[en] The role of the microbiome in cancer metastasis has emerged as a critical area of research, with growing evidence suggesting that microbial composition and interactions within the tumour microenvironment may significantly influence metastatic progression. This review explores the role of the microbiome in cancer metastasis, as well as potential key bacteria and their mechanisms through which they could impact tumour dissemination, seeding and growth. Biological models used to study metastasis are discussed to provide context for the further investigation of these interactions. In order to answer unresolved questions regarding the microbiome's involvement in metastatic dissemination, recent advancements in spatial biology techniques are examined, including spatial genomics, transcriptomics, proteomics and metabolomics, which enable the spatial mapping of microbial interactions within the tumour microenvironment. Additionally, multimodal-omics imaging approaches are highlighted for their potential to integrate multiple molecular layers, offering comprehensive insights into the microbiome's role in cancer metastasis. The review also addresses the challenges and limitations of these techniques, underscoring the complexity of studying microbiome-tumour interactions and offering directions for future research to better explore and target the microbiological landscape in metastatic cancer.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
MEYERS, Marianne ✱; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Health, Medicine and Life Sciences > Team Elisabeth LETELLIER
STOFFELS, Charlotte ✱; University of Luxembourg ; Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
Frache, Gilles; Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
LETELLIER, Elisabeth ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Health, Medicine and Life Sciences (DHML)
Feucherolles, Maureen; Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
✱ These authors have contributed equally to this work.
External co-authors :
no
Language :
English
Title :
Microbiome in cancer metastasis: biological insights and emerging spatial omics methods.
Fonds De La Recherche Scientifique - FNRS Fondation du Pélican de Mie et Pierre Hippert-Faber Luxembourg Institute of Science and Technology
Funding text :
We are grateful to Lindsey Stokes (Luxembourg Institute of Science and Technology) for proof-reading and editing the manuscript. We also acknowledge the support of the Doctoral School in Science and Engineering (M.M.) and the Department of Life Sciences and Medicine at the University of Luxembourg.The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by the FNRS-T\u00E9l\u00E9vie grant to M.M. (grant number 7.4565.21-40007364); Fondation du P\u00E9lican de Mie and Pierre Hippert-Faber under the aegis of the Fondation de Luxembourg (Pelican Grant\u2019 M.M); and internal fundings of the Luxembourg Institute of Science and Technology (LIST). Luxembourg National Research Fund (FNR) grants BRIDGES/2022/BM/17413841 (to EL), by the FNR and the Fondation Cancer Luxembourg grant CORE/C20/BM/14591557 (to EL). Acknowledgments
Średnicka P. Roszko M. Ł. Popowski D. Kowalczyk M. Wójcicki M. Emanowicz P. et al. (2023). Effect of in vitro cultivation on human gut microbiota composition using 16S rDNA amplicon sequencing and metabolomics approach. Sci. Rep. 13, 1–25. doi: 10.1038/s41598-023-29637-2
Acosta J. N. Falcone G. J. Rajpurkar P. Topol E. J. (2022). Multimodal biomedical AI. Nat. Med. 28, 1773–1784. doi: 10.1038/s41591-022-01981-2
Ahkami A. H. Qafoku O. Roose T. Mou Q. Lu Y. Cardon Z. G. et al. (2024). Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics – Review and research perspectives. Soil Biol. Biochem. 189, 109253. doi: 10.1016/J.SOILBIO.2023.109253
Ahmed A. A. Farooqi M. S. Habeebu S. S. Gonzalez E. Flatt T. G. Wilson A. L. et al. (2022). NanoString digital molecular profiling of protein and microRNA in rhabdomyosarcoma. Cancers (Basel). 14, 522. doi: 10.3390/cancers14030522
Akbari A. Galstyan A. Peterson R. E. Arlinghaus H. F. Tyler B. J. (2023). Label-free sub-micrometer 3D imaging of ciprofloxacin in native-state biofilms with cryo-time-of-flight secondary ion mass spectrometry. Anal. Bioanal. Chem. 415, 991–999. doi: 10.1007/s00216-022-04496-4
Alon-Maimon T. Mandelboim O. Bachrach G. (2022). Fusobacterium nucleatum and cancer. Periodontol. 89, 166–180. doi: 10.1111/prd.12426
Angel P. M. Spraggins J. M. Baldwin H. S. Caprioli R. (2012). Enhanced sensitivity for high spatial resolution lipid analysis by negative ion mode matrix assisted laser desorption ionization imaging mass spectrometry. Anal. Chem. 84, 1557–1564. doi: 10.1021/ac202383m
Angerer T. B. Bour J. Biagi J. L. Moskovets E. Frache G. (2022). Evaluation of 6 MALDI-matrices for 10 μm lipid imaging and on-tissue MSn with AP-MALDI-orbitrap. J. Am. Soc Mass Spectrom. 33, 760–771. doi: 10.1021/jasms.1c00327
