Neurology; Neurology (clinical); Cellular and Molecular Neuroscience
Abstract :
[en] Ageing is the primary risk factor for Parkinson's disease, yet the intricate interplay between these processes remains ambiguous. This position paper, a collaborative output from the PD-AGE consortium, addresses the urgent need for standardising methods in in vitro modelling. A panel of international experts recommends human induced pluripotent stem cell (iPSC)-derived models, with chemically induced ageing methods, such as the SLO cocktail, as a robust system. Furthermore, the consortium highlights the value of direct and semi-direct reprogramming for retaining donor-specific ageing phenotypes. The paper also outlines a prioritised panel of measurable parameters, categorised into senescence, inflammaging, omics profiling, and mitochondrial dysfunction, providing a consistent framework to enhance research reproducibility, investigating the nexus of ageing and Parkinson's. In addition, we provide links to SOPs ( https://doi.org/10.5281/zenodo.15056603 ) [1] to measure the key measurable ageing parameters outlined in this review to facilitate consistency and reproducibility within the field.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Bury, Alexander G; Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
Olejnik, Alicja; Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
Tocco, Chiara; Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada
Saurat, Nathalie; The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA ; Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA ; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
Stephen, Elezabeth; Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
Hockemeyer, Dirk; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA ; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA ; Chan Zuckerberg Biohub, San Francisco, CA, USA
SCHWAMBORN, Jens Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
Studer, Lorenz; The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA ; Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
Mastroberardino, Pier Giorgio; Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands ; Department of Life, Health and Environmental Sciences, Università degli Studi dell'Aquila, L'Aquila, Italy
Bolognin, Silvia; MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
Kunath, Tilo; Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
Korolchuk, Viktor I; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
Drouin-Ouellet, Janelle; Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada
Mortiboys, Heather; Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK. H.Mortiboys@sheffield.ac.uk
T.J. Collier N.M. Kanaan J.H. Kordower Ageing as a primary risk factor for Parkinson’s disease: evidence from studies of non-human primates Nat. Rev. Neurosci. 12 359 366 1:CAS:528:DC%2BC3MXmtF2lurw%3D 21587290 3387674
J.A. Driver et al. Incidence and remaining lifetime risk of Parkinson disease in advanced age Neurology 72 432 438 19188574 2676726
R. Balestrino A.H. Schapira Parkinson disease Eur. J. Neurol. 27 27 42 1:STN:280:DC%2BB3MnpslGguw%3D%3D 31631455
A.G. Bury et al. Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson disease Ann. Neurol. 82 1016 1021 1:CAS:528:DC%2BC1cXhsFKntQ%3D%3D 29149768
W. Poewe Non-motor symptoms in Parkinson’s disease Eur. J. Neurol. 15 14 20 18353132
A.S. Buchman et al. Nigral pathology and Parkinsonian signs in elders without Parkinson disease Ann. Neurol. 71 258 266 22367997 3367476
K. Double et al. The comparative biology of neuromelanin and lipofuscin in the human brain Cell. Mol. Life Sci. 65 1669 1682 1:CAS:528:DC%2BD1cXmslyltrg%3D 18278576 11131928
H. Fedorow et al. Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson’s disease Prog. Neurobiol. 75 109 124 1:CAS:528:DC%2BD2MXisFKjsb8%3D 15784302
P.L. McGeer et al. Rate of cell death in Parkinsonism indicates an active neuropathological process Ann. Neurol. J. Am. Neurol. Assoc. Child Neurol. Soc. 24 574 576 1:STN:280:DyaL1M7pt1Wqtg%3D%3D
Ma, S. Y. et al. Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol. Appl. Neurobiol.25, 394–399 (1999).
G. Rudow et al. Morphometry of the human substantia nigra in ageing and Parkinson’s disease Acta Neuropathol. 115 461 470 18297291 2431149
A. Stark B. Pakkenberg Histological changes of the dopaminergic nigrostriatal system in aging Cell Tissue Res. 318 81 92 1:STN:280:DC%2BD2crjtVansA%3D%3D 15365813
N.M. Kanaan J.H. Kordower T.J. Collier Age-related accumulation of Marinesco bodies and lipofuscin in rhesus monkey midbrain dopamine neurons: relevance to selective neuronal vulnerability J. Comp. Neurol. 502 683 700 17436290
E. Rocha et al. Aging, Parkinson’s disease, and models: what are the challenges? Aging Biol. 1 38978807 11230631 e20230010
López-Otín, C. et al. The hallmarks of aging. Cell153, 1194–1217 (2013).
Odawara, A. et al. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Sci. Rep.6, 26181 (2016).
Schapira, A. et al. Mitochondrial complex I deficiency in Parkinson’s disease. J. Neurochem. 54, 823–827 (1990).
