Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Weighted Banzhaf power and interaction indexes through weighted approximations of games
MARICHAL, Jean-Luc; MATHONET, Pierre
2011In Dubois, Didier; Grabisch, Michel; Mesiar, Radko et al. (Eds.) 32nd Linz Seminar on Fuzzy Set Theory (LINZ 2011) - Decision Theory: Qualitative and Quantitative Approaches
Peer reviewed
 

Documents


Texte intégral
PV-MarichalMathonetLinz.pdf
Postprint Éditeur (46.69 kB)
Télécharger
Parties de texte intégral
MarichalMathonetLinz.pdf
Postprint Auteur (51.8 kB)
Télécharger
Annexes
MathonetLinz.pdf
Postprint Éditeur (423.4 kB)
Slides
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] In cooperative game theory, various kinds of power indexes are used to measure the influence that a given player has on the outcome of the game or to define a way of sharing the benefits of the game among the players. The best known power indexes are due to Shapley [15,16] and Banzhaf [1,5] and there are many other examples of such indexes in the literature. When one is concerned by the analysis of the behavior of players in a game, the information provided by power indexes might be far insufficient, for instance due to the lack of information on how the players interact within the game. The notion of interaction index was then introduced to measure an interaction degree among players in coalitions; see [13,12,7,8,14,10,6] for the definitions and axiomatic characterizations of the Shapley and Banzhaf interaction indexes as well as many others. In addition to the axiomatic characterizations the Shapley power index and the Banzhaf power and interaction indexes were shown to be solutions of simple least squares approximation problems (see [2] for the Shapley index, [11] for the Banzhaf power index and [9] for the Banzhaf interaction index). We generalize the non-weighted approach of [11,9] by adding a weighted, probabilistic viewpoint: A weight w(S) is assigned to every coalition S of players that represents the probability that coalition S forms. The solution of the weighted least squares problem associated with the probability distribution w was given in [3,4] in the special case when the players behave independently of each other to form coalitions. In this particular setting we introduce a weighted Banzhaf interaction index associated with w by considering, as in [11,9], the leading coefficients of the approximations of the game by polynomials of specified degrees.We then study the most important properties of these weighted indexes and their relations with the classical Banzhaf and Shapley indexes.
Disciplines :
Mathématiques
Méthodes quantitatives en économie & gestion
Auteur, co-auteur :
MARICHAL, Jean-Luc ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
MATHONET, Pierre ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Langue du document :
Anglais
Titre :
Weighted Banzhaf power and interaction indexes through weighted approximations of games
Date de publication/diffusion :
2011
Nom de la manifestation :
32nd Linz Seminar on Fuzzy Set Theory (LINZ 2011)
Organisateur de la manifestation :
Erich Peter Klement (Chairman), Johannes Kepler University Linz
Lieu de la manifestation :
Linz, Autriche
Date de la manifestation :
from 01-02-2011 to 05-02-2011
Manifestation à portée :
International
Titre de l'ouvrage principal :
32nd Linz Seminar on Fuzzy Set Theory (LINZ 2011) - Decision Theory: Qualitative and Quantitative Approaches
Editeur scientifique :
Dubois, Didier
Grabisch, Michel
Mesiar, Radko
Klement, Erich Peter
Pagination :
95-98
Peer reviewed :
Peer reviewed
Intitulé du projet de recherche :
F1R-MTH-PUL-09MRDO > MRDO > 01/01/2009 - 31/12/2011 > MARICHAL Jean-Luc
Organisme subsidiant :
University of Luxembourg - UL
Disponible sur ORBilu :
depuis le 30 septembre 2013

Statistiques


Nombre de vues
146 (dont 3 Unilu)
Nombre de téléchargements
244 (dont 0 Unilu)

citations WoS
 
17

Bibliographie


Publications similaires



Contacter ORBilu