Attalla S. Taifour T. Bui T. Muller W. (2020). Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene 2020 403 40, 475–491. doi: 10.1038/s41388-020-01560-0
Battaglia T. W. Mimpen I. L. Traets J. J. H. van Hoeck A. Zeverijn L. J. Geurts B. S. et al. (2024). A pan-cancer analysis of the microbiome in metastatic cancer. Cell 187, 2324–2335.e19. doi: 10.1016/J.CELL.2024.03.021/ASSET/9AC5D710-2432-4CD9-9F55-12F7BD070BB5/MAIN.ASSETS/GR3.JPG
Bayani J. Squire J. A. (2004). Fluorescence in situ Hybridization (FISH). Curr. Protoc. cell Biol. Chapter 22, 22.4.1–22.4.52. doi: 10.1002/0471143030.cb2204s23
Behrens S. Lösekann T. Pett-Ridge J. Weber P. K. Ng W. O. Stevenson B. S. et al. (2008). Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol. 74, 3143–3150. doi: 10.1128/AEM.00191-08/SUPPL_FILE/SUPPLEMENTAL_DATA_AEM00191_08.PPT
Berr A. L. Wiese K. dos Santos G. Koch C. M. Anekalla K. R. Kidd M. et al. (2023). Vimentin is required for tumor progression and metastasis in a mouse model of non–small cell lung cancer. Oncogene 42, 2074–2087. doi: 10.1038/s41388-023-02703-9
Bersini S. Jeon J. S. Dubini G. Arrigoni C. Chung S. Charest J. L. et al. (2014). A microfluidic 3D invitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454–2461. doi: 10.1016/j.biomaterials.2013.11.050
Bertocchi A. Carloni S. Ravenda P. S. Bertalot G. Spadoni I. Lo Cascio A. et al. (2021). Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell 39, 708–724.e11. doi: 10.1016/j.ccell.2021.03.004
Biteen J. S. Blainey P. C. Cardon Z. G. Chun M. Church G. M. Dorrestein P. C. et al. (2016). Tools for the microbiome: Nano and beyond. ACS Nano 10, 6–37. doi: 10.1021/acsnano.5b07826
Blanc L. Lenaerts A. Dartois V. Prideaux B. (2018). Visualization of mycobacterial biomarkers and tuberculosis drugs in infected tissue by MALDI-MS imaging. Anal. Chem. 90, 6275–6282. doi: 10.1021/acs.analchem.8b00985
Boehm K. M. Khosravi P. Vanguri R. Gao J. Shah S. P. (2022). Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22, 114–126. doi: 10.1038/s41568-021-00408-3
Borodinov N. Lorenz M. King S. T. Ievlev A. V. Ovchinnikova O. S. (2020). Toward nanoscale molecular mass spectrometry imaging via physically constrained machine learning on co-registered multimodal data. NPJ Comput. Mater. 6, 1-8. doi: 10.1038/s41524-020-00357-9
Bouchalova P. Bouchal P. (2022). Current methods for studying metastatic potential of tumor cells. Cancer Cell Int. 22, 1-22. doi: 10.1186/S12935-022-02801-W
Bourceau P. Geier B. Suerdieck V. Bien T. Soltwisch J. Dreisewerd K. et al. (2023). Visualization of metabolites and microbes at high spatial resolution using MALDI mass spectrometry imaging and in situ fluorescence labeling. Nat. Protoc. 18, 1–30. doi: 10.1038/s41596-023-00864-1
Bray F. Laversanne M. Sung H. Ferlay J. Siegel R. L. Soerjomataram I. et al. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 74, 229–263. doi: 10.3322/caac.21834
Brockmann E. U. Potthoff A. Tortorella S. Soltwisch J. Dreisewerd K. (2021). Infrared MALDI mass spectrometry with laser-induced postionization for imaging of bacterial colonies. J. Am. Soc Mass Spectrom. 32, 1053–1064. doi: 10.1021/jasms.1c00020
Brugiroux S. Berry D. Ring D. Barnich N. Daims H. Stecher B. (2022). Specific localization and quantification of the oligo-mouse-microbiota (OMM12) by fluorescence in situ hybridization (FISH). Curr. Protoc. 2, e548. doi: 10.1002/cpz1.548
Bullman S. Pedamallu C. S. Sicinska E. Clancy T. E. Zhang X. Cai D. et al. (2017). Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448. doi: 10.1126/SCIENCE.AAL5240
Burguet P. Rocca R. Kune C. Tellatin D. Stulanovic N. Rigolet A. et al. (2024). Exploiting differential signal filtering (DSF) and image structure filtering (ISF) methods for untargeted mass spectrometry imaging of bacterial metabolites. J. Am. Soc Mass Spectrom. 35 (8), 1743–1755. doi: 10.1021/JASMS.4C00129
Cai W.L. Cheng M. Wang Y. Xu P.H. Yang X. Sun Z.W. et al. (2024). Prediction and related genes of cancer distant metastasis based on deep learning. Comput. Biol. Med. 168, 107664. doi: 10.1016/J.COMPBIOMED.2023.107664
Campisciano G. Biffi S. (2022). Microbiota in vivo imaging approaches to study host-microbe interactions in preclinical and clinical setting. Heliyon 8, 1-9. doi: 10.1016/j.heliyon.2022.e12511
Cao Z. Zuo W. Wang L. Chen J. Qu Z. Jin F. et al. (2023). Spatial profiling of microbial communities by sequential FISH with error-robust encoding. Nat. Commun. 14, 1-15. doi: 10.1038/s41467-023-37188-3
Cassat J. E. Moore J. L. Wilson K. J. Stark Z. Prentice B. M. Van De Plas R. et al. (2018). Integrated molecular imaging reveals tissue heterogeneity driving host-pathogen interactions. Sci. Transl. Med. 10, 1-14. doi: 10.1126/scitranslmed.aan6361
Chadwick G. L. Otero F. J. Gralnick J. A. Bond D. R. Orphan V. J. (2019). NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Proc. Natl. Acad. Sci. U. S. A. 116, 20716–20724. doi: 10.1073/PNAS.1912498116/SUPPL_FILE/PNAS.1912498116.SAPP.PDF