P.J. Carling et al. Deep phenotyping of peripheral tissue facilitates mechanistic disease stratification in sporadic Parkinson’s disease Prog. Neurobiol. 187 101772 1:CAS:528:DC%2BB3cXjsV2rs74%3D 32058042
H. Mortiboys et al. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts Ann. Neurol.:J. Am. Neurol. Assoc. Child Neurol. Soc. 64 555 565 1:CAS:528:DC%2BD1MXotFOntw%3D%3D
A. Bender et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease Nat. Genet. 38 515 517 1:CAS:528:DC%2BD28XjvVGksbs%3D 16604074
J. Coxhead et al. Somatic mtDNA variation is an important component of Parkinson’s disease Neurobiol. Aging 38 217.e1 1:CAS:528:DC%2BC2MXhvVyhtbrK 26639157
A. Bender et al. Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions J. Neurol. 255 1231 1235 18604467
K.J. Krishnan et al. What causes mitochondrial DNA deletions in human cells? Nat. Genet. 40 275 279 1:CAS:528:DC%2BD1cXisVKht70%3D 18305478
M. Alexeyev et al. The maintenance of mitochondrial DNA integrity—critical analysis and update Cold Spring Harb. Perspect. Biol. 5 a012641 23637283 3632056
L.H. Sanders et al. Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson’s disease Neurobiol. Dis. 70 214 223 1:CAS:528:DC%2BC2cXhtlCjsbnE 24981012 4144978
J.C. Greenland C.H. Williams-Gray R.A. Barker The clinical heterogeneity of Parkinson’s disease and its therapeutic implications Eur. J. Neurosci. 49 328 338 30059179
R. Qi et al. A blood-based marker of mitochondrial DNA damage in Parkinson’s disease Sci. Transl. Med. 15 eabo1557 1:CAS:528:DC%2BB3sXhvVCktb7F 37647388 11135133
C. Dölle et al. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease Nat. Commun. 7 27874000 5121427 13548
E. Tresse et al. Mitochondrial DNA damage triggers spread of Parkinson’s disease-like pathology Mol. Psychiatry 28 4902 4914 1:CAS:528:DC%2BB3sXitVeltL3M 37779111 10914608
Sliter, D. A. et al. Retraction Note: Parkin and PINK1 mitigate STING-induced inflammation. Nature644, 1116 (2025).
H.M. Wilkins et al. Mitochondria-derived damage-associated molecular patterns in neurodegeneration Front. Immunol. 8 508 28491064 5405073
S.J. Chinta et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease Cell Rep. 22 930 940 1:CAS:528:DC%2BC1cXhvFagsb0%3D 29386135 5806534
C. Franceschi J. Campisi Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases J. Gerontol. Ser. A: Biomed. Sci. Med. Sci. 69 S4 S9
J.C. Acosta et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence Nat. cell Biol. 15 978 990 1:CAS:528:DC%2BC3sXpsV2jt74%3D 23770676 3732483
J.-P. Coppé et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor PLoS Biol. 6 e301 19053174 2592359
M. Riessland et al. Loss of SATB1 induces p21-dependent cellular senescence in post-mitotic dopaminergic neurons cell stem cell 25 514 530.e8 1:CAS:528:DC%2BC1MXhvVentbvP 31543366 7493192
T. Payne et al. Multimodal assessment of mitochondrial function in Parkinson’s disease Brain 147 267 280 38059801
Franck, M. et al. Nonuniversality of inflammaging across human populations. Nature Aging, 5, 1471–1480 (2025).
J.D. Negrey et al. Urinary neopterin of wild chimpanzees indicates that cell-mediated immune activity varies by age, sex, and female reproductive status Sci. Rep. 11 1:CAS:528:DC%2BB3MXhtVartL%2FM 33927233 8085242 9298
P. Zhang et al. Inhibition of S6K lowers age-related inflammation and increases lifespan through the endolysosomal system Nat. Aging 4 491 509 1:CAS:528:DC%2BB2cXkslGkurk%3D 38413780 11031405
R.A. Barker A. Björklund Animal models of Parkinson’s disease: are they useful or not? J. Parkinson’s. Dis. 10 1335 1342
T.D. Halazonetis V.G. Gorgoulis J. Bartek An oncogene-induced DNA damage model for cancer development science 319 1352 1355 1:CAS:528:DC%2BD1cXislSkt7c%3D 18323444
M. Serrano et al. Oncogenic Ras provokes premature cell senescence associated with the accumulation of p53 and p16INK4a Cell 88 593 602 1:CAS:528:DyaK2sXhvVSit7k%3D 9054499
C.B. Harley A.B. Futcher C.W. Greider Telomeres shorten during ageing of human fibroblasts Nature 345 458 460 1:CAS:528:DyaK3cXksFKntb4%3D 2342578
N. Dasgupta et al. The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression npj Aging 10 48 39448585 11502686
B.B. McConnell et al. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts Curr. Biol. 8 351 354 1:CAS:528:DyaK1cXhvFaqsbo%3D 9512419
E. Rovillain et al. An RNA interference screen for identifying downstream effectors of the p53 and pRB tumour suppressor pathways involved in senescence BMC Genomics 12 1 12
D. Jurk et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response Aging Cell 11 996 1004 1:CAS:528:DC%2BC38XhvFWitbrN 22882466
S. Raffaele et al. TNF production and release from microglia via extracellular vesicles: impact on brain functions Cells 9 2145 1:CAS:528:DC%2BB3cXis1GjsLfE 32977412 7598215
T. Maeda et al. Aging-associated alteration of telomere length and subtelomeric status in female patients with Parkinson’s disease J. Neurogenet. 26 245 251 1:CAS:528:DC%2BC38XhtVCmu7zK 22364520
Martin-Ruiz, C. et al. Senescence and inflammatory markers for predicting clinical progression in Parkinson’s disease: the ICICLE-PD study. J Parkinsons Dis.10, 193–206 (2020).
