[en] Fibrillary aggregation of α-synuclein in Lewy body inclusions and nigrostriatal dopaminergic neuron degeneration define Parkinson's disease neuropathology. Mutations in GBA1, encoding glucocerebrosidase, are the most frequent genetic risk factor for Parkinson's disease. However, the lack of reliable experimental models able to reproduce key neuropathological signatures has hampered clarification of the link between mutant glucocerebrosidase and Parkinson's disease pathology. Here, we describe an innovative protocol for the generation of human induced pluripotent stem cell-derived midbrain organoids containing dopaminergic neurons with nigral identity that reproduce characteristics of advanced maturation. When applied to patients with GBA1-related Parkinson's disease, this method enabled the differentiation of midbrain organoids recapitulating dopaminergic neuron loss and fundamental features of Lewy pathology observed in human brains, including the generation of α-synuclein fibrillary aggregates with seeding activity that also propagate pathology in healthy control organoids. Concurrently, we found that the retention of mutant glucocerebrosidase in the endoplasmic reticulum and increased levels of its substrate, glucosylceramide, are determinants of α-synuclein aggregation into Lewy body-like inclusions, and the reduction of glucocerebrosidase activity accelerated α-synuclein pathology by promoting fibrillary α-synuclein deposition. Finally, we demonstrated the efficacy of ambroxol and GZ667161 (two modulators of the glucocerebrosidase pathway in clinical development for the treatment of GBA1-related Parkinson's disease) in reducing α-synuclein pathology in this model, supporting the use of midbrain organoids as a relevant preclinical platform for investigational drug screening.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Frattini, Emanuele ; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
Faustini, Gaia; Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
Lopez, Gianluca ; Division of Pathology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan 20122, Italy
Carsana, Emma Veronica; Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan 20054, Italy
Tosi, Mattia; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
Trezzi, Ilaria; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
Magni, Manuela; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
Soldà, Giulia ; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan 20072, Italy ; Medical Genetics and RNA Biology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
Straniero, Letizia; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan 20072, Italy ; Medical Genetics and RNA Biology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
Facchi, Daniele; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan 20072, Italy ; Medical Genetics and RNA Biology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
Samarani, Maura; Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et de l'Infection, Institut Pasteur, Paris 75015, France
Martá-Ariza, Mitchell; Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA ; Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
De Luca, Chiara Maria Giulia; Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
Vezzoli, Elena; Advanced Light and Electron Microscopy BioImaging Centre (ALEMBIC), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
Pittaro, Alessandra; Division of Pathology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan 20122, Italy
Stepanyan, Astghik; Unità Operativa Complessa, Chirurgia Generale 3, University Hospital of Padua, Padua 35128, Italy
Silipigni, Rosamaria; Laboratory of Medical Genetics, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
ROSETY, Isabel ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Developmental and Cellular Biology > Team Jens Christian SCHWAMBORN
SCHWAMBORN, Jens Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
Sardi, Sergio Pablo; Rare and Neurological Diseases Therapeutic Area, Sanofi, Framingham, MA 01701, USA
Moda, Fabio ; Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
Corti, Stefania ; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy ; Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
Comi, Giacomo P; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy ; Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
Blandini, Fabio; Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
Tritsch, Nicolas X; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA ; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10017, USA
Bortolozzi, Mario ; Department of Physics and Astronomy 'G. Galilei', University of Padua, Padua 35131, Italy ; Veneto Institute of Molecular Medicine (VIMM), Padua 35129, Italy
Ferrero, Stefano; Division of Pathology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan 20122, Italy ; Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan 20122, Italy
Cribiù, Fulvia Milena; Division of Pathology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan 20122, Italy
Wisniewski, Thomas ; Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA ; Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA ; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
Asselta, Rosanna; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan 20072, Italy ; Medical Genetics and RNA Biology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
Aureli, Massimo; Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan 20054, Italy
Bellucci, Arianna; Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
Di Fonzo, Alessio ; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
PRIN Fondazione Cariplo Italian Ministry of Health RRC Italian Ministry of Health NIH NIA NIA Fondazione Grigioni per il Morbo di Parkinson Fresco Institute for Parkinson’s and Movement Disorders Dino Ferrari Center Mizutani Foundation for Glycoscience
Funding text :
Ministero dell\u2019Universit\u00E0 e della Ricerca 2017228L3J (R.A., M.A. and M.B.); Ministero della Salute Ricerca Corrente (A.D.F. and F.M.); Fondazione Cariplo 2015\u20131017 (M.A.); Ministero della Salute GR-2021-12372019 (F.M.); Ministero della Salute PNRRMAD-2022-12376035 (F.M.); National Institutes of Health/National Institute of Aging P30AG066512 (T.W.); National Institutes of Health/National Institute of Aging P01AG060882 (T.W.); Fondazione Grigioni per il Morbo di Parkinson (L.S.); Fondazione Regionale per la Ricerca Biomedica 825575 (A.D.F.); Mizutani Foundation for Glycoscience 220054 (M.A.).
Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18:459-480.
GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 [published correction appears in Lancet Neurol. 2021;20:e7.]. Lancet Neurol. 2018;17:939-953.
Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol. 2013;9:13-24.
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature. 1997;388: 839-840.
Shahmoradian SH, Lewis AJ, Genoud C, et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat Neurosci. 2019;22:1099-1109.
Fares MB, Jagannath S, Lashuel HA. Reverse engineering Lewy bodies: How far have we come and how far can we go? Nat Rev Neurosci. 2021;22:111-131.
Sidransky E, Nalls MA, Aasly JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361:1651-1661.
Grabowski GA. Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet. 2008;372:1263-1271.
Riboldi GM, Di Fonzo AB. GBA, Gaucher disease, and Parkinson’s disease: From genetic to clinic to new therapeutic approaches. Cells. 2019;8:364.
Mazzulli JR, Xu YH, Sun Y, et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37-52.
Maor G, Rencus-Lazar S, Filocamo M, Steller H, Segal D, Horowitz M. Unfolded protein response in Gaucher disease: From human to Drosophila. Orphanet J Rare Dis. 2013;8:140.
Schöndorf DC, Aureli M, McAllister FE, et al. iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun. 2014;5:4028.
Smith L, Schapira AHV. GBA variants and Parkinson disease: Mechanisms and treatments. Cells. 2022;11:1261.
Longhena F, Faustini G, Varanita T, et al. Synapsin III is a key component of α-synuclein fibrils in Lewy bodies of PD brains. Brain Pathol. 2018;28:875-888.
Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9: 2329-2340.
Kriks S, Shim JW, Piao J, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480:547-551.
Drummond E, Nayak S, Ueberheide B, Wisniewski T. Localized proteomics of individual neurons isolated from formalin-fixed, paraffin-embedded tissue sections using laser capture micro-dissection. In: Santamaría E, Fernández-Irigoyen J, eds. Current proteomic approaches applied to brain function. Neuromethods. Vol 127. Humana Press; 2017:289-301.
Drummond E, Nayak S, Pires G, Ueberheide B, Wisniewski T. Isolation of amyloid plaques and neurofibrillary tangles from archived Alzheimer’s disease tissue using laser-capture micro-dissection for downstream proteomics. Methods Mol Biol. 2018; 1723:319-334.
McKenzie AT, Wang M, Hauberg ME, et al. Brain cell type specific gene expression and co-expression network architectures. Sci Rep. 2018;8:8868.
Sloan SA, Darmanis S, Huber N, et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron. 2017;95:779-790.e6.
Poulin JF, Zou J, Drouin-Ouellet J, Kim KYA, Cicchetti F, Awatramani RB. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. 2014;9: 930-943.
Svennerholm L, Boström K, Fredman P, Månsson JE, Rosengren B, Rynmark BM. Human brain gangliosides: Developmental changes from early fetal stage to advanced age. Biochim Biophys Acta. 1989;1005:109-117.
