Alanine and glutathione targeting of dopamine- or ibuprofen-coupled polypeptide nanocarriers increases both crossing and protective effects on a blood-brain barrier model.
Mészáros, Mária; Phan, Thi Ha My; Vigh, Judit Pet al.
2025 • In Fluids and Barriers of the CNS, 22 (1), p. 18
[en] [en] BACKGROUND: Targeting the blood-brain barrier (BBB) is a key step for effective brain delivery of nanocarriers. We have previously discovered that combinations of BBB nutrient transporter ligands alanine and glutathione (A-GSH), increase the permeability of vesicular and polypeptide nanocarriers containing model cargo across the BBB. Our aim was to investigate dopamine- and ibuprofen-coupled 3-armed poly(L-glutamic acid) nanocarriers targeted by A-GSH for transfer across a novel human co-culture model with induced BBB properties. In addition, the protective effect of ibuprofen containing nanoparticles on cytokine-induced barrier damage was also measured.
METHOD: Drug-coupled nanocarriers were synthetized and characterized by dynamic light scattering and transmission electron microscopy. Cellular effects, uptake, and permeability of the nanoparticles were investigated on a human stem cell-based co-culture BBB model with improved barrier properties induced by a small molecular cocktail. The model was characterized by immunocytochemistry and permeability for marker molecules. Nanocarrier uptake in human brain endothelial cells and midbrain organoids was quantified by spectrofluorometry and visualized by confocal microscopy. The mechanisms of cellular uptake were explored by addition of free targeting ligands, endocytic and metabolic inhibitors, co-localization of nanocarriers with intracellular organs, and surface charge modification of cells. The protective effect of ibuprofen-coupled nanocarriers was investigated against cytokine-induced barrier damage by impedance and permeability measurements.
RESULTS: Targeted nanoformulations of both drugs showed elevated cellular uptake in a time-dependent, active manner via endocytic mechanisms. Addition of free ligands inhibited the cellular internalization of targeted nanocarriers suggesting the crucial role of ligands in the uptake process. A higher permeability across the BBB model was measured for targeted nanocarriers. After crossing the BBB, targeted dopamine nanocarriers subsequently entered midbrain-like organoids derived from healthy and Parkinson's disease patient-specific stem cells. The ibuprofen-coupled targeted nanocarriers showed protective effects against cytokine-induced barrier damage.
CONCLUSION: BBB-targeted polypeptide nanoparticles coupled to therapeutic molecules were effectively taken up by brain organoids or showing a BBB protective effect indicating potential applications in nervous system pathologies.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Mészáros, Mária; Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary ; Faculty of Health Sciences, One Health Institute, University of Debrecen, Nagyerdei Krt. 98, 4032, Debrecen, Hungary
Phan, Thi Ha My; Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
Vigh, Judit P; Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary ; Doctoral School of Biology, University of Szeged, Dugonics Tér 13, 6720, Szeged, Hungary
Porkoláb, Gergő; Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary ; Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
Kocsis, Anna; Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
Szecskó, Anikó; Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary ; Doctoral School of Biology, University of Szeged, Dugonics Tér 13, 6720, Szeged, Hungary
Páli, Emese K; Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
Cser, Nárcisz M; Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
Polgár, Tamás F; Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary ; Theoretical Medicine Doctoral School, University of Szeged, Tisza Lajos Krt. 97, 6722, Szeged, Hungary
Kecskeméti, Gábor; Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 8, 6720, Szeged, Hungary
Walter, Fruzsina R; Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
SCHWAMBORN, Jens Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
Janáky, Tamás; Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 8, 6720, Szeged, Hungary
Jan, Jeng-Shiung; Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
Veszelka, Szilvia; Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary. veszelka.szilvia@brc.hu
Deli, Mária A; Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary. deli.maria@brc.hu
Alanine and glutathione targeting of dopamine- or ibuprofen-coupled polypeptide nanocarriers increases both crossing and protective effects on a blood-brain barrier model.
