[en] Parkinson's disease, an aging-associated neurodegenerative disorder, is characterised by nigrostriatal pathway dysfunction caused by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. Human in vitro models are enabling the study of the dopaminergic neurons' loss, but not the dysregulation within the dopaminergic network in the nigrostriatal pathway. Additionally, these models do not incorporate aging characteristics which potentially contribute to the development of Parkinson's disease. Here we present a nigrostriatal pathway model based on midbrain-striatum assembloids with inducible aging. We show that these assembloids can develop characteristics of the nigrostriatal connectivity, with catecholamine release from the midbrain to the striatum and synapse formation between midbrain and striatal neurons. Moreover, Progerin-overexpressing assembloids acquire aging traits that lead to early neurodegenerative phenotypes. This model shall help to reveal the contribution of aging as well as nigrostriatal connectivity to the onset and progression of Parkinson's disease.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
BARMPA, Kyriaki ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Developmental and Cellular Biology > Team Jens Christian SCHWAMBORN
SARAIVA, Claudia ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Developmental and Cellular Biology > Team Jens Christian SCHWAMBORN
Lopez-Pigozzi, Diego ; Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy ; Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
Gomez-Giro, Gemma; Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
Gabassi, Elisa ; Genomics, Stem Cell & Regenerative Medicine Group and CMBI, Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
Spitz, Sarah; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
Brandauer, Konstanze; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
Rodriguez Gatica, Juan E ; Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
ANTONY, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services > Imaging Platform
ROBERTSON, Graham ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Developmental and Cellular Biology > Team Jens Christian SCHWAMBORN
Sabahi-Kaviani, Rahman; Eindhoven University of Technology, Microsystems, Eindhoven, Netherlands
Bellapianta, Alessandro; Johannes Kepler University Linz, Kepler University Hospital, University Clinic for Ophthalmology and Optometry, Linz, Austria
Papastefanaki, Florentia; Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece ; Human Embryonic and Induced Pluripotent Stem Cell Unit, Hellenic Pasteur Institute, Athens, Greece
Luttge, Regina; Eindhoven University of Technology, Microsystems, Eindhoven, Netherlands
Kubitscheck, Ulrich ; Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
Salti, Ahmad ; Genomics, Stem Cell & Regenerative Medicine Group and CMBI, Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria ; Johannes Kepler University Linz, Kepler University Hospital, University Clinic for Ophthalmology and Optometry, Linz, Austria
Ertl, Peter; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
Bortolozzi, Mario; Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy ; Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
Matsas, Rebecca ; Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece ; Human Embryonic and Induced Pluripotent Stem Cell Unit, Hellenic Pasteur Institute, Athens, Greece
Edenhofer, Frank ; Genomics, Stem Cell & Regenerative Medicine Group and CMBI, Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
SCHWAMBORN, Jens Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
S.P. Caminiti et al. Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson’s disease NeuroImage Clin. 2017 14 734 740 28409113 5379906 10.1016/j.nicl.2017.03.011
S. Zhai A. Tanimura S.M. Graves W. Shen D.J. Surmeier Striatal synapses, circuits, and Parkinson’s disease Curr. Opin. Neurobiol. 2018 48 9 16 28843800 10.1016/j.conb.2017.08.004
L.H. Li et al. Axonal degeneration of nigra-striatum dopaminergic neurons induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice J. Int. Med. Res. 2009 37 455 463 19383240 10.1177/147323000903700221
S.J. Chung et al. Patterns of striatal dopamine depletion in early Parkinson disease: prognostic relevance Neurology 2020 95 E280 E290 32616674 10.1212/WNL.0000000000009878
P. Tagliaferro R.E. Burke Retrograde axonal degeneration in Parkinson disease J. Parkinsons. Dis. 2016 6 1 15 27003783 4927911 10.3233/JPD-150769
Potashkin, J. A., Blume, S. R. & Runkle, N. K. Limitations of animal models of Parkinson’s disease. Parkinson’s Dis.2011, 658083 (2010).