Chatterjee S. Leach S. T. Lui K. Mishra A. (2024). Symbiotic symphony: Understanding host-microbiota dialogues in a spatial context. Semin. Cell Dev. Biol. 161–162, 22–30. doi: 10.1016/j.semcdb.2024.03.001
Chen K. H. Boettiger A. N. Moffitt J. R. Wang S. Zhuang X. (2015). Spatially resolved, highly multiplexed RNA profiling in single cells. Sci. (80-.). 348, aaa6090. doi: 10.1126/science.aaa6090
Chen A. Liao S. Cheng M. Ma K. Wu L. Lai Y. et al. (2022). Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21. doi: 10.1016/j.cell.2022.04.003
Chen W. Qiu M. Paizs P. Kinross J. Goldin R. Rebec M. et al. (2024). Universal, untargeted detection of bacteria in human tissues using spatial metabolomics. Res. Sq. 16 (165), 1-12.doi: 10.21203/RS.3.RS-3958736/V1
Chen J. Suo S. Tam P. P. Han J. D. J. Peng G. Jing N. (2017). Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat. Protoc. 12, 566–580. doi: 10.1038/nprot.2017.003
Cheng M. Jiang Y. Xu J. Mentis A. F. A. Wang S. Zheng H. et al. (2023). Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges. J. Genet. Genomics 50, 625–640. doi: 10.1016/j.jgg.2023.03.011
Clark R. L. Connors B. M. Stevenson D. M. Hromada S. E. Hamilton J. J. Amador-Noguez D. et al. (2021). Design of synthetic human gut microbiome assembly and butyrate production. Nat. Commun. 12, 1–16. doi: 10.1038/s41467-021-22938-y
Coggshall K. Brooks L. Nagarajan P. Arron S. T. (2019). The microbiome and its contribution to skin cancer. Curr. Cancer Res. 87–106. doi: 10.1007/978-3-030-04155-7_5
Corbin B. D. Seeley E. H. Raab A. Feldmann J. Miller M. R. Torres V. J. et al. (2008). Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319, 962–965. doi: 10.1126/science.1152449
Cordes J. Enzlein T. Marsching C. Hinze M. Engelhardt S. Hopf C. et al. (2021). M2aia-Interactive, fast, and memory-efficient analysis of 2D and 3D multi-modal mass spectrometry imaging data. Gigascience 10, 1-13. doi: 10.1093/gigascience/giab049
Dar D. Dar N. Cai L. Newman D. K. (2021). Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, 1-16. doi: 10.1126/science.abi4882
Davies S. K. Fearn S. Allsopp L. P. Harrison F. Ware E. Diggle S. P. et al. (2017). Visualizing antimicrobials in bacterial biofilms: three-dimensional biochemical imaging using TOF-SIMS. mSphere 2, e00211-17. doi: 10.1128/MSPHERE.00211-17
Eberl C. Ring D. Münch P. C. Beutler M. Basic M. Slack E. C. et al. (2020). Reproducible colonization of germ-free mice with the oligo-mouse-microbiota in different animal facilities. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.02999
Eng C. H. L. Lawson M. Zhu Q. Dries R. Koulena N. Takei Y. et al. (2019). Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235–239. doi: 10.1038/s41586-019-1049-y
Falasca M. Raimondi C. Maffucci T. (2011). Boyden chamber. Methods Mol. Biol. 769, 87–95. doi: 10.1007/978-1-61779-207-6_7
Feenstra A. D. Hansen R. L. Lee Y. J. (2015). Multi-matrix, dual polarity, tandem mass spectrometry imaging strategy applied to a germinated maize seed: Toward mass spectrometry imaging of an untargeted metabolome. Analyst 140, 7293–7304. doi: 10.1039/c5an01079a
Femino A. M. Fay F. S. Fogarty K. Singer R. H. (1998). Visualization of single RNA transcripts in situ. Science 280, 585–590. doi: 10.1126/science.280.5363.585
Feng Z. Hu Y. Wang X. Li Y. Yu Y. He J. et al. (2022). In situ imaging for tumor microbiome interactions via imaging mass cytometry on single-cell level. Cytom. Part A 101, 617–629. doi: 10.1002/cyto.a.24550
Feucherolles M. Frache G. (2022). MALDI mass spectrometry imaging: A potential game-changer in a modern microbiology. cells 11, 1–23. doi: 10.3390/cells11233900
Fu A. Yao B. Dong T. Cai S. (2023). Emerging roles of intratumor microbiota in cancer metastasis. Trends Cell Biol. 33, 583–593. doi: 10.1016/j.tcb.2022.11.007
Fu A. Yao B. Dong T. Chen Y. Yao J. Liu Y. et al. (2022). Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 185, 1356–1372.e26. doi: 10.1016/J.CELL.2022.02.027
Galeano Niño J. L. Wu H. LaCourse K. D. Kempchinsky A. G. Baryiames A. Barber B. et al. (2022). Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 611, 810–817. doi: 10.1038/s41586-022-05435-0
Gao D. Huang X. Tao Y. (2016). A critical review of NanoSIMS in analysis of microbial metabolic activities at single-cell level. Crit. Rev. Biotechnol. 36, 884–890. doi: 10.3109/07388551.2015.1057550
Geier B. Oetjen J. Ruthensteiner B. Polikarpov M. Gruber-Vodicka H. R. Liebeke M. (2021). Connecting structure and function from organisms to molecules in small-animal symbioses through chemo-histo-tomography. Proc. Natl. Acad. Sci. U. S. A. 118, 1–9. doi: 10.1073/pnas.2023773118
Geier B. Sogin E. M. Michellod D. Janda M. Kompauer M. Spengler B. et al. (2020). Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat. Microbiol. 5, 498–510. doi: 10.1038/s41564-019-0664-6