National Research, Development and Innovation Office, Budapest, Hungary Gedeon Richter Plc. Centenarial Foundation New National Excellence Program of the Ministry for Innovation and Technology National Academy of Scientist Education Program of the National Biomedical Foundation under the sponsorship of the Hungarian Ministry of Culture and Innovation New National Excellence Program Egyetemi Kutatói Ösztöndíj Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund Hungarian Research Network National Science Technology Council, Taiwan Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the FK_22 funding scheme National Research, Development and Innovation Office of Hungary HUN-REN Biological Research Centre, Szeged
Funding text :
Open access funding provided by HUN-REN Biological Research Centre, Szeged.Open access funding provided by HUN-REN Biological Research Centre, Szeged. This work was funded by the National Research, Development and Innovation Office of Hungary, grant numbers NNE-29617 (M-ERA.NET2 nanoPD) and K143766 (for M.A.D.). M.M. was supported by the research grant (PD 138930) of the National Research, Development and Innovation Office, Budapest, Hungary, the Gedeon Richter Plc. Centenarial Foundation (H-1103 Budapest, Gy\u00F6mr\u0151i str. 19\u201321. Hungary). J.P.V. was supported by the New National Excellence Program of the Ministry for Innovation and Technology (\u00DANKP-23-3-SZTE-535). G.P. was supported by the National Academy of Scientist Education Program of the National Biomedical Foundation under the sponsorship of the Hungarian Ministry of Culture and Innovation. E.K.P. was supported by the National Academy of Scientist Education Program of the National Biomedical Foundation under the sponsorship of the Hungarian Ministry of Culture and Innovation. T.F.P. was supported by the \u00DANKP-23-3-SZTE-315 New National Excellence Program and the EK\u00D6P-393 Egyetemi Kutat\u00F3i \u00D6szt\u00F6nd\u00EDj Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund. F.R.W. was supported by the grant SA-111/2021 from the Hungarian Research Network. J.S.J. was supported by the National Science Technology Council, Taiwan: NSTC107-2923-M-006-002-MY3 (M-ERA.NET2 nanoPD). S.V. was supported by the project no.143233, which has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the FK_22 funding scheme.
N.J. Abbott A.A. Patabendige D.E. Dolman S.R. Yusof D.J. Begley Structure and function of the blood–brain barrier Neurobiol Dis 37 1 13 25 1:CAS:528:DC%2BD1MXhsVGms73P 10.1016/j.nbd.2009.07.030 19664713
N.J. Abbott Blood–brain barrier structure and function and the challenges for CNS drug delivery J Inherit Metab Dis 36 3 437 449 1:CAS:528:DC%2BC3sXnsFGis7w%3D 10.1007/s10545-013-9608-0 23609350
W.M. Pardridge A historical review of brain drug delivery Pharmaceutics 14 6 1283 1:CAS:528:DC%2BB38XhslKjurzI 10.3390/pharmaceutics14061283 35745855 9229021
A.L. Bartels K.L. Leenders Parkinson's disease: the syndrome, the pathogenesis and pathophysiology Cortex 45 8 915 921 10.1016/j.cortex.2008.11.010 19095226
Deli MA. Drug transport and the blood-brain barrier. In: Tihanyi K, Vastag M, editors. Solubility, delivery, and ADME problems of drugs and drug-candidates. Bentham Science Publishers Ltd., Washington; 2011. p. 144–165.
E. Puris M. Gynther J. Huttunen A. Petsalo K.M. Huttunen L-type amino acid transporter 1 utilizing prodrugs: how to achieve effective brain delivery and low systemic exposure of drugs J Control Release 261 93 104 1:CAS:528:DC%2BC2sXhtVyqu7vE 10.1016/j.jconrel.2017.06.023 28662899
P.A. LeWitt Levodopa therapy for Parkinson's disease: pharmacokinetics and pharmacodynamics Mov Disord 30 1 64 72 1:CAS:528:DC%2BC2MXmslantA%3D%3D 10.1002/mds.26082 25449210