A.S. Monzel et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells Stem Cell Rep. 2017 8 1144 1154 10.1016/j.stemcr.2017.03.010
J. Kim B.K. Koo J.A. Knoblich Human organoids: model systems for human biology and medicine Nat. Rev. Mol. Cell Biol. 2020 21 571 584 32636524 7339799 10.1038/s41580-020-0259-3
Becerra-Calixto, A. et al. Lewy body-like pathology and loss of dopaminergic neurons in midbrain organoids derived from familial Parkinson’s disease patient. Cells12, 625 (2023).
Jarazo, J. et al. Parkinson’s disease phenotypes in patient specific brain organoids are improved by HP-β-CD treatment. Mov Disord.37, 80–94 (2022).
Jo, J. et al. Lewy body-like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann Neurol.90, 490–505 (2021).
A. Zagare et al. Midbrain organoids mimic early embryonic neurodevelopment and recapitulate LRRK2-p.Gly2019Ser-associated gene expression Am. J. Hum. Genet. 2022 109 311 327 35077669 8874228 10.1016/j.ajhg.2021.12.009
Panoutsopoulos, A. A. Organoids, assembloids, and novel biotechnology: steps forward in developmental and disease-related neuroscience. The Neuroscientist.27, 463–472 (2021).
J. Andersen et al. Generation of functional human 3D cortico-motor assembloids Cell 2020 183 1913 1929.e26 33333020 8711252 10.1016/j.cell.2020.11.017
Y. Miura et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells Nat. Biotechnol. 2020 38 1421 1430 33273741 9042317 10.1038/s41587-020-00763-w
F. Birey et al. Assembly of functionally integrated human forebrain spheroids Nature 2017 545 54 59 28445465 5805137 10.1038/nature22330
J.V. Hindle Ageing, neurodegeneration and Parkinson’s disease Age Ageing 2010 39 156 161 20051606 10.1093/ageing/afp223
T.J. Collier N.M. Kanaan J.H. Kordower Aging and Parkinson’s disease: different sides of the same coin? Mov. Disord. 2017 32 983 990 28520211 5844262 10.1002/mds.27037
S.L. Nickels et al. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson’s disease Stem Cell Res 2020 46 101870 32534166 10.1016/j.scr.2020.101870
S.A. Sloan J. Andersen A.M. Pașca F. Birey S.P. Pașca Generation and assembly of human brain region–specific three-dimensional cultures Nat. Protoc. 2018 13 2062 2085 30202107 6597009 10.1038/s41596-018-0032-7
Roychoudhury, K. et al. Physical interactions between Gsx2 and Ascl1 balance progenitor expansion versus neurogenesis in the mouse lateral ganglionic eminence. Development. 147, dev185348 (2020).
Fong, W. L., Kuo, H. Y., Wu, H. L., Chen, S. Y. & Liu, F. C. Differential and overlapping pattern of Foxp1 and Foxp2 expression in the striatum of adult mouse brain. Neuroscience388, 214–223 (2018).
Arlotta, P., Molyneaux, B. J., Jabaudon, D., Yoshida, Y. & Macklis, J. D. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci.28, 622–632 (2008).
