Profil

MEYRATH Thierry

University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) > Team FSTM Scienteens Lab

Main Referenced Co-authors
Müller, Jürgen (5)
VAN DAM, Tonie  (5)
Beise, Peter (3)
Niess, Markus (2)
Rebischung, Paul (2)
Main Referenced Keywords
Universality (10); Meromorphic functions (3); Hypercyclicity (2); Universal series (2); Ansari's Theorem (1);
Main Referenced Disciplines
Mathematics (17)
Earth sciences & physical geography (5)

Publications (total 22)

The most downloaded
48 downloads
Meyrath, T., Mincu, C.-I., & Perucca, A. (In press). Training mathematical thinking with the inclusive card game UNO. In Beiträge zum Mathematikunterricht (Tagungsband GDM) (2024). WTM-Verlag Münster. https://hdl.handle.net/10993/55209

The most cited

24 citations (Scopus®)

Meyrath, T., & van Dam, T. (2016). A comparison of interannual hydrological polar motion excitation from GRACE and geodetic observations. Journal of Geodynamics, 99, 1-9. doi:10.1016/j.jog.2016.03.011 https://hdl.handle.net/10993/27449

Meyrath, T., Mincu, C.-I., & Perucca, A. (In press). Training mathematical thinking with the inclusive card game UNO. In Beiträge zum Mathematikunterricht (Tagungsband GDM) (2024). WTM-Verlag Münster.

MEYRATH, T. (In press). Tiling deficient staircase regions with L-trominoes. Mathematics Magazine.
Peer reviewed

Meyrath, T. (2023). On unavoidable families of meromorphic functions. Canadian Mathematical Bulletin, 66 (1), 114-123. doi:10.4153/S000843952100093X
Peer Reviewed verified by ORBi

Meyrath, T. (2023). Das Königsberger Brückenproblem und der Algorithmus von Hierholzer. MNU Journal, 03, p. 242 - 248.

Meyrath, T. (2022). Universal radial limits of meromorphic functions in the unit disk. Comptes Rendus. Mathématique, 360, 893 - 898. doi:10.5802/crmath.352
Peer Reviewed verified by ORBi

Meyrath, T., & Müller, J. (2022). Non-normality, topological transitivity and expanding families. Mathematical Proceedings of the Cambridge Philosophical Society, 173 (3), 511 - 523. doi:10.1017/S0305004121000700
Peer Reviewed verified by ORBi

Meyrath, T. (2022). Common Universal Meromorphic Functions for Translation and Dilation Mappings. Computational Methods and Function Theory, 22 (4), 781 - 798. doi:10.1007/s40315-021-00429-x
Peer Reviewed verified by ORBi

Meyrath, T. (2019). Compositionally universal meromorphic functions. Complex Variables and Elliptic Equations, 64 (9), 1534 - 1545. doi:10.1080/17476933.2018.1538213
Peer Reviewed verified by ORBi

Meyrath, T., Rebischung, P., & van Dam, T. (2017). GRACE era variability in the Earth’s oblateness: A comparison of estimates from six different sources. Geophysical Journal International, 208 (2), 1126-1138. doi:10.1093/gji/ggw441
Peer Reviewed verified by ORBi

Meyrath, T., van Dam, T., Collilieux, X., & Rebischung, P. (2017). Seasonal low-degree changes in terrestrial water mass load from global GNSS measurements. Journal of Geodesy, 91 (11), 1329-1350. doi:10.1007/s00190-017-1028-8
Peer Reviewed verified by ORBi

Meyrath, T., & van Dam, T. (2016). A comparison of interannual hydrological polar motion excitation from GRACE and geodetic observations. Journal of Geodynamics, 99, 1-9. doi:10.1016/j.jog.2016.03.011
Peer Reviewed verified by ORBi

Beise, P., Meyrath, T., & Müller, J. (2015). Mixing Taylor shifts and universal Taylor series. Bulletin of the London Mathematical Society, 47, 136 - 142. doi:10.1112/blms/bdu104
Peer Reviewed verified by ORBi

Wei, N., van Dam, T., Weigelt, M., & Meyrath, T. (30 September 2014). Seasonal Variations of Low-degree Spherical Harmonics Derived from GPS Data and Loading Models [Paper presentation]. GRACE Science Team Meeting, Potsdam, Germany.

Beise, P., Meyrath, T., & Müller, J. (2014). Limit functions of discrete dynamical systems. Conformal Geometry and Dynamics, 18, 56-64. doi:10.1090/S1088-4173-2014-00264-1
Peer Reviewed verified by ORBi

Meyrath, T., van Dam, T., Weigelt, M., & Cheng, M. (October 2013). An assessment of degree-2 Stokes coefficients from Earth rotation data. Geophysical Journal International, 195 ((1)), 249-259. doi:10.1093/gji/ggt263
Peer Reviewed verified by ORBi

Meyrath, T., & Müller, J. (2013). On the behaviour of the successive derivatives of meromorphic functions on the final set. Journal d'Analyse Mathématique, 120 (1), 131 - 149. doi:10.1007/s11854-013-0017-y
Peer reviewed

Meyrath, T. (2013). On two classes of universal meromorphic functions. Complex Variables and Elliptic Equations, 58 (10), 1343 - 1354. doi:10.1080/17476933.2012.674520
Peer reviewed

Meyrath, T. (2011). Universal rational expansions of meromorphic functions. Computational Methods and Function Theory, 11 (1), 317-324. doi:10.1007/BF03321806
Peer reviewed

Meyrath, T., & Niess, M. (2011). Universal distribution of limit points. Acta Mathematica Hungarica, 133 (3), 288 - 303. doi:10.1007/s10474-011-0114-2
Peer reviewed

Meyrath, T. (2011). On the universality of derived functions of the Riemann zeta-function. Journal of Approximation Theory, 163 (10), 1419 - 1426. doi:10.1016/j.jat.2011.05.004
Peer Reviewed verified by ORBi

Beise, P., Meyrath, T., & Müller, J. (2011). Universality properties of Taylor series inside the domain of holomorphy. Journal of Mathematical Analysis and Applications, 383 (1), 234 - 238. doi:10.1016/j.jmaa.2011.05.020
Peer reviewed

Luh, W., Meyrath, T., & Niess, M. (2008). Universal meromorphic approximation on Vitushkin sets. Journal of Contemporary Mathematical Analysis, 43 (6), 365-371. doi:10.3103/S106836230806006X
Peer reviewed

Contact ORBilu