M.T. Heneka M.J. Carson J. El Khoury G.E. Landreth F. Brosseron D.L. Feinstein et al. Neuroinflammation in Alzheimer's disease Lancet Neurol 14 4 388 405 1:CAS:528:DC%2BC2MXkvVSksrw%3D 10.1016/S1474-4422(15)70016-5 25792098 5909703
M.A. Erickson W.A. Banks Neuroimmune axes of the blood–brain barriers and blood–brain interfaces: bases for physiological regulation, disease states, and pharmacological interventions Pharmacol Rev 70 2 278 314 1:CAS:528:DC%2BC1MXkvVKnsLg%3D 10.1124/pr.117.014647 29496890 5833009
S. Liebner R.M. Dijkhuizen Y. Reiss K.H. Plate D. Agalliu G. Constantin Functional morphology of the blood–brain barrier in health and disease Acta Neuropathol 135 3 311 336 1:CAS:528:DC%2BC1cXitlansr4%3D 10.1007/s00401-018-1815-1 29411111 6781630
S. Michinaga Y. Koyama Protection of the blood–brain barrier as a therapeutic strategy for brain damage Biol Pharm Bull 40 5 569 575 1:CAS:528:DC%2BC2sXhsF2nt7%2FK 10.1248/bpb.b16-00991 28458343
J.W. Kinney S.M. Bemiller A.S. Murtishaw A.M. Leisgang A.M. Salazar B.T. Lamb Inflammation as a central mechanism in Alzheimer's disease Alzheimers Dement (N Y) 4 575 590 10.1016/j.trci.2018.06.014 30406177
G.M. Cole T. Morihara G.P. Lim F. Yang A. Begum S.A. Frautschy NSAID and antioxidant prevention of Alzheimer's disease: lessons from in vitro and animal models Ann N Y Acad Sci 1035 68 84 1:CAS:528:DC%2BD2MXivFymsLs%3D 10.1196/annals.1332.005 15681801
K.P. Townsend D. Praticò Novel therapeutic opportunities for Alzheimer's disease: focus on nonsteroidal anti-inflammatory drugs FASEB J 19 12 1592 1601 1:CAS:528:DC%2BD2MXhtV2nu7rJ 10.1096/fj.04-3620rev 16195368
S.E. O'Bryant F. Zhang L.A. Johnson J. Hall M. Edwards P. Grammas et al. A precision medicine model for targeted NSAID therapy in Alzheimer's disease J Alzheimers Dis 66 1 97 104 1:CAS:528:DC%2BC1cXhvFKjsrrL 10.3233/JAD-180619 30198872 6428063
A. Mannila J. Rautio M. Lehtonen T. Järvinen J. Savolainen Inefficient central nervous system delivery limits the use of ibuprofen in neurodegenerative diseases Eur J Pharm Sci 24 1 101 105 1:CAS:528:DC%2BD2MXjtlCh 10.1016/j.ejps.2004.10.004 15626583
J. Irvine A. Afrose N. Islam Formulation and delivery strategies of ibuprofen: challenges and opportunities Drug Dev Ind Pharm 44 2 173 183 1:CAS:528:DC%2BC2sXhslemt73F 10.1080/03639045.2017.1391838 29022772
R.G.R. Pinheiro A.J. Coutinho M. Pinheiro A.R. Neves Nanoparticles for targeted brain drug delivery: what do we know? Int J Mol Sci 22 21 11654 1:CAS:528:DC%2BB3MXisFWlsL3M 10.3390/ijms222111654 34769082 8584083
R.N.L. Lamptey B. Chaulagain R. Trivedi A. Gothwal B. Layek J. Singh A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics Int J Mol Sci 23 3 1851 1:CAS:528:DC%2BB38Xkt12qsrw%3D 10.3390/ijms23031851 35163773 8837071
M. Masserini Nanoparticles for brain drug delivery ISRN Biochem 2013 1:CAS:528:DC%2BC3sXhtVamsrfE 10.1155/2013/238428 25937958 4392984 238428
J. Kreuter Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 71 2 14 1:CAS:528:DC%2BC3sXhsVSktbbP 10.1016/j.addr.2013.08.008 23981489
A. Duro-Castano R.M. England D. Razola E. Romero M. Oteo-Vives M.A. Morcillo et al. Well-defined star-shaped polyglutamates with improved pharmacokinetic profiles as excellent candidates for biomedical applications Mol Pharm 12 10 3639 3649 1:CAS:528:DC%2BC2MXhsVOnsrnP 10.1021/acs.molpharmaceut.5b00358 26355563
L.C. Johnson A.T. Akinmola C. Scholz Poly(glutamic acid): from natto to drug delivery systems Biocatal Agric Biotechnol 40 1:CAS:528:DC%2BB38Xmt1Wgtrs%3D 10.1016/j.bcab.2022.102292 102292
