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Abstract. In cooperative game theory, various kinds of power indexes are used
to measure the influence that a given player has on the outcome of the game or
to define a way of sharing the benefits of the game among the players. The best
known power indexes are due to Shapley [15, 16] and Banzhaf [1, 5] and there
are many other examples of such indexes in the literature.
When one is concerned by the analysis of the behavior of players in a game, the
information provided by power indexes might be far insufficient, for instance due
to the lack of information on how the players interact within the game. The notion
of interaction index was then introduced to measure an interaction degree among
players in coalitions; see [13, 12, 7, 8, 14, 10, 6] for the definitions and axiomatic
characterizations of the Shapley and Banzhaf interaction indexes as well as many
others.
In addition to the axiomatic characterizations the Shapley power index and the
Banzhaf power and interaction indexes were shown to be solutions of simple
least squares approximation problems (see [2] for the Shapley index, [11] for the
Banzhaf power index and [9] for the Banzhaf interaction index).
We generalize the non-weighted approach of [11, 9] by adding a weighted, prob-
abilistic viewpoint: A weight w(S) is assigned to every coalition S of players that
represents the probability that coalition S forms. The solution of the weighted
least squares problem associated with the probability distribution w was given
in [3, 4] in the special case when the players behave independently of each other
to form coalitions.
In this particular setting we introduce a weighted Banzhaf interaction index as-
sociated with w by considering, as in [11, 9], the leading coefficients of the ap-
proximations of the game by polynomials of specified degrees. We then study the
most important properties of these weighted indexes and their relations with the
classical Banzhaf and Shapley indexes.

A cooperative game on a finite set of players N = {1, . . . ,n} is a set function v : 2N →
R which assigns to each coalition S of players a real number v(S) representing the
worth of S.1 Identifying the subsets of N with the elements of {0,1}n, we see that
a game v : 2N → R corresponds to a pseudo-Boolean function f : {0,1}n → R (the
correspondence is given by v(S) = f (1S), where 1S denotes the characteristic vector of

1 Usually, the condition v(∅) = 0 is required for v to define a game. However, we do not need
this restriction in the present work.



S in {0,1}n). We will henceforth use the same symbol to denote both a given pseudo-
Boolean function and its underlying set function (game).

Every pseudo-Boolean function f : {0,1}n →R can be represented by a multilinear
polynomial of degree at most n of the form

f (x) = ∑
S⊆N

a(S) ∏
i∈S

xi ,

where the set function a : 2N → R is the Möbius transform of f .
Let GN denote the set of games on N. A power index [15] on N is a function ϕ : GN ×

N →R that assigns to every player i ∈ N in a game f ∈ GN his/her prospect ϕ( f , i) from
playing the game. An interaction index [10] on N is a function I : GN × 2N → R that
measures in a game f ∈ GN the interaction degree among the players of a coalition
S ⊆ N.

For instance, the Banzhaf interaction index [10] of a coalition S ⊆ N in a game
f ∈ GN is defined by

IB( f ,S) = ∑
T⊇S

(1
2

)|T |−|S|
a(T ) =

1
2n−|S| ∑

T⊆N\S
(∆S f )(T ), (1)

where the S-difference ∆S f is defined inductively by ∆∅ f = f and ∆S f = ∆{i}∆S\{i} f
for i ∈ S, with ∆{i} f (x) = f (x | xi = 1)− f (x | xi = 0). The Banzhaf power index [5] of
a player i ∈ N in a game f ∈ GN is then given by ϕB( f , i) = IB( f ,{i}).

Let us now introduce a weighted least squares approximation problem which gen-
eralizes the one considered in [11, 9]. For k ∈ {0, . . . ,n}, denote by Vk the set of all
multilinear polynomials g : {0,1}n → R of degree at most k, that is of the form

g(x) = ∑
S⊆N
|S|6k

c(S)∏
i∈S

xi, c(S) ∈ R.