Gerstberger S. Jiang Q. Ganesh K (2023). Metastasis. Cell 186, 1564–1579. doi: 10.1016/j.cell.2023.03.003
Geva-Zatorsky N. Alvarez D. Hudak J. E. Reading N. C. Erturk-Hasdemir D. Dasgupta S. et al. (2015). In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nat. Med. 21, 1091. doi: 10.1038/NM.3929
Ghosal S. Fallon S. J. Leighton T. J. Wheeler K. E. Kristo M. J. Hutcheon I. D. et al. (2008). Imaging and 3D elemental characterization of intact bacterial spores by high-resolution secondary ion mass spectrometry. Anal. Chem. 80, 5986–5992. doi: 10.1021/ac8006279
Giesen C. Wang H. A. O. Schapiro D. Zivanovic N. Jacobs A. Hattendorf B. et al. (2014). Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422. doi: 10.1038/nmeth.2869
Glasson Y. Chépeaux L. A. Dumé A. S. Lafont V. Faget J. Bonnefoy N. et al. (2023). Single-cell high-dimensional imaging mass cytometry: one step beyond in oncology. Semin. Immunopathol. 45, 17–28. doi: 10.1007/S00281-022-00978-W/FIGURES/1
Goltsev Y. Samusik N. Kennedy-Darling J. Bhate S. Hale M. Vazquez G. et al. (2018). Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981.e15. doi: 10.1016/j.cell.2018.07.010
Good C. J. Butrico C. E. Colley M. E. Emmerson L. N. Gibson-Corley K. N. Cassat J. E. et al. (2024). Uncovering lipid dynamics in Staphylococcus aureus osteomyelitis using multimodal imaging mass spectrometry. Cell Chem. Biol. p1852-1868.e5. doi: 10.1016/J.CHEMBIOL.2024.09.005
Goossens P. Lu C. Cao J. Gijbels M. J. Karel J. M. H. Wijnands E. et al. (2022). Integrating multiplex immunofluorescent and mass spectrometry imaging to map myeloid heterogeneity in its metabolic and cellular context. Cell Metab. 34, 1214–1225.e6. doi: 10.1016/j.cmet.2022.06.012
Gowing S. D. Chow S. C. Cools-Lartigue J. J. Chen C. B. Najmeh S. Jiang H. Y. et al. (2017). Gram-positive pneumonia augments non-small cell lung cancer metastasis via host toll-like receptor 2 activation. Int. J. Cancer 141, 561–571. doi: 10.1002/ijc.30734
Greenhalgh K. Meyer K. M. Aagaard K. M. Wilmes P. (2016). The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ. Microbiol. 18, 2103–2116. doi: 10.1111/1462-2920.13318
Greenhalgh K. Ramiro-Garcia J. Heinken A. Ullmann P. Bintener T. Pacheco M. P. et al. (2019). Integrated in vitro and in silico modeling delineates the molecular effects of a synbiotic regimen on colorectal-cancer-derived cells. Cell Rep. 27, 1621–1632.e9. doi: 10.1016/j.celrep.2019.04.001
Grodner B. Shi H. Farchione O. Vill A. C. Ntekas I. Diebold P. J. et al. (2024). Spatial mapping of mobile genetic elements and their bacterial hosts in complex microbiomes. Nat. Microbiol. 9, 2262–2277. doi: 10.1038/s41564-024-01735-5
Gui P. Bivona T. G. (2022). Evolution of metastasis: new tools and insights. Trends in Cancer 8, 98–109. doi: 10.1016/j.trecan.2021.11.002
Guiberson E. R. Good C. J. Wexler A. G. Skaar E. P. Spraggins J. M. Caprioli R. M. (2022). Multimodal imaging mass spectrometry of murine gastrointestinal tract with retained luminal content. J. Am. Soc Mass Spectrom. 33, 1073–1076. doi: 10.1021/jasms.1c00360
Guo A. Chen Z. Ma Y. Lv Y. Yan H. Li F. et al. (2024). SOmicsFusion: Multimodal coregistration and fusion between spatial metabolomics and biomedical imaging. Artif. Intell. Chem. 2, 100058. doi: 10.1016/j.aichem.2024.100058
Gut G. Herrmann M. D. Pelkmans L. (2018). Multiplexed protein maps link subcellular organization to cellular states. Science 361, 1-13. doi: 10.1126/SCIENCE.AAR7042/SUPPL_FILE/AAR7042_TABLE_S4.CSV
Ha N. H. Woo B. H. Kim D. J. Ha E. S. Choi J. Kim S. J. et al. (2015). Prolonged and repetitive exposure to Porphyromonas gingivalis increases aggressiveness of oral cancer cells by promoting acquisition of cancer stem cell properties. Tumour Biol. 36, 9947–9960. doi: 10.1007/S13277-015-3764-9
Hanahan D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discov. 12, 31–46. doi: 10.1158/2159-8290.CD-21-1059
He S. Bhatt R. Brown C. Brown E. A. Buhr D. L. Chantranuvatana K. et al. (2022). High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806. doi: 10.1038/s41587-022-01483-z
He Z. Yu J. Gong J. Wu J. Zong X. Luo Z. et al. (2024). Campylobacter jejuni-derived cytolethal distending toxin promotes colorectal cancer metastasis. Cell Host Microbe 32, 2080–2091.e6. doi: 10.1016/j.chom.2024.11.006
Hu B. Sajid M. Lv R. Liu L. Sun C. (2022). A review of spatial profiling technologies for characterizing the tumor microenvironment in immuno-oncology. Front. Immunol. 13. doi: 10.3389/fimmu.2022.996721
Iakab S.-A. Keller F. Schmidt S. Cordes J. Zhou Q. Cairns J. L. et al. (2022). 3D-mass spectrometry imaging of micro-scale 3D cell culture models in cancer research. bioRxiv. doi: 10.1101/2022.12.05.519157
Jamal Eddin T. M. Nasr S. M. O. Gupta I. Zayed H. Al Moustafa A. E. (2023). Helicobacter pylori and epithelial mesenchymal transition in human gastric cancers: An update of the literature. Heliyon 9, e18945. doi: 10.1016/J.HELIYON.2023.E18945
