Article (Périodiques scientifiques)
On the role of enrichment and statistical admissibility of recovered fields in a posteriori error estimation for enriched finite element methods
González-Estrada, O. A.; Ródenas, J. J.; BORDAS, Stéphane et al.
2012In Engineering Computations, 29 (8), p. 814-841
Peer reviewed
 

Documents


Texte intégral
Comparison_EC_Arxiv.pdf
Postprint Auteur (1.44 MB)
Télécharger

Published in Engineering Computations


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Error analysis; Error estimation; Extended finite element method; Extended recovery; Finite element analysis; Linear elastic fracture mechanics; Statistical admissibility; Design/methodology/approach; Effectivity index; Enriched finite elements; Equilibrium constraint; Moving least squares; Numerical results; Polynomial basis; Posteriori error estimation; Recovery procedure; Recovery process; Recovery-based error estimators; Singular solutions; Superconvergent patch recovery; Type errors; Brittle fracture; Estimation; Finite element method; Polynomials; Recovery
Résumé :
[en] Purpose - The purpose of this paper is to assess the effect of the statistical admissibility of the recovered solution and the ability of the recovered solution to represent the singular solution; also the accuracy, local and global effectivity of recovery-based error estimators for enriched finite element methods (e.g. the extended finite element method, XFEM). Design/methodology/approach - The authors study the performance of two recovery techniques. The first is a recently developed superconvergent patch recovery procedure with equilibration and enrichment (SPR-CX). The second is known as the extended moving least squares recovery (XMLS), which enriches the recovered solutions but does not enforce equilibrium constraints. Both are extended recovery techniques as the polynomial basis used in the recovery process is enriched with singular terms for a better description of the singular nature of the solution. Findings - Numerical results comparing the convergence and the effectivity index of both techniques with those obtained without the enrichment enhancement clearly show the need for the use of extended recovery techniques in Zienkiewicz-Zhu type error estimators for this class of problems. The results also reveal significant improvements in the effectivities yielded by statistically admissible recovered solutions. Originality/value - The paper shows that both extended recovery procedures and statistical admissibility are key to an accurate assessment of the quality of enriched finite element approximations. © Emerald Group Publishing Limited.
Centre de recherche :
Institute of Mechanics and Advanced Materials. Cardiff University
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
González-Estrada, O. A.;  Institute of Modelling and Simulation in Mechanics and Materials, Cardiff School of Engineering, Cardiff University, Cardiff, United Kingdom
Ródenas, J. J.;  Research Center for Vehicle Technology, Department of Mechanical and Materials Engineering, Universitat Politecnica de Valencia, Valencia, Spain
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Duflot, M.;  Multiscale Modeling of Materials and Structures, Cenaero, Gosselies, Belgium
Kerfriden, P.;  Institute of Modelling and Simulation in Mechanics and Materials, Cardiff School of Engineering, Cardiff University, Cardiff, United Kingdom
Giner, E.;  Institute of Modelling and Simulation in Mechanics and Materials, Cardiff School of Engineering, Cardiff University, Cardiff, United Kingdom
Langue du document :
Anglais
Titre :
On the role of enrichment and statistical admissibility of recovered fields in a posteriori error estimation for enriched finite element methods
Date de publication/diffusion :
2012
Titre du périodique :
Engineering Computations
ISSN :
0264-4401
Volume/Tome :
29
Fascicule/Saison :
8
Pagination :
814-841
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Intitulé du projet de recherche :
Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method
Organisme subsidiant :
EPSRC EP/G042705/1
Disponible sur ORBilu :
depuis le 26 novembre 2013

Statistiques


Nombre de vues
223 (dont 4 Unilu)
Nombre de téléchargements
110 (dont 3 Unilu)

citations Scopus®
 
28
citations Scopus®
sans auto-citations
15
OpenCitations
 
26
citations OpenAlex
 
31
citations WoS
 
23

Bibliographie


Publications similaires



Contacter ORBilu