We also consider a weight function w : {0,1}n → ]0,∞[. For every pseudo-Boolean
function f : {0,1}n → R, we define the best kth approximation of f as the unique mul-
tilinear polynomial fk ∈Vk that minimizes the squared distance

∑
x∈{0,1}n

w(x)
(

f (x)−g(x)
)2

= ∑
S⊆N

w(S)
(

f (S)−g(S)
)2 (2)

among all functions g ∈Vk.
Clearly, we can assume without loss of generality that the weights w(S) are (mul-

tiplicatively) normalized so that ∑S⊆N w(S) = 1. We then immediately see that the
weights define a probability distribution over 2N and we can interpret w(S) as the prob-
ability that coalition S forms, that is, w(S) = Pr(C = S), where C denotes a random
coalition.

In the special case of equiprobability, the approximation above reduces to standard
least squares, and a closed form expression of the approximation fk of f was given in
[11, 9] and it was shown that, writing

fk(x) = ∑
S⊆N
|S|6k

ak(S)∏
i∈S

xi, (3)



we have
IB( f ,S) = a|S|(S). (4)

Thus IB( f ,S) is exactly the coefficient of the monomial ∏i∈S xi in the best approxima-
tion of f by a multilinear polynomial of degree at most |S|.

Now, suppose that the players behave independently of each other to form coali-
tions, which means that the events (C ∋ i), for i ∈ N, are independent. Under this as-
sumption, the weight function w is completely determined by the vector p=(p1, . . . , pn),
where pi = Pr(C ∋ i) = ∑S∋i w(S) (we assume 0 < pi < 1), by the formula

w(S) = ∏
i∈S

pi ∏
i∈N\S

(1− pi).

In this particular setting, the weighted approximation problem was presented and solved
in [3] and [4, Theorem 4] by noticing that the distance in (2) is the natural L2-distance
associated with the measure w, with respect to the inner product

⟨ f ,g⟩= ∑
x∈{0,1}n

w(x) f (x)g(x),

and that the functions

vS : {0,1}n → R : x 7→ ∏
i∈S

xi − pi√
pi(1− pi)

form an orthonormal basis of the vector space of pseudo-Boolean functions.
Using these functions, we immediately obtain that fk is of the form (3) where

ak(S) = ∑
T⊇S
|T |6k

∏i∈T\S(−pi)

∏i∈T
√

pi(1− pi)
⟨ f ,vT ⟩.

Using this solution, we define the index by analogy with (4).

Definition 1. The weighted Banzhaf interaction index associated to w is

IB,p : GN ×2N → R : ( f ,S) 7→ IB,p( f ,S) = a|S|(S) =
⟨ f ,vS⟩

∏i∈S
√

pi(1− pi)
.

Then we show that most of the properties of the standard Banzhaf index can be gener-
alized to the weighted index. For instance, Formula (1) is a particular case of

IB,p( f ,S) = ∑
T⊇S

a(T ) ∏
i∈T\S

pi = ∑
T⊆N\S

pS
T (∆

S f )(T ),

where pS
T = Pr(T ⊆C ⊆ S∪T ) = ∏i∈T pi ∏i∈(N\S)\T (1− pi).

This shows that the weighted Banzhaf interaction index belongs to the class of prob-
abilistic interaction indexes introduced in [6], and we can moreover provide a nice in-
terpretation of the probabilities pS

T as conditional probabilities.



We then analyze the behaviour of the index with respect to null or dummy players
or more generally to dummy coalitions, and we show how to compute the weighted
Banzhaf index in terms of Owen’s multilinear extension f̄ of the game f . We also
provide conversion formulas between the indexes corresponding to different weights,
and show how to recover f from the weighted Banzhaf index.

Finally, we show that the standard Banzhaf index is the average of the weighted
Banzhaf indexes over all the possible weights and that the Shapley index is the average
of the weighted Banzhaf indexes over all possible symmetric weights.
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