Zecca L, Bellei C, Costi P, et al. New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc Natl Acad Sci U S A. 2008;105:17567-17572.
Moses HL, Ganote CE, Beaver DL, Schuffman SS. Light and electron microscopic studies of pigment in human and rhesus monkey substantia nigra and locus coeruleus. Anat Rec. 1966;155:167-183.
Gegg ME, Burke D, Heales SJR, et al. Glucocerebrosidase deficiency in substantia nigra of Parkinson disease brains. Ann Neurol. 2012;72:455-463.
Parnetti L, Chiasserini D, Persichetti E, et al. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson’s disease. Mov Disord. 2014;29:1019-1027.
Huebecker M, Moloney EB, van der Spoel AC, et al. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson’s disease. Mol Neurodegener. 2019;14:40.
Gegg ME, Sweet L, Wang BH, Shihabuddin LS, Sardi SP, Schapira AHV. No evidence for substrate accumulation in Parkinson brains with GBA mutations. Mov Disord. 2015;30:1085-1089.
Boutin M, Sun Y, Shacka JJ, Auray-Blais C. Tandem mass spectrometry multiplex analysis of glucosylceramide and galactosylceramide isoforms in brain tissues at different stages of Parkinson disease. Anal Chem. 2016;88:1856-1863.
Leyns CEG, Prigent A, Beezhold B, et al. Glucocerebrosidase activity and lipid levels are related to protein pathologies in Parkinson’s disease. NPJ Park Dis. 2023;9:74.
Ron I, Horowitz M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet. 2005;14:2387-2398.
Bendikov-Bar I, Ron I, Filocamo M, Horowitz M. Characterization of the ERAD process of the L444P mutant glucocerebrosidase variant. Blood Cells Mol Dis. 2011;46:4-10.
Hetz C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13: 89-102.
Tayebi N, Walker J, Stubblefield B, et al. Gaucher disease with parkinsonian manifestations: Does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab. 2003;79:104-109.
Wong K, Sidransky E, Verma A, et al. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab. 2004;82:192-207.
Fujiwara H, Hasegawa M, Dohmae N, et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4: 160-164.
Anderson JP, Walker DE, Goldstein JM, et al. Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 2006;281:29739-29752.
Kuzuhara S, Mori H, Izumiyama N, Yoshimura M, Ihara Y. Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta Neuropathol. 1988;75:345-353.
Henderson MX, Cornblath EJ, Darwich A, et al. Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat Neurosci. 2019;22:1248-1257.
Faustini G, Longhena F, Varanita T, et al. Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson’s disease. Acta Neuropathol. 2018;136:621-639.
Faustini G, Longhena F, Bruno A, et al. Alpha-synuclein/synapsin III pathological interplay boosts the motor response to methylphenidate. Neurobiol Dis. 2020;138:104789.
Magalhaes J, Gegg ME, Migdalska-Richards A, Schapira AH. Effects of ambroxol on the autophagy-lysosome pathway and mitochondria in primary cortical neurons. Sci Rep. 2018;8:1385.
Sardi SP, Viel C, Clarke J, et al. Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models. Proc Natl Acad Sci U S A. 2017;114:2699-2704.
Jo J, Xiao Y, Sun AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell. 2016;19:248-257.
Monzel AS, Smits LM, Hemmer K, et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Rep. 2017;8:1144-1154.
Fiorenzano A, Sozzi E, Birtele M, et al. Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat Commun. 2021;12:7302.
Baden P, Perez MJ, Raji H, et al. Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism. Nat Commun. 2023;14:1930.
Reumann D, Krauditsch C, Novatchkova M, et al. In vitro modeling of the human dopaminergic system using spatially arranged ventral midbrain–striatum–cortex assembloids. Nat Methods. 2023;20:2034-2047.
Galet B, Cheval H, Ravassard P. Patient-derived midbrain organoids to explore the molecular basis of Parkinson’s disease. Front Neurol. 2020;11:1005.