M. Asghar et al. Mitochondrial biogenesis, telomere length and cellular senescence in Parkinson’s disease and Lewy body dementia Sci. Rep. 12 1:CAS:528:DC%2BB38XislansbvN 36266468 9584960 17578
D.A. Forero et al. Telomere length in Parkinson’s disease: A meta-analysis Exp. Gerontol. 75 53 55 1:CAS:528:DC%2BC28XpsVGjug%3D%3D 26772888 4786001
G. Hudson et al. No evidence of substantia nigra telomere shortening in Parkinson’s disease Neurobiol. Aging 32 2107. e3 2107.e5 21794951
C. Correia-Melo et al. Mitochondria are required for pro-ageing features of the senescent phenotype EMBO J. 35 724 742 1:CAS:528:DC%2BC28XhvFWisbc%3D 26848154 4818766
G.P. Dimri et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo Proc. Natl. Acad. Sci. 92 9363 9367 1:CAS:528:DyaK2MXosVWlur0%3D 7568133 40985
J. Lee et al. Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells Biochem. Biophys. Res. Commun. 525 563 569 1:CAS:528:DC%2BB3cXktlygs7g%3D 32115145
M. Narita et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence Cell 113 703 716 1:CAS:528:DC%2BD3sXkvVekt7g%3D 12809602
F.K. Noubissi et al. Detection and quantification of γ-H2AX using a dissociation enhanced lanthanide fluorescence immunoassay Sci. Rep. 11 1:CAS:528:DC%2BB3MXpvFaht7k%3D 33903655 8076281 8945
T.J. Bussian et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline Nature 562 578 582 1:CAS:528:DC%2BC1cXhslKjsLzJ 30232451 6206507
Y. Hou et al. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS–STING Proc. Natl. Acad. Sci. 118 e2011226118 1:CAS:528:DC%2BB3MXitVCmsr3E 34497121 8449423
K. Itahana J. Campisi G.P. Dimri Mechanisms of cellular senescence in human and mouse cells Biogerontology 5 1 10 1:CAS:528:DC%2BD2cXhsFyksrg%3D 15138376
Q.-Q. Shen et al. Cell senescence induced by toxic interaction between α-synuclein and iron precedes nigral dopaminergic neuron loss in a mouse model of Parkinson’s disease Acta Pharmacol. Sin. 45 268 281 1:CAS:528:DC%2BB3sXhvVGrtbvK 37674042
M.-L. Xia et al. Astragaloside IV inhibits astrocyte senescence: implication in Parkinson’s disease J. Neuroinflamm. 17 1 13
M. Xu et al. Senolytics improve physical function and increase lifespan in old age Nat. Med. 24 1246 1256 1:CAS:528:DC%2BC1cXhtlWjs7nE 29988130 6082705
S. Ishikawa F. Ishikawa Proteostasis failure and cellular senescence in long-term cultured postmitotic rat neurons Aging Cell 19 e13071 1:CAS:528:DC%2BC1MXit1Sru7%2FM 31762159
X. Liu et al. The combination of nicotinamide mononucleotide and lycopene prevents cognitive impairment and attenuates oxidative damage in D-galactose induced aging models via Keap1-Nrf2 signaling Gene 822 146348 1:CAS:528:DC%2BB38XkvFegt7o%3D 35183682
D. Moreno-Blas et al. Cortical neurons develop a senescence-like phenotype promoted by dysfunctional autophagy Aging 11 6175 1:CAS:528:DC%2BB3cXlt1yhsLc%3D 31469660 6738425
E. Trias et al. Emergence of microglia bearing senescence markers during paralysis progression in a rat model of inherited ALS Front. Aging Neurosci. 11 42 1:CAS:528:DC%2BC1MXitlWntLnK 30873018 6403180
A. Csiszar et al. Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: reversal by resveratrol treatment J. Gerontol. Ser. A: Biomed. Sci. Med. Sci. 67 811 820
L. Yan et al. Stem cell transplantation extends the reproductive life span of naturally aging cynomolgus monkeys Cell Discov. 10 111 1:CAS:528:DC%2BB2cXisVartLrF 39496598 11535534
J.M. Fearnley A.J. Lees Ageing and Parkinson’s disease: substantia nigra regional selectivity Brain 114 2283 2301 1933245
R.S. Burns et al. A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine Proc. Natl. Acad. Sci. 80 4546 4550 1:CAS:528:DyaL3sXkvVKisr8%3D 6192438 384076
A. Ovadia Z. Zhang D.M. Gash Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys Neurobiol. aging 16 931 937 1:CAS:528:DyaK28XnsVWjtw%3D%3D 8622784