M. Sandberg et al. Genomic analysis of transcriptional networks directing progression of cell states during MGE development Neural Dev 2018 13 21 30217225 6138899 10.1186/s13064-018-0119-4
A.B. Walls et al. GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity J. Neurochem. 2010 115 1398 1408 21039523 10.1111/j.1471-4159.2010.07043.x
G. La Manno et al. Molecular diversity of midbrain development in mouse, human, and stem cells Cell 2016 167 566 580.e19 27716510 5055122 10.1016/j.cell.2016.09.027
T. Kamath et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease Nat. Neurosci. 2022 25 588 595 35513515 9076534 10.1038/s41593-022-01061-1
A. Bhaduri et al. Cell stress in cortical organoids impairs molecular subtype specification Nature 2020 578 142 148 31996853 7433012 10.1038/s41586-020-1962-0
A. Butler P. Hoffman P. Smibert E. Papalexi R. Satija Integrating single-cell transcriptomic data across different conditions, technologies, and species Nat. Biotechnol. 2018 36 411 420 29608179 6700744 10.1038/nbt.4096
C. Zanetti et al. Monitoring the neurotransmitter release of human midbrain organoids using a redox cycling microsensor as a novel tool for personalized Parkinson’s disease modelling and drug screening Analyst 2021 146 2358 2367 33625407 10.1039/D0AN02206C
B.J. Dworak B.C. Wheeler Novel MEA platform with PDMS microtunnels enables detection of action potential propagation from isolated axons in culture Lab. Chip 2009 9 404 410 19156289 10.1039/B806689B
Berchtold, N. C. et al. Gene expression changes in the course of normal brain aging are Sexually dimorphic. Proc. Natl. Acad. Sci. USA105, 15605–15610 (2008).
O. González-Velasco D. Papy-García G. Le Douaron J.M. Sánchez-Santos J. De Las Rivas Transcriptomic landscape, gene signatures and regulatory profile of aging in the human brain Biochim. Biophys. Acta Gene Regul. Mech. 2020 1863 194491 32006715 10.1016/j.bbagrm.2020.194491
S. Bolognin et al. 3D cultures of Parkinson’s disease-specific dopaminergic neurons for high content phenotyping and drug testing Adv. Sci. 2019 6 1 14 10.1002/advs.201800927
S.W. Kim et al. Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson’s disease: midbrain organoid-NSCs (Og-NSC) as a stable source for PD treatment Prog. Neurobiol. 2021 204 102086 34052305 10.1016/j.pneurobio.2021.102086
A. Singh L. Liang Y. Kaneoke X. Cao S.M. Papa Dopamine regulates distinctively the activity patterns of striatal output neurons in advanced parkinsonian primates J. Neurophysiol. 2015 113 1533 1544 25505120 10.1152/jn.00910.2014
H. Li et al. Generation of human A9 dopaminergic pacemakers from induced pluripotent stem cells Mol. Psychiatry 2022 27 4407 4418 35610351 9684358 10.1038/s41380-022-01628-1
S. Grealish et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease Cell Stem Cell 2014 15 653 665 25517469 4232736 10.1016/j.stem.2014.09.017
S. Ivkovic M.E. Ehrlich Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro J. Neurosci. 1999 19 5409 5419 10377350 6782303 10.1523/JNEUROSCI.19-13-05409.1999
M. Straccia et al. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell-derived medium spiny neurons Mol. Ther. Methods Clin. Dev. 2015 2 15030 26417608 4571731 10.1038/mtm.2015.30
Qin, J. et al. Predicting individual brain maturity using dynamic functional connectivity. Front. Hum. Neurosci. 9, 418 (2015).
Y. Xiang et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids Cell Stem Cell 2019 24 487 497.e7 30799279 6853597 10.1016/j.stem.2018.12.015
D. Sulzer S.J. Cragg M.E. Rice Striatal dopamine neurotransmission: regulation of release and uptake Basal Ganglia 2016 6 123 148 27141430 4850498 10.1016/j.baga.2016.02.001
D.J. Simpson N.N. Olova T. Chandra Cellular reprogramming and epigenetic rejuvenation Clin. Epigenetics 2021 13 1 10 10.1186/s13148-021-01158-7
J.D. Miller et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging Cell Stem Cell 2013 13 691 705 24315443 4153390 10.1016/j.stem.2013.11.006
A. Shibata P.A. Jeggo Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks DNA Repair 2020 93 102915 33087281 10.1016/j.dnarep.2020.102915
R. Kumari P. Jat Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype Front. Cell Dev. Biol. 2021 9 1 24 10.3389/fcell.2021.645593
E.W. Buss et al. Cognitive aging is associated with redistribution of synaptic weights in the hippocampus Proc. Natl Acad. Sci. Usa. 2021 118 1 10 10.1073/pnas.1921481118
Choii, G. & Ko, J. Gephyrin: a central GABAergic synapse organizer. Exp. Mol. Med. 47, e158 (2015).