Karas M. Glückmann M. Schäfer J. (2000). Ionization in matrix-assisted laser desorption/ionization: Singly charged molecular ions are the lucky survivors. J. Mass Spectrom. 35, 1–12. doi: 10.1002/(SICI)1096-9888(200001)35:1<1::AID-JMS904>3.0.CO;2-0
Kaya I. Schembri L. S. Nilsson A. Shariatgorji R. Baijnath S. Zhang X. et al. (2023). On-tissue chemical derivatization for comprehensive mapping of brain carboxyl and aldehyde metabolites by MALDI–MS imaging. J. Am. Soc Mass Spectrom. 34, 836–846. doi: 10.1021/JASMS.2C00336
Keren L. Bosse M. Thompson S. Risom T. Vijayaragavan K. McCaffrey E. et al. (2019). MIBI-TOF: A multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5, 1-16. doi: 10.1126/sciadv.aax5851
Kern C. Scherer A. Gambs L. Yuneva M. Walczak H. Liccardi G. et al. (2024). Orbi-SIMS mediated metabolomics analysis of pathogenic tissue up to cellular resolution. Chem. - Methods 4, e202400008. doi: 10.1002/CMTD.202400008
Klein C. A. (2009). Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312. doi: 10.1038/nrc2627
Kompauer M. Heiles S. Spengler B. (2016). Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14, 90–96. doi: 10.1038/nmeth.4071
Kong C. Yan X. Zhu Y. Zhu H. Luo Y. Liu P. et al. (2021). Fusobacterium nucleatum promotes the development of colorectal cancer by activating a cytochrome P450/epoxyoctadecenoic acid axis via TLR4/Keap1/NRF2 signaling. Cancer Res. 81, 485–498. doi: 10.1158/0008-5472.CAN-21-0453
Kruse F. Junker J. P. van Oudenaarden A. Bakkers J. (2016). Tomo-seq: A method to obtain genome-wide expression data with spatial resolution. Methods Cell Biol. 135, 299–307. doi: 10.1016/bs.mcb.2016.01.006
Kuett L. Catena R. Özcan A. Plüss A. Ali H. R. Al Sa’d M. et al. (2022). Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 3, 122–133. doi: 10.1038/s43018-021-00301-w
Kuik C. van Hoogstraten S. W. G. Arts J. J. C. Honing M. Cillero-Pastor B. (2024). Matrix-assisted laser desorption/ionization mass spectrometry imaging for quorum sensing. AMB Express 14, 1–5. doi: 10.1186/S13568-024-01703-6
Latimer J. Stokes S. L. Graham A. I. Bunch J. Jackson R. J. McLeod C. W. et al. (2009). A novel method for exploring elemental composition of microbial communities: Laser ablation-inductively coupled plasma-mass spectrometry of intact bacterial colonies. J. Microbiol. Methods 79, 329–335. doi: 10.1016/j.mimet.2009.10.001
Lee J. Menon N. Lim C. T. (2024). Dissecting gut-microbial community interactions using a gut microbiome-on-a-chip. Adv. Sci. 11, 1-17. doi: 10.1002/ADVS.202302113
Lee J. Roberts J. A. S. Atanasova K. R. Chowdhury N. Han K. Yilmaz Ö. (2017). Human Primary Epithelial Cells Acquire an Epithelial-Mesenchymal-Transition Phenotype during Long-Term Infection by the Oral Opportunistic Pathogen, Porphyromonas gingivalis. Front. Cell. Infect. Microbiol. 7. doi: 10.3389/FCIMB.2017.00493
Leong S. P. Witte M. H. (2024). Cancer metastasis through the lymphatic versus blood vessels. Clin. Exp. Metastasis 41, 387–402. doi: 10.1007/s10585-024-10288-0
Lewis S. M. Asselin-Labat M. L. Nguyen Q. Berthelet J. Tan X. Wimmer V. C. et al. (2021). Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012. doi: 10.1038/s41592-021-01203-6
Li Q. Zhang X. Ke R. (2022). Spatial transcriptomics for tumor heterogeneity analysis. Front. Genet. 13. doi: 10.3389/fgene.2022.906158
Li R. Zhou R. Wang H. Li W. Pan M. Yao X. et al. (2019). Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. 26, 2447–2463. doi: 10.1038/s41418-019-0312-y
Liang Z. Guo Y. Sharma A. Mccurdy C. Prentice B. M. (2024). A multi-modal image fusion workflow incorporating MALDI imaging mass spectrometry and microscopy for the study of small pharmaceutical compounds. bioRxiv. doi: 10.1101/2024.03.12.584673
Lim Y. Shiver A. L. Khariton M. Lane K. M. Ng K. M. Bray S. R. et al. (2019). Mechanically resolved imaging of bacteria using expansion microscopy. PloS Biol. 17, e3000268. doi: 10.1371/journal.pbio.3000268
Lin J. R. Izar B. Wang S. Yapp C. Mei S. Shah P. M. et al. (2018). Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. Elife 7, 1-46. doi: 10.7554/ELIFE.31657
Liu N. N. Ma Q. Ge Y. Yi C. X. Wei L. Q. Tan J. C. et al. (2020). Microbiome dysbiosis in lung cancer: from composition to therapy. NPJ Precis. Oncol. 4, 1–12. doi: 10.1038/s41698-020-00138-z
Liu W. Song J. Du X. Zhou Y. Li Y. Li R. et al. (2019). AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater. 91, 195–208. doi: 10.1016/j.actbio.2019.04.053
Lötstedt B. Stražar M. Xavier R. Regev A. Vickovic S. (2023). Spatial host–microbiome sequencing reveals niches in the mouse gut. Nat. Biotechnol. 42, 1–10. doi: 10.1038/s41587-023-01988-1
Lubeck E. Coskun A. F. Zhiyentayev T. Ahmad M. Cai L. (2014). Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361. doi: 10.1038/nmeth.2892
Lucchetti M. Aina K. O. Grandmougin L. Jäger C. Pérez Escriva P. Letellier E. et al. (2024). An organ-on-chip platform for simulating drug metabolism along the gut–liver axis. Adv. Healthc. Mater. 13, 2470129. doi: 10.1002/adhm.202303943