U. Ungerstedt 6-Hydroxy-dopamine induced degeneration of central monoamine neurons Eur. J. Pharmacol. 5 107 110 1:CAS:528:DyaF1MXns1eisw%3D%3D 5718510
N. Van Den Berge A. Ulusoy Animal models of brain-first and body-first Parkinson’s disease Neurobiol. Dis. 163 105599 34952161
N.P. Visanji et al. α-Synuclein-based animal models of Parkinson’s disease: challenges and opportunities in a new era Trends Neurosci. 39 750 762 1:CAS:528:DC%2BC28XhsFyru73I 27776749
R.L. Davis et al. Serum FGF-21, GDF-15, and blood mtDNA copy number are not biomarkers of Parkinson disease Neurol.: Clin. Pract. 10 40 46 32190419
A. Pyle et al. Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease Neurobiol. Aging 38 216.e7 216. e10 1:CAS:528:DC%2BC2MXhvVyht7rK 26639155
M.J. Devine et al. Parkinson’s disease induced pluripotent stem cells with triplication of the α-synuclein locus Nat. Commun. 2 21863007 440
M.A. Olesen F. Villavicencio-Tejo R.A. Quintanilla The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders Transl. Neurodegen. 11 1:CAS:528:DC%2BB38XhvVShsLrO 36
C. Yang et al. Single-cell spatiotemporal analysis reveals cell fates and functions of transplanted mesenchymal stromal cells during bone repair Stem Cell Rep. 17 2318 2333 1:CAS:528:DC%2BB38Xis1WqurnN
G. Ambrosi et al. Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson’s disease Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 1842 1385 1394 1:CAS:528:DC%2BC2cXht1OrurnE
P. del Hoyo et al. Oxidative stress in skin fibroblasts cultures from patients with Parkinson’s disease BMC Neurol. 10 1 7
A. Grünewald et al. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts PloS One 5 e12962 20885945 2946349
C. Mytilineou et al. Impaired oxidative decarboxylation of pyruvate in fibroblasts from patients with Parkinson’s disease J. Neural Transm. -Parkinson’s. Dis. Dement. Sect. 8 223 228 1:STN:280:DyaK2M3mslehtw%3D%3D
A. Rakovic et al. Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients Hum. Mol. Genet. 19 3124 3137 1:CAS:528:DC%2BC3cXpt1OmtL8%3D 20508036
B. Dehay et al. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration Proc. Natl. Acad. Sci. 109 9611 9616 1:CAS:528:DC%2BC38XptlWjtLw%3D 22647602 3386132
L.N. Hockey et al. Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition J. Cell Sci. 128 232 238 1:CAS:528:DC%2BC2MXksFeisro%3D 25416817 4294771
A. McNeill et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells Brain 137 1481 1495 24574503 3999713
G. Smith et al. Fibroblast biomarkers of sporadic Parkinson’s disease and LRRK2 kinase inhibition Mol. Neurobiol. 53 5161 5177 1:CAS:528:DC%2BC2MXhsFKhsL%2FP 26399642
M. Usenovic et al. Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity J. Neurosci. 32 4240 4246 1:CAS:528:DC%2BC38XkslCmtLo%3D 22442086 3462811
C.D. Wiley et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype Cell Metab. 23 303 314 1:CAS:528:DC%2BC2MXitVSksbrM 26686024
J.D. Miller et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging Cell Stem Cell 13 691 705 1:CAS:528:DC%2BC3sXhvFyls7rI 24315443 4153390
Y. Ren et al. Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons Stem Cells 33 68 78 1:CAS:528:DC%2BC2MXis1OjsLw%3D 25332110
F. Soldner et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors Cell 136 964 977 1:CAS:528:DC%2BD1MXltFSnsb0%3D 19269371 2787236
K. Takahashi et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors Cell 131 861 872 1:CAS:528:DC%2BD2sXhsVCntbbK 18035408
J. Kim et al. Direct reprogramming of mouse fibroblasts to neural progenitors Proc. Natl. Acad. Sci. 108 7838 7843 1:CAS:528:DC%2BC3MXmsVSktLs%3D 21521790 3093517
K. Meyer et al. Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS Proc. Natl. Acad. Sci. 111 829 832 1:CAS:528:DC%2BC2cXotFCnsA%3D%3D 24379375
R. Ambasudhan et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions Cell Stem Cell 9 113 118 1:CAS:528:DC%2BC3MXpvFGitrs%3D 21802386 4567246