M. Mészáros T.H.M. Phan J.P. Vigh G. Porkoláb A. Kocsis E.K. Páli et al. Targeting human endothelial cells with glutathione and alanine increases the crossing of a polypeptide nanocarrier through a blood–brain barrier model and entry to human brain organoids Cells 12 3 503 1:CAS:528:DC%2BB3sXjtlakurw%3D 10.3390/cells12030503 36766845 9914642
S. Wohlfart S. Gelperina J. Kreuter Transport of drugs across the blood–brain barrier by nanoparticles J Control Release 161 2 264 273 1:CAS:528:DC%2BC38Xos1ensbs%3D 10.1016/j.jconrel.2011.08.017 21872624
C. Saraiva C. Praça R. Ferreira T. Santos L. Ferreira L. Bernardino Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases J Control Release 235 34 47 1:CAS:528:DC%2BC28XovV2hsbY%3D 10.1016/j.jconrel.2016.05.044 27208862
P. Campos-Bedolla F.R. Walter S. Veszelka M.A. Deli Role of the blood–brain barrier in the nutrition of the central nervous system Arch Med Res 45 8 610 638 1:CAS:528:DC%2BC2MXis1aktL0%3D 10.1016/j.arcmed.2014.11.018 25481827
D.J. Mc Carthy M. Malhotra A.M. O'Mahony J.F. Cryan C.M. O'Driscoll Nanoparticles and the blood–brain barrier: advancing from in-vitro models towards therapeutic significance Pharm Res 32 4 1161 1185 1:CAS:528:DC%2BC2cXitVWhu7jN 10.1007/s11095-014-1545-6 25446769
J. Kreuter Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain J Nanosci Nanotechnol 4 5 484 488 1:CAS:528:DC%2BD2cXotVegur0%3D 10.1166/jnn.2003.077 15503433
F. Hervé N. Ghinea J.M. Scherrmann CNS delivery via adsorptive transcytosis AAPS J 10 3 455 472 1:CAS:528:DC%2BD1MXltVSktLk%3D 10.1208/s12248-008-9055-2 18726697 2761699
F.R. Walter A.R. Santa-Maria M. Mészáros S. Veszelka A. Dér M.A. Deli Surface charge, glycocalyx, and blood–brain barrier function Tissue Barriers 9 3 1904773 1:CAS:528:DC%2BB38Xkt1aitrY%3D 10.1080/21688370.2021.1904773 34003072 8489908
M. Mészáros G. Porkoláb L. Kiss A.M. Pilbat Z. Kóta Z. Kupihár et al. Niosomes decorated with dual ligands targeting brain endothelial transporters increase cargo penetration across the blood–brain barrier Eur J Pharm Sci 123 228 240 1:CAS:528:DC%2BC1cXhsVSms7zJ 10.1016/j.ejps.2018.07.042 30031862
G. Porkoláb M. Mészáros A. Tóth A. Szecskó A. Harazin Z. Szegletes et al. Combination of alanine and glutathione as targeting ligands of nanoparticles enhances cargo delivery into the cells of the neurovascular unit Pharmaceutics 12 7 635 1:CAS:528:DC%2BB3cXisFGns7jK 10.3390/pharmaceutics12070635 32645904 7407318
S. Veszelka A. Bocsik F.R. Walter D. Hantosi M.A. Deli Blood–brain barrier co-culture models to study nanoparticle penetration: focus on co-culture systems Acta Biol. (Szeged) 59 157 168
M.A. Deli G. Porkoláb A. Kincses M. Mészáros A. Szecskó A.E. Kocsis et al. Lab-on-a-chip models of the blood–brain barrier: evolution, problems, perspectives Lab Chip 24 5 1030 1063 1:CAS:528:DC%2BB2cXjsFKltbc%3D 10.1039/d3lc00996c 38353254
Y. Uchida Y. Yagi M. Takao M. Tano M. Umetsu S. Hirano et al. Comparison of absolute protein abundances of transporters and receptors among blood–brain barriers at different cerebral regions and the blood-spinal cord barrier in humans and rats Mol Pharm 17 6 2006 2020 1:CAS:528:DC%2BB3cXntl2kur0%3D 10.1021/acs.molpharmaceut.0c00178 32310660
E.S. Lippmann S.M. Azarin J.E. Kay R.A. Nessler H.K. Wilson A. Al-Ahmad et al. Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells Nat Biotechnol 30 8 783 791 1:CAS:528:DC%2BC38XovFyksLw%3D 10.1038/nbt.2247 22729031 3467331
C. Praça S.C. Rosa E. Sevin R. Cecchelli M.P. Dehouck L.S. Ferreira Derivation of brain capillary-like endothelial cells from human pluripotent stem cell-derived endothelial progenitor cells Stem Cell Reports 13 4 599 611 1:CAS:528:DC%2BC1MXhslKnsb%2FM 10.1016/j.stemcr.2019.08.002 31495714 6829749