Lundberg R. (2019). Humanizing the gut microbiota of mice: Opportunities and challenges. Lab. Anim. 53, 244–251. doi: 10.1177/0023677218787554
Ma X. Fernández F. M. (2024). Advances in mass spectrometry imaging for spatial cancer metabolomics. Mass Spectrom. Rev. 43, 235–268. doi: 10.1002/mas.21804
Makaranka S. Scutt F. Frixou M. Wensley K. E. Sharma R. Greenhowe J. (2022). The gut microbiome and melanoma: A review. Exp. Dermatol. 31, 1292–1301. doi: 10.1111/EXD.14639
Marx V. (2021). Method of the Year: spatially resolved transcriptomics. Nat. Methods 18, 9–14. doi: 10.1038/s41592-020-01033-y
McGlynn S. E. Chadwick G. L. Kempes C. P. Orphan V. J. (2015). Single cell activity reveals direct electron transfer in methanotrophic consortia. Nat. 526, 531–535. doi: 10.1038/nature15512
Merritt C. R. Ong G. T. Church S. E. Barker K. Danaher P. Geiss G. et al. (2020). Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599. doi: 10.1038/s41587-020-0472-9
Mjelle R. Castro Í. Aass K. R. (2025). The viral landscape in metastatic solid cancers. Heliyon 11, 1-14. doi: 10.1016/j.heliyon.2025.e42548
Moses L. Pachter L. (2022). Museum of spatial transcriptomics. Nat. Methods 19, 534–546. doi: 10.1038/s41592-022-01409-2
Nejman D. Livyatan I. Fuks G. Gavert N. Zwang Y. Geller L. T. et al. (2020). The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980. doi: 10.1126/science.aay9189
Neophytou C. M. Kyriakou T. C. Papageorgis P. (2019). Mechanisms of Metastatic Tumor Dormancy and Implications for Cancer Therapy. Int. J. Mol. Sci. 20. doi: 10.3390/IJMS20246158
Neumann E. K. Djambazova K. V. Caprioli R. M. Spraggins J. M. (2020). Multimodal imaging mass spectrometry: next generation molecular mapping in biology and medicine. J. Am. Soc Mass Spectrom. 31, 2401–2415. doi: 10.1021/jasms.0c00232
Niehaus M. Soltwisch J. Belov M. E. Dreisewerd K. (2019). Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 16, 925–931. doi: 10.1038/s41592-019-0536-2
Nuñez J. Renslow R. Cliff J. B. Anderton C. R. (2018). NanoSIMS for biological applications: Current practices and analyses. Biointerphases 13, 03B301-1 - 03B301-26. doi: 10.1116/1.4993628/14583751/03B301_1_ACCEPTED_MANUSCRIPT.PDF
O’Brien M. Ernst M. Poh A. R. (2023). An intrasplenic injection model of pancreatic cancer metastasis to the liver in mice. STAR Protoc. 4, 1-15. doi: 10.1016/J.XPRO.2022.102021
Pal S. Perrien D. S. Yumoto T. Faccio R. Stoica A. Adams J. et al. (2022). The microbiome restrains melanoma bone growth by promoting intestinal NK and Th1 cell homing to bone. J. Clin. Invest. 132, 1-21. doi: 10.1172/JCI157340
Parhi L. Alon-Maimon T. Sol A. Nejman D. Shhadeh A. Fainsod-Levi T. et al. (2020). Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 11, 1–12. doi: 10.1038/s41467-020-16967-2
Parida S. Wu S. Siddharth S. Wang G. Muniraj N. Nagalingam A. et al. (2021). A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates notch and β-catenin axes. Cancer Discov. 11, 1138–1157. doi: 10.1158/2159-8290.CD-20-0537
Park J. Kim J. Lewy T. Rice C. M. Elemento O. Rendeiro A. F. et al. (2022). Spatial omics technologies at multimodal and single cell/subcellular level. Genome Biol. 23, 1–19. doi: 10.1186/S13059-022-02824-6/FIGURES/1
Parrot D. Blümel M. Utermann C. Chianese G. Krause S. Kovalev A. et al. (2019). Mapping the surface microbiome and metabolome of brown seaweed fucus vesiculosus by amplicon sequencing, integrated metabolomics and imaging techniques. Sci. Rep. 9, 1–17. doi: 10.1038/s41598-018-37914-8
Parrot D. Papazian S. Foil D. Tasdemir D. (2018). Imaging the unimaginable: desorption electrospray ionization - imaging mass spectrometry (DESI-IMS) in natural product research. Planta Med. 84, 584–593. doi: 10.1055/s-0044-100188
Pett-Ridge J. Weber P. K. (2012). “NanoSIP: NanoSIMS Applications for Microbial Biology.” in Microbial Systems Biology. Methods in Molecular Biology, vol 881. ed. Navid A. (Totowa, NJ: Humana Press). doi: 10.1007/978-1-61779-827-6_13
Pleguezuelos-Manzano C. Puschhof J. Rosendahl Huber A. van Hoeck A. Wood H. M. Nomburg J. et al. (2020). Mutational signature in colorectal cancer caused by genotoxic pks + E. coli. Nature 580, 269–273. doi: 10.1038/s41586-020-2080-8
Puschhof J. Pleguezuelos-Manzano C. Martinez-Silgado A. Akkerman N. Saftien A. Boot C. et al. (2021). Intestinal organoid cocultures with microbes. Nat. Protoc. 16, 4633–4649. doi: 10.1038/s41596-021-00589-z
Qi Y. Yu L. Tian F. Zhao J. Zhai Q. (2023). In vitro models to study human gut-microbiota interactions: Applications, advances, and limitations. Microbiol. Res. 270, 127336. doi: 10.1016/J.MICRES.2023.127336
Quail D. F. Joyce J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nat. Med 19, 1423–1437. doi: 10.1038/NM.3394