Z.P. Pang et al. Induction of human neuronal cells by defined transcription factors Nature 476 220 223 1:CAS:528:DC%2BC3MXhtVOkurzN 21617644 3159048
A.S. Yoo et al. MicroRNA-mediated conversion of human fibroblasts to neurons Nature 476 228 231 1:CAS:528:DC%2BC3MXoslymtr4%3D 21753754 3348862
E. Quist et al. Transcription factor-based direct conversion of human fibroblasts to functional astrocytes Stem Cell Rep. 17 1620 1635 1:CAS:528:DC%2BB38XitFGqtrvP
S.M. Chambers et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling Nat. Biotechnol. 27 275 280 1:CAS:528:DC%2BD1MXisVOrtrc%3D 19252484 2756723
R.M. Marton J.P. Ioannidis A comprehensive analysis of protocols for deriving dopaminergic neurons from human pluripotent stem cells Stem Cells Transl. Med. 8 366 374 30537442
B. Byers et al. SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate α-synuclein and are susceptible to oxidative stress PloS One 6 e26159 22110584 3217921
S.Y. Chung et al. Parkin and PINK1 patient iPSC-derived midbrain dopamine neurons exhibit mitochondrial dysfunction and α-synuclein accumulation Stem Cell Rep. 7 664 677 1:CAS:528:DC%2BC28XhsFajsLfJ
O. Cooper et al. Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid Mol. Cell. Neurosci. 45 258 266 1:CAS:528:DC%2BC3cXhtFGhsbjM 20603216 2945816
Y. Imaizumi et al. Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue Mol. Brain 5 1 13
H. Jiang et al. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells Nat. Commun. 3 22314364 668
H.N. Nguyen et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress Cell Stem Cell 8 267 280 1:CAS:528:DC%2BC3MXisFGqtL0%3D 21362567 3578553
S.D. Ryan et al. Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription Cell 155 1351 1364 1:CAS:528:DC%2BC3sXhvVKjur7K 24290359 4028128
A. Sánchez-Danés et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease EMBO Mol. Med. 4 380 395 22407749 3403296
L.H. Sanders et al. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction Neurobiol. Dis. 62 381 386 1:CAS:528:DC%2BC2cXjt1Ojsw%3D%3D 24148854
D.C. Schöndorf et al. The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease Cell Rep. 23 2976 2988 29874584
A.J. Schwab A.D. Ebert Neurite aggregation and calcium dysfunction in iPSC-derived sensory neurons with Parkinson’s disease-related LRRK2 G2019S mutation Stem cell Rep. 5 1039 1052 1:CAS:528:DC%2BC2MXhvFGis7jM
P. Seibler et al. Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells J. Neurosci. 31 5970 5976 1:CAS:528:DC%2BC3MXlsFSqs7Y%3D 21508222 3091622
F. Soldner et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations Cell 146 318 331 1:CAS:528:DC%2BC3MXptlekt7w%3D 21757228 3155290
S. Suzuki et al. Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons Biochemical Biophysical Res. Commun. 483 88 93 1:CAS:528:DC%2BC2sXlt12qtw%3D%3D
V. Busskamp et al. Rapid neurogenesis through transcriptional activation in human stem cells Mol. Syst. Biol. 10 760 25403753 4299601
Y. Zhang et al. Rapid single-step induction of functional neurons from human pluripotent stem cells Neuron 78 785 798 1:CAS:528:DC%2BC3sXptV2nsr8%3D 23764284 3751803
X. Liu et al. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells Cell Res. 22 321 332 1:CAS:528:DC%2BC38Xhsl2gurg%3D 22105488
C.-H. Park et al. Differential actions of the proneural genes encoding Mash1 and neurogenins in Nurr1-induced dopamine neuron differentiation J. Cell Sci. 119 2310 2320 1:CAS:528:DC%2BD28Xms1Gis78%3D 16723737
Y. Xue et al. Synthetic mRNAs drive highly efficient iPS cell differentiation to dopaminergic neurons Stem Cells Transl. Med. 8 112 123 1:CAS:528:DC%2BC1MXhsFKhsL3M 30387318
C. Wang et al. Scalable production of iPSC-derived human neurons to identify tau-lowering compounds by high-content screening Stem Cell Rep. 9 1221 1233 1:CAS:528:DC%2BC2sXhsFOrtrnJ
Frattini, E. et al. Lewy pathology formation in patient-derived GBA1 Parkinson’s disease midbrain organoids. Brain p. awae365. (2024).