C. Yan J. Jiang Y. Yang X. Geng W. Dong The function of VAMP2 in mediating membrane fusion: an overview Front. Mol. Neurosci. 2022 15 1 15 10.3389/fnmol.2022.948160
A. Banerjee et al. Molecular and functional architecture of striatal dopamine release sites Neuron 2022 110 248 265.e9 34767769 10.1016/j.neuron.2021.10.028
P. Jiang et al. Parkinson’s disease is associated with dysregulations of a dopamine-modulated gene network relevant to sleep and affective neurobehaviors in the striatum Sci. Rep. 2019 9 1 14
S.C. Daubner T. Le S. Wang Tyrosine hydroxylase and regulation of dopamine synthesis Arch. Biochem. Biophys. 2011 508 1 12 21176768 10.1016/j.abb.2010.12.017
S. Tabrez et al. A synopsis on the role of tyrosine hydroxylase in Parkinson’s disease CNS Neurol. Disord. Drug Targets 2012 11 395 409 22483313 4978221 10.2174/187152712800792785
L. Lin et al. Molecular features underlying neurodegeneration identified through in vitro modeling of genetically diverse Parkinson’s disease patients Cell Rep. 2016 15 2411 2426 27264186 10.1016/j.celrep.2016.05.022
G. Kouroupi et al. Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson’s disease Proc. Natl. Acad. Sci. USA. 2017 114 E3679 E3688 28416701 5422768 10.1073/pnas.1617259114
Y. Chu et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease Brain 2012 135 2058 2073 22719003 4571141 10.1093/brain/aws133
Reinhardt, P. et al. Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS ONE8, e59252 (2013).
Miyamichi, K. et al. Cortical representations of olfactory input by trans-synaptic tracing. Nature472, 191–196 (2011).
R.H. Kutner X.Y. Zhang J. Reiser Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors Nat. Protoc. 2009 4 495 505 19300443 10.1038/nprot.2009.22
F. Osakada E.M. Callaway Design and generation of recombinant rabies virus vectors Nat. Protoc. 2013 8 1583 1601 23887178 4028848 10.1038/nprot.2013.094
G. Gomez-Giro et al. Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis Acta Neuropathol. Commun. 2019 7 1 19 10.1186/s40478-019-0871-7
Rodriguez-Gatica, J. E. et al. Imaging three-dimensional brain organoid architecture from meso- to nanoscale across development. Development149, dev200439 (2022).
J. Schindelin et al. Fiji: an open-source platform for biological-image analysis Nat. Methods 2012 9 676 682 22743772 10.1038/nmeth.2019
A.S. Monzel et al. Machine learning-assisted neurotoxicity prediction in human midbrain organoids Park. Relat. Disord. 2020 75 105 109 10.1016/j.parkreldis.2020.05.011
Khan, T. et al. Single nucleus RNA sequence (snRNAseq) analysis of the spectrum of trophoblast lineages generated from human pluripotent stem cells in vitro. Front. Cell Dev. Biol. 9, 695248 (2021).
C.S. Cutts X.S.J. Eglen Detecting pairwise correlations in spike trains: an objective comparison of methods and application to the study of retinal waves J. Neurosci. 2014 34 14288 14303 25339742 4205553 10.1523/JNEUROSCI.2767-14.2014
Sit, T. P. et al. MEA-NAP compares microscale functional connectivity, topology, and network dynamics in organoid or monolayer neuronal cultures. Preprint at bioRxiv 1–40 (2024).