Radtke A. J. Kandov E. Lowekamp B. Speranza E. Chu C. J. Gola A. et al. (2020). IBEX: A versatile multiplex optical imaging approach for deep phenotyping and spatial analysis of cells in complex tissues. Proc. Natl. Acad. Sci. U. S. A. 117, 33455–33465. doi: 10.1073/PNAS.2018488117/SUPPL_FILE/PNAS.2018488117.SM09.MP4
Rajdeo P. Aronow B. Surya Prasath V. B. (2024). “Deep learning-based multimodal spatial transcriptomics analysis for cancer,” in Advances in Cancer Research (United States, Cambridge, Massachusetts: Academic Press Inc), 1–38. doi: 10.1016/bs.acr.2024.08.001
Rodriques S. G. Stickels R. R. Goeva A. Martin C. A. Murray E. Vanderburg C. R. et al. (2019). Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Sci. (80-.). 363, 1463–1467. doi: 10.1126/science.aaw1219
Rosean C. B. Bostic R. R. Ferey J. C. M. Feng T. Y. Azar F. N. Tung K. S. et al. (2019). Preexisting commensal dysbiosis is a host-intrinsic regulator of tissue inflammation and tumor cell dissemination in hormone receptor–positive breast cancer. Cancer Res. 79, 3662–3675. doi: 10.1158/0008-5472.CAN-18-3464
Rubinstein M. R. Wang X. Liu W. Hao Y. Cai G. Han Y. W. (2013). Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via its FadA Adhesin. Cell Host Microbe 14, 195–206. doi: 10.1016/j.chom.2013.07.012
Ruiz-Espigares J. Nieto D. Moroni L. Jiménez G. Marchal J. A. (2021). Evolution of metastasis study models toward metastasis-on-A-chip: the ultimate model? Small 17, 2006009. doi: 10.1002/smll.202006009
Saarenpää S. Shalev O. Ashkenazy H. Carlos V. Lundberg D. S. Weigel D. et al. (2023). Spatial metatranscriptomics resolves host–bacteria–fungi interactomes. Nat. Biotechnol. 42, 1–10. doi: 10.1038/s41587-023-01979-2
Saftien A. Puschhof J. Elinav E. (2023). Fungi and cancer. Gut 72, 1410–1425. doi: 10.1136/gutjnl-2022-327952
Saka S. K. Wang Y. Kishi J. Y. Zhu A. Zeng Y. Xie W. et al. (2019). Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090. doi: 10.1038/s41587-019-0207-y
Sakamoto Y. Mima K. Ishimoto T. Ogata Y. Imai K. Miyamoto Y. et al. (2021). Relationship between Fusobacterium nucleatum and antitumor immunity in colorectal cancer liver metastasis. Cancer Sci. 112, 4470–4477. doi: 10.1111/CAS.15126
Seeley E. H. Oppenheimer S. R. Mi D. Chaurand P. Caprioli R. M. (2008). Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J. Am. Soc Mass Spectrom. 19, 1069–1077. doi: 10.1016/j.jasms.2008.03.016
Shariatgorji M. Nilsson A. Fridjonsdottir E. Vallianatou T. Källback P. Katan L. et al. (2019). Comprehensive mapping of neurotransmitter networks by MALDI–MS imaging. Nat. Methods 16, 1021–1028. doi: 10.1038/s41592-019-0551-3
Shen Y. Wang Y. Wang J. Xie P. Xie C. Chen Y. et al. (2024). High-resolution 3D spatial distribution of complex microbial colonies revealed by mass spectrometry imaging. J. Adv. Res. 1-12. doi: 10.1016/J.JARE.2024.08.031
Sheth R. U. Li M. Jiang W. Sims P. A. Leong K. W. Wang H. H. (2019). Spatial metagenomic characterization of microbial biogeography in the gut. Nat. Biotechnol. 37, 877–883. doi: 10.1038/s41587-019-0183-2
Shi H. Grodner B. De Vlaminck I. (2021). Recent advances in tools to map the microbiome. Curr. Opin. Biomed. Eng. 19, 1-13. doi: 10.1016/j.cobme.2021.100289
Shi H. Shi Q. Grodner B. Lenz J. S. Zipfel W. R. Brito I. L. et al. (2020). Highly multiplexed spatial mapping of microbial communities. Nature 588, 676–681. doi: 10.1038/s41586-020-2983-4
Spizzo G. Fong D. Wurm M. Ensinger C. Obrist P. Hofer C. et al. (2011). EpCAM expression in primary tumour tissues and metastases: An immunohistochemical analysis. J. Clin. Pathol. 64, 415–420. doi: 10.1136/jcp.2011.090274
Ståhl P. L. Salmén F. Vickovic S. Lundmark A. Navarro J. F. Magnusson J. et al. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82. doi: 10.1126/science.aaf2403
Stickels R. R. Murray E. Kumar P. Li J. Marshall J. L. Di Bella D. J. et al. (2021). Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319. doi: 10.1038/s41587-020-0739-1
Strittmatter N. Rebec M. Jones E. A. Golf O. Abdolrasouli A. Balog J. et al. (2014). Characterization and identification of clinically relevant microorganisms using rapid evaporative ionization mass spectrometry. Anal. Chem. 86, 6555–6562. doi: 10.1021/AC501075F/SUPPL_FILE/AC501075F_SI_001.PDF
Taube J. M. Akturk G. Angelo M. Engle E. L. Gnjatic S. Greenbaum S. et al. (2020). The Society for Immunotherapy in Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation. J. Immunother. Cancer 8, e000155. doi: 10.1136/jitc-2019-000155
Ternes D. Karta J. Tsenkova M. Wilmes P. Haan S. Letellier E. (2020). Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism?. Trends Microbiol. 28, 401–423. doi: 10.1016/j.tim.2020.01.001
Ternes D. Tsenkova M. Pozdeev V. I. Meyers M. Koncina E. Atatri S. et al. (2022). The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat. Metab. 4, 458–475. doi: 10.1038/s42255-022-00558-0
Tian H. Rajbhandari P. Tarolli J. Decker A. M. Neelakantan T. V. Angerer T. et al. (2024). Multimodal mass spectrometry imaging identifies cell-type-specific metabolic and lipidomic variation in the mammalian liver. Dev. Cell 59, 1–13. doi: 10.1016/j.devcel.2024.01.025