M.S. Kim et al. Advanced human iPSC-based preclinical model for Parkinson’s disease with optogenetic alpha-synuclein aggregation Cell Stem Cell 30 973 986.e11 1:CAS:528:DC%2BB3sXht1GrsrjJ 37339636 10829432
G. Morrone Parfitt et al. Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson’s disease model Nat. Commun. 15 1:CAS:528:DC%2BB2cXhtVOlt7Y%3D 38200091 10781970 447
M.N. Muwanigwa et al. Alpha-synuclein pathology is associated with astrocyte senescence in a midbrain organoid model of familial Parkinson’s disease Mol. Cell. Neurosci. 128 103919 1:CAS:528:DC%2BB2cXivFSjtrs%3D 38307302
L.M. Smits et al. Modeling Parkinson’s disease in midbrain-like organoids NPJ Parkinson’s. Dis. 5 5
N. Wulansari et al. Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson’s disease-linked DNAJC6 mutations Sci. Adv. 7 eabb1540 1:CAS:528:DC%2BB3MXnsFOru78%3D 33597231 7888924
K. Barmpa et al. Modeling early phenotypes of Parkinson’s disease by age-induced midbrain-striatum assembloids Commun. Biol. 7 1561 39580573 11585662
S. Kriks et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease Nature 480 547 551 1:CAS:528:DC%2BC3MXhsVagtLfP 22056989 3245796
J. Jo et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons Cell Stem Cell 19 248 257 1:CAS:528:DC%2BC28Xht1Ghu7jO 27476966 5510242
A.S. Monzel et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells Stem cell Rep. 8 1144 1154 1:CAS:528:DC%2BC2sXmt12rurk%3D
X. Qian et al. Generation of human brain region–specific organoids using a miniaturized spinning bioreactor Nat. Protoc. 13 565 580 1:CAS:528:DC%2BC1cXjtFCrtLs%3D 29470464 6241211
K. Grenier J. Kao P. Diamandis Three-dimensional modeling of human neurodegeneration: brain organoids coming of age Mol. Psychiatry 25 254 274 31444473
M. Torrens-Mas et al. Organoids: an emerging tool to study aging signature across human tissues. modeling aging with patient-derived organoids Int. J. Mol. Sci. 22 10547 1:CAS:528:DC%2BB3MXitlGmu77F 34638891 8508868
L. Lapasset et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state Genes Dev. 25 2248 2253 1:CAS:528:DC%2BC3MXhsFaktLzP 22056670 3219229
R.M. Marion et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells Cell Stem Cell 4 141 154 1:CAS:528:DC%2BD1MXitFSjtLk%3D 19200803
Y. Kim et al. Mitochondrial aging defects emerge in directly reprogrammed human neurons due to their metabolic profile Cell Rep. 23 2550 2558 1:CAS:528:DC%2BC1cXhtVCnt7jI 29847787 6478017
J. Drouin-Ouellet et al. Age-related pathological impairments in directly reprogrammed dopaminergic neurons derived from patients with idiopathic Parkinson’s disease Stem Cell Rep. 17 2203 2219 1:CAS:528:DC%2BB38Xis1WqurnP
S.L. Schaffner M.S. Kobor DNA methylation as a mediator of genetic and environmental influences on Parkinson’s disease susceptibility: Impacts of alpha-Synuclein, physical activity, and pesticide exposure on the epigenome Front. Genet. 13 971298 1:CAS:528:DC%2BB38XisVSlu7zJ 36061205 9437223
E. Vera N. Bosco L. Studer Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation Cell Rep. 17 1184 1192 1:CAS:528:DC%2BC28XhslSntLvL 27760320 5089807
M. Caiazzo et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts Nature 476 224 227 1:CAS:528:DC%2BC3MXotlCms7w%3D 21725324
Rusilowicz-Jones, E. V. et al. Benchmarking a highly selective USP30 inhibitor for enhancement of mitophagy and pexophagy. Life Sci. Alliance5, e202101287 (2022).
A. Schwartzentruber et al. Oxidative switch drives mitophagy defects in dopaminergic parkin mutant patient neurons Sci. Rep. 10 1:CAS:528:DC%2BB3cXit1Oqur7J 32968089 7511396 15485
A. Abyzov et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells Nature 492 438 442 1:CAS:528:DC%2BC38XhslagsrvO 23160490 3532053
B.A. Biddy et al. Single-cell mapping of lineage and identity in direct reprogramming Nature 564 219 224 1:CAS:528:DC%2BC1cXisVarsr7K 30518857 6635140
B.A. Hersbach et al. Probing cell identity hierarchies by fate titration and collision during direct reprogramming Mol. Syst. Biol. 18 e11129 1:CAS:528:DC%2BB38Xis1CrsbbE 36106915 9476893
S. Chanda et al. Generation of induced neuronal cells by the single reprogramming factor ASCL1 Stem Cell Rep. 3 282 296 1:CAS:528:DC%2BC2cXhtFWitLjL
Bury, A. G. et al. Standard Operating Procedures (SOPs) for Senescence and Mitochondrial Function Assays in Cellular Models of Parkinson’s Disease and Ageing. Zenodo. (2025).