Kim H, Park HJ, Choi H, et al. Modeling G2019S-LRRK2 sporadic Parkinson’s disease in 3D midbrain organoids. Stem Cell Rep. 2019;12:518-531.
Kwak TH, Kang JH, Hali S, et al. Generation of homogeneous midbrain organoids with in vivo-like cellular composition facilitates neurotoxin-based Parkinson’s disease modeling. Stem Cells. 2020;38:727-740.
Smits LM, Reinhardt L, Reinhardt P, et al. Modeling Parkinson’s disease in midbrain-like organoids. NPJ Park Dis. 2019;5:5.
Tribl F, Arzberger T, Riederer P, Gerlach M. Tyrosinase is not detected in human catecholaminergic neurons by immunohistochemistry and western blot analysis. J Neural Transm Suppl. 2007;72:51-55.
Henderson MX, Sedor S, McGeary I, et al. Glucocerebrosidase activity modulates neuronal susceptibility to pathological α-synuclein insult. Neuron. 2020;105:822-836.e7.
Burbulla LF, Jeon S, Zheng J, Song P, Silverman RB, Krainc D. A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes in dopaminergic neuronal models of Parkinson’s disease. Sci Transl Med. 2019;11:eaau6870.
Horowitz M, Pasmanik-Chor M, Ron I, Kolodny EH. The enigma of the E326K mutation in acid β-glucocerebrosidase. Mol Genet Metab. 2011;104:35-38.
Fernandes HJR, Hartfield EM, Christian HC, et al. ER stress and autophagic perturbations lead to elevated extracellular α-synuclein in GBA-N370S Parkinson’s iPSC-derived dopamine neurons. Stem Cell Rep. 2016;6:342-356.
Kuo SH, Tasset I, Cheng MM, et al. Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. Sci Adv. 2022;8:eabm6393.
Oslowski CM, Urano F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 2011;490:71-92.
Bellucci A, Navarria L, Zaltieri M, et al. Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson’s disease: α-synuclein accumulation induces the UPR. J Neurochem. 2011;116:588-605.
Jo J, Yang L, Tran HD, et al. Lewy body-like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann Neurol. 2021;90:490-505.
Kuusisto E, Parkkinen L, Alafuzoff I. Morphogenesis of Lewy bodies: Dissimilar incorporation of α-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol. 2003;62:1241-1253.
Scudamore O, Ciossek T. Increased oxidative stress exacerbates α-synuclein aggregation in vivo. J Neuropathol Exp Neurol. 2018; 77:443-453.
Moraitou M, Dermentzaki G, Dimitriou E, et al. α-Synuclein dimerization in erythrocytes of Gaucher disease patients: Correlation with lipid abnormalities and oxidative stress. Neurosci Lett. 2016;613:1-5.
Mullin S, Smith L, Lee K, et al. Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations: A nonrandomized, noncontrolled trial. JAMA Neurol. 2020;77:427-434.
Giladi N, Alcalay RN, Cutter G, et al. Safety and efficacy of venglustat in GBA1-associated Parkinson’s disease: An international, multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2023;22:661-671.
Lunghi G, Carsana EV, Loberto N, et al. β-Glucocerebrosidase deficiency activates an aberrant lysosome-plasma membrane axis responsible for the onset of neurodegeneration. Cells. 2022;11: 2343.
Espay AJ, McFarthing K. Alpha-synuclein and the Parkinson’s disease drug pipeline. Parkinsonism Relat Disord. 2023;111: 105432.
Zaltieri M, Grigoletto J, Longhena F, et al. α-Synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. J Cell Sci. 2015;128:2231-2243.
Faustini G, Longhena F, Masato A, et al. Synapsin III gene silencing redeems alpha-synuclein transgenic mice from Parkinson’s disease-like phenotype. Mol Ther. 2022;30:1465-1483.
Schidlitzki A, Stanojlovic M, Fournier C, et al. Double-edged effects of venglustat on behavior and pathology in mice overexpressing α-synuclein. Mov Disord. 2023;38:1044-1055.