Tsenkova M. Brauer M. Pozdeev V. I. Kasakin M. Busi S. B. Schmoetten M. et al. (2025). Ketogenic diet suppresses colorectal cancer through the gut microbiome long chain fatty acid stearate. Nat. Commun. 16, 1–16. doi: 10.1038/s41467-025-56678-0
Valm A. M. Mark Welch J. L. Borisy G. G. (2012). CLASI-FISH: Principles of combinatorial labeling and spectral imaging. Syst. Appl. Microbiol. 35, 496–502. doi: 10.1016/j.syapm.2012.03.004
Van De Plas R. Yang J. Spraggins J. Caprioli R. M. (2015). Image fusion of mass spectrometry and microscopy: A multimodality paradigm for molecular tissue mapping. Nat. Methods 12, 366–372. doi: 10.1038/nmeth.3296
Vats M. Cillero-Pastor B. Cuypers E. Heeren R. M. A. (2024). Mass spectrometry imaging in plants, microbes, and food: a review. Analyst. 149, 4553–4582. doi: 10.1039/D4AN00644E
Vickovic S. Eraslan G. Salmén F. Klughammer J. Stenbeck L. Schapiro D. et al. (2019). High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990. doi: 10.1038/s41592-019-0548-y
Wang H. Y. J. Liu C.B. Wu H. W. (2011). A simple desalting method for direct MALDI mass spectrometry profiling of tissue lipids. J. Lipid Res. 52, 840–849. doi: 10.1194/jlr.D013060
Watrous J. Hendricks N. Meehan M. Dorrestein P. C. (2010). Capturing bacterial metabolic exchange using thin film desorption electrospray ionization-imaging mass spectrometry. Anal. Chem. 82, 1598–1600. doi: 10.1021/ac9027388
Watrous J. Roach P. Heath B. Alexandrov T. Laskin J. Dorrestein P. C. (2013). Metabolic profiling directly from the petri dish using nanospray desorption electrospray ionization imaging mass spectrometry. Anal. Chem. 85, 10385–10391. doi: 10.1021/ac4023154
Wei L. Chen Z. Shi L. Long R. Anzalone A. V. Zhang L. et al. (2017). Super-multiplex vibrational imaging. Nature 544, 465–470. doi: 10.1038/nature22051
Welch J. L. M. Hasegawa Y. McNulty N. P. Gordon J. I. Borisy G. G. (2017). Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc. Natl. Acad. Sci. U. S. A. 114, E9105–E9114. doi: 10.1073/pnas.1711596114
Williams C. G. Lee H. J. Asatsuma T. Vento-Tormo R. Haque A. (2022). An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 1–18. doi: 10.1186/s13073-022-01075-1
Williamson I. A. Arnold J. W. Samsa L. A. Gaynor L. DiSalvo M. Cocchiaro J. L. et al. (2018). A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. CMGH 6, 301–319. doi: 10.1016/j.jcmgh.2018.05.004
Wong-Rolle A. Dong Q. Zhu Y. Divakar P. Hor J. L. Kedei N. et al. (2022). Spatial meta-transcriptomics reveal associations of intratumor bacteria burden with lung cancer cells showing a distinct oncogenic signature. J. Immunother. Cancer 10, 4698. doi: 10.1136/jitc-2022-004698
Wu Z. Guo J. Zhang Z. Gao S. Huang M. Wang Y. et al. (2024). Bacteroidetes promotes esophageal squamous carcinoma invasion and metastasis through LPS-mediated TLR4/Myd88/NF-κB pathway and inflammatory changes. Sci. Rep. 14, 1–12. doi: 10.1038/s41598-024-63774-6
Wu S. Morin P. J. Maouyo D. Sears C. L. (2003). Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 124, 392–400. doi: 10.1053/GAST.2003.50047
Xu C. Fan L. Lin Y. Shen W. Qi Y. Zhang Y. et al. (2021). Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes 13, 1-17. doi: 10.1080/19490976.2021.1980347
Yagnik G. Liu Z. Rothschild K. J. Lim M. J. (2021). Highly multiplexed immunohistochemical MALDI-MS imaging of biomarkers in tissues. J. Am. Soc Mass Spectrom. 32, 977–988. doi: 10.1021/jasms.0c00473
Yue Y. C. Yang B. Y. Lu J. Zhang S. W. Liu L. Nassar K. et al. (2020). Metabolite secretions of Lactobacillus plantarum YYC-3 may inhibit colon cancer cell metastasis by suppressing the VEGF-MMP2/9 signaling pathway. Microb. Cell Fact. 19, 1-12. doi: 10.1186/S12934-020-01466-2
Zervantonakis I. K. Hughes-Alford S. K. Charest J. L. Condeelis J. S. Gertler F. B. Kamm R. D. (2012). Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. U. S. A. 109, 13515–13520. doi: 10.1073/pnas.1210182109
Zhang W. Bado I. L. Hu J. Wan Y. W. Wu L. Wang H. et al. (2021). The bone microenvironment invigorates metastatic seeds for further dissemination. Cell 184, 2471–2486.e20. doi: 10.1016/J.CELL.2021.03.011
Zhang N. Kandalai S. Zhou X. Hossain F. Zheng Q. (2023). Applying multi-omics toward tumor microbiome research. iMeta 2, e73. doi: 10.1002/imt2.73
Zhao T. Chiang Z. D. Morriss J. W. LaFave L. M. Murray E. M. Del Priore I. et al. (2022). Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91. doi: 10.1038/s41586-021-04217-4
Zhou X. Kandalai S. Hossain F. Zheng Q. (2022). Tumor microbiome metabolism: A game changer in cancer development and therapy. Front. Oncol. 12. doi: 10.3389/fonc.2022.933407
Zou Y. Tang W. Li B. (2022). Mass spectrometry imaging and its potential in food microbiology. Int. J. Food Microbiol. 371, 109675. doi: 10.1016/j.ijfoodmicro.2022.109675