K. Leng et al. CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states Nat. Neurosci. 25 1528 1542 1:CAS:528:DC%2BB38XislCjtLrI 36303069 9633461
G. Sturm et al. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases Commun. Biol. 6 22 1:CAS:528:DC%2BB3sXht1WqtL8%3D 36635485 9837150
A. Tyshkovskiy S. Zhang V.N. Gladyshev Accelerated transcriptional elongation during aging impairs longevity Cell Res. 33 817 818 1:CAS:528:DC%2BB3sXhtFOltr3M 37253838 10624826
B. Wang et al. The senescence-associated secretory phenotype and its physiological and pathological implications Nat. Rev. Mol. Cell Biol. 25 958 978 1:CAS:528:DC%2BB2cXovF2gs74%3D 38654098
S.R. Guttikonda et al. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer’s disease Nat. Neurosci. 24 343 354 1:CAS:528:DC%2BB3MXjsFKhsrY%3D 33558694 8382543
J. Park et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease Nat. Neurosci. 21 941 951 1:CAS:528:DC%2BC1cXht1eisrrP 29950669 6800152
C.M. Leung et al. A guide to the organ-on-a-chip Nat. Rev. Methods Prim. 2 33 1:CAS:528:DC%2BB38Xht1ynt7zK
L.A. Low et al. Organs-on-chips: into the next decade Nat. Rev. Drug Discov. 20 345 361 1:CAS:528:DC%2BB3MXhsVGmsrfJ 32913334
C. Ma et al. Organ-on-a-chip: a new paradigm for drug development Trends Pharmacol. Sci. 42 119 133 33341248
D.N. Tavakol S. Fleischer G. Vunjak-Novakovic Harnessing organs-on-a-chip to model tissue regeneration Cell Stem Cell 28 993 1015 1:CAS:528:DC%2BB3MXht1Kgsr7P 34087161 8186820
G. Vunjak-Novakovic K. Ronaldson-Bouchard M. Radisic Organs-on-a-chip models for biological research Cell 184 4597 4611 1:CAS:528:DC%2BB3MXhvFGrtLvJ 34478657 8417425
Q. Wu et al. Organ-on-a-chip: recent breakthroughs and future prospects Biomed. Eng. online 19 1 19 1:CAS:528:DC%2BB3cXltVWgtr4%3D
B. Zhang et al. Advances in organ-on-a-chip engineering Nat. Rev. Mater. 3 257 278
N.S. Corsini J.A. Knoblich Human organoids: New strategies and methods for analyzing human development and disease Cell 185 2756 2769 1:CAS:528:DC%2BB38XhvV2lu7%2FL 35868278
J. Kim B.-K. Koo J.A. Knoblich Human organoids: model systems for human biology and medicine Nat. Rev. Mol. Cell Biol. 21 571 584 1:CAS:528:DC%2BB3cXhtlCks7vM 32636524 7339799
G. Rossi A. Manfrin M.P. Lutolf Progress and potential in organoid research Nat. Rev. Genet. 19 671 687 1:CAS:528:DC%2BC1cXhslCjurfF 30228295
F. Schutgens H. Clevers Human organoids: tools for understanding biology and treating diseases Annu. Rev. Pathol.: Mech. Dis. 15 211 234 1:CAS:528:DC%2BC1MXhvVemsbbP
A. McTague et al. Genome editing in iPSC-based neural systems: From disease models to future therapeutic strategies Front. Genome Edit. 3 630600
M. Madrid et al. Autologous induced pluripotent stem cell–based cell therapies: Promise, progress, and challenges Curr. Protoc. 1 e88 1:CAS:528:DC%2BB3MXntl2gtbg%3D 33725407
J.S. Schweitzer et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease N. Engl. J. Med. 382 1926 1932 1:CAS:528:DC%2BB3cXps1Wqt74%3D 32402162 7288982
J.S. Schweitzer B. Song K.-S. Kim A step closer to autologous cell therapy for Parkinson’s disease Cell Stem Cell 28 595 597 1:CAS:528:DC%2BB3MXotFagtLg%3D 33798419
F.A. Oyefeso et al. Effects of acute low-moderate dose ionizing radiation to human brain organoids Plos one 18 e0282958 1:CAS:528:DC%2BB3sXht1ehsL3P 37256873 10231836
R. Kreienkamp et al. A cell-intrinsic interferon-like response links replication stress to cellular aging caused by progerin Cell Rep. 22 2006 2015 1:CAS:528:DC%2BC1cXjtFCktLs%3D 29466729 5848491
T. Russo et al. The SATB1-MIR22-GBA axis mediates glucocerebroside accumulation inducing a cellular senescence-like phenotype in dopaminergic neurons Aging Cell 23 e14077 1:CAS:528:DC%2BB2cXivV2gsbg%3D 38303548 11019121
Zhang, C. et al. Identifying age-modulating compounds using a novel computational framework for evaluating transcriptional age. Aging Cell24, e70075 (2025).
