0and 1-w, - w,>0andw, <v,+v,andw, >w, +V,

A6 = simplify( sqd(vy, Vo, W, W) ) assuming 0 <v; <w; <y, <w, <land1l- v, -V,
>0and 1-w, - w,>0andw, >V, +W,;

A7 = simplify( sqd( vy, Vo, W, W) ) assuming 0 <w; <v; <y, <w, <land1- v, -V,
>0and 1-w, - w,>0andw, <v,+v,andw, +w, <V, +V,; A8
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= simplify(sqd(vy, v, Wi, W,) ) assuming 0 <w; <v; <v, <w, <land1-v, -V,
>0and 1-w - w,>0andw, +w, >V, +Vv,3;

A9 = simplify(sqd(vy, Vo, W, W) ) assuming 0 <v; <w,<w; <V, <land1-v, -V,
>0and 1-w-w,>0andw, <v,+wv,andv, +Vv, > w, +w,;; A9—A4; A7
— Al

AA = simplify(sqd(v;, V,, W, W,) ) assuming 0 <v; <v, <w; <w, <land1-v,-v,
>0and 1-w, - w,>0andw, <v,+V,;

a4 = unapply(AS, Vi, Vo, W, Wy) s al = unapply(Al, Vi, Vo, W, Wy) 5 a2 = unapply(A4,
Vi, Vo, Wy, WZ) na3:= unapply(AZ Vi, Vo, Wy, WZ) :

2) Symbolic computation of the Riemannian metric

Simnlify(}ig}) / %al(qu tX, v+ X, 4, V) ]
1
9 3
9 (3)
1 ) 5 )
(vt yye (VA X X 30 X uv X X,
1/2

X§+3uzxf—3uxf+3vuxf—uX§)J V3

szmphfy[}%/ ?aS(qu tX, v+ X, 4, v) ]
1
9 4
9 (4)

1 2 2 7 2 .
(a3 X X 3 X X uv X X+

1/2

X22+3u2X12—3uX12+3vuX12—uX22)j 73

simplify( }%/ %a4(u +tX, v+ X, u, v) ]
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1
9 (5)

1 > 2

(m<'vxl+xl"2—3X1HX2+3X1U12X2+M\/X1X2+H2
1/2

X22+3u2X12—3qu+3vuX12—uX§)j J3
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