N. Saurat et al. Genome-wide CRISPR screen identifies neddylation as a regulator of neuronal aging and AD neurodegeneration Cell Stem Cell 31 1162 1174.e8 1:CAS:528:DC%2BB2cXhtl2ku7bL 38917806 11405001
A. Fathi et al. Chemically induced senescence in human stem cell-derived neurons promotes phenotypic presentation of neurodegeneration Aging Cell 21 e13541 1:CAS:528:DC%2BB38Xhs1Oiuw%3D%3D 34953016
G.S. Leandro P. Sykora V.A. Bohr The impact of base excision DNA repair in age-related neurodegenerative diseases Mutat. Res. Fundam. Mol. Mech. Mutagen. 776 31 39 1:CAS:528:DC%2BC2MXmslGgtQ%3D%3D
S. Maynard et al. DNA damage, DNA repair, aging, and neurodegeneration Cold Spring Harb. Perspect. Med. 5 a025130 26385091 4588127
S. Armanville et al. Chemically induced senescence prompts functional changes in human microglia-like cells J. Immunol. Res. 2025 3214633 1:CAS:528:DC%2BB2MXltFCnsLw%3D 40041406 11876530
N. Gatto et al. Directly converted astrocytes retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease Aging Cell 20 e13281 1:CAS:528:DC%2BB3cXisFOnur3M 33314575
C.J. Huh et al. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts elife 5 e18648 27644593 5067114
J. Mertens et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects Cell Stem Cell 17 705 718 1:CAS:528:DC%2BC2MXhs1ChtL3I 26456686 5929130
K. Pircs et al. Distinct subcellular autophagy impairments in induced neurons from patients with Huntington’s disease Brain 145 3035 3057 34936701
M.B. Victor et al. Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes Nat. Neurosci. 21 341 352 1:CAS:528:DC%2BC1cXltVyhs7c%3D 29403030 5857213
L.S. Capano et al. Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons Cell Stem Cell 29 918 932.e8 1:CAS:528:DC%2BB38XhsVCnsbnN 35659876 9176216
S.P. Allen et al. C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis Brain 142 3771 3790 31647549 6906594
N. Varghese et al. From young to old: mimicking neuronal aging in directly converted neurons from young donors Cells 13 1260 1:CAS:528:DC%2BB2cXhvFWrsrvO 39120291 11311457
J. Drouin-Ouellet et al. REST suppression mediates neural conversion of adult human fibroblasts via microRNA-dependent and-independent pathways EMBO Mol. Med. 9 1117 1131 1:CAS:528:DC%2BC2sXhtVCgtrzL 28646119 5538296
E. Samoylova V. Baklaushev Cell reprogramming preserving epigenetic age: advantages and limitations Biochemistry 85 1035 1047 1:CAS:528:DC%2BB3cXit1GgtLfK 33050850
G.Y. Cederquist et al. Specification of positional identity in forebrain organoids Nat. Biotechnol. 37 436 444 1:CAS:528:DC%2BC1MXosV2rurg%3D 30936566 6447454
K. Chanoumidou et al. One-step reprogramming of human fibroblasts into oligodendrocyte-like cells by SOX10, OLIG2, and NKX6. 2 Stem Cell Rep. 16 771 783 1:CAS:528:DC%2BB3MXhtFGntbrP
W. Hu et al. Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules cell stem cell 17 204 212 1:CAS:528:DC%2BC2MXht1CrtLnO 26253202
Z. Sun et al. Modeling late-onset Alzheimer’s disease neuropathology via direct neuronal reprogramming Science 385 adl2992 1:CAS:528:DC%2BB2cXitVenu7nF 39088624 11787906
C. López-Otín et al. Hallmarks of aging: An expanding universe Cell 186 243 278 36599349
J. Rutledge H. Oh T. Wyss-Coray Measuring biological age using omics data Nat. Rev. Genet. 23 715 727 1:CAS:528:DC%2BB38XhsFCrsrbI 35715611 10048602
W. Poewe et al. Parkinson disease Nat. Rev. Dis. Prim. 3 1 21
A.T. Lu et al. Universal DNA methylation age across mammalian tissues Nat. Aging 3 1144 1166 1:CAS:528:DC%2BB3sXhslSnt7%2FF 37563227 10501909