R. Cecchelli S. Aday E. Sevin C. Almeida M. Culot L. Dehouck et al. A stable and reproducible human blood–brain barrier model derived from hematopoietic stem cells PLoS ONE 9 6 10.1371/journal.pone.0099733 24936790 4061029 e99733
G. Porkoláb M. Mészáros A. Szecskó J.P. Vigh F.R. Walter R. Figueiredo et al. Synergistic induction of blood–brain barrier properties Proc Natl Acad Sci USA 121 21 1:CAS:528:DC%2BB2cXhtlWgsL%2FJ 10.1073/pnas.2316006121 38748577 11126970 e2316006121
M.N. Muwanigwa J. Modamio-Chamarro P.M.A. Antony G. Gomez-Giro R. Krüger S. Bolognin et al. Alpha-synuclein pathology is associated with astrocyte senescence in a midbrain organoid model of familial Parkinson's disease Mol Cell Neurosci 128 1:CAS:528:DC%2BB2cXivFSjtrs%3D 10.1016/j.mcn.2024.103919 38307302 103919
S. Veszelka M. Mészáros G. Porkoláb A. Szecskó N. Kondor G. Ferenc et al. A triple combination of targeting ligands increases the penetration of nanoparticles across a blood–brain barrier culture model Pharmaceutics 14 1 86 1:CAS:528:DC%2BB38XntVOitLo%3D 10.3390/pharmaceutics14010086 35056983 8778049
B. Chan S. Xuan M. Horton D. Zhang 1,1,3,3-Tetramethylguanidine-promoted ring-opening polymerization of N-butyl N-carboxyanhydride using alcohol initiators Macromolecules 6 2002 2012 1:CAS:528:DC%2BC28XjsVOjsbg%3D 10.1021/acs.macromol.5b02520
C.F. Su Y.F. Chen Y.J. Tsai S.M. Weng J.S. Jan Antioxidant activity of linear and star-shaped polypeptides modified with dopamine and glutathione Eur Polymer J 152 1:CAS:528:DC%2BB3MXhtVKmtr%2FF 10.1016/j.eurpolymj.2021.110497 110497
C.C. Huang T.H.M. Phan T. Ooya S. Kawasaki B.Y. Lin J.S. Jan Effect of tethered sheet-like motif and asymmetric topology on hydrogelation of star-shaped block copolypeptides Polymer 250 1:CAS:528:DC%2BB38XhtFKrurfI 10.1016/j.polymer.2022.124864 124864
Y.L. Tsai Y.C. Tseng Y.M. Chen T.C. Wen J.S. Jan Zwitterionic polypeptides bearing carboxybetaine and sulfobetaine: synthesis, self-assembly, and their interactions with proteins Polym Chem 9 10 1178 1189 1:CAS:528:DC%2BC1cXivFGiurY%3D 10.1039/C7PY01167A
X.Y. Shen C.C. Tang J.S. Jan Synthesis and hydrogelation of star-shaped poly (l-lysine) polypeptides modified with different functional groups Polymer 151 108 116 1:CAS:528:DC%2BC1cXhsVSqtbnM 10.1016/j.polymer.2018.07.051
Y. Zhu J. Wang X. Li D. Zhao J. Sun X. Liu Self-assembly and emulsification of dopamine-modified hyaluronan Carbohyd Polym 123 72 79 1:CAS:528:DC%2BC2MXhvFGqt74%3D 10.1016/j.carbpol.2015.01.030
J.P. Vigh A. Kincses B. Ozgür F.R. Walter A.R. Santa-Maria S. Valkai et al. Transendothelial electrical resistance measurement across the blood–brain barrier: a critical review of methods Micromachines (Basel) 12 6 685 10.3390/mi12060685 34208338
A. Duro-Castano C. Borrás V. Herranz-Pérez M.C. Blanco-Gandía I. Conejos-Sánchez A. Armiñán et al. Targeting Alzheimer's disease with multimodal polypeptide-based nanoconjugates Sci Adv 7 13 1:CAS:528:DC%2BB3MXpslaitbk%3D 10.1126/sciadv.abf9180 33771874 7997513 eabf9180
M. Cavaco C. Pérez-Peinado J. Valle R.D.M. Silva J.D.G. Correia D. Andreu et al. To what extent do fluorophores bias the biological activity of peptides? A practical approach using membrane-active peptides as models Front Bioeng Biotechnol 8 10.3389/fbioe.2020.552035 33015016 7509492 552035
J. Rip L. Chen R. Hartman A. van den Heuvel A. Reijerkerk J. van Kregten et al. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood–brain barrier in rats J Drug Target 22 5 460 467 1:CAS:528:DC%2BC2cXnvV2jtL4%3D 10.3109/1061186X.2014.888070 24524555 4651142
D. Maussang J. Rip J. van Kregten A. van den Heuvel S. van der Pol B. van der Boom et al. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo Drug Discov Today Technol 20 59 69 10.1016/j.ddtec.2016.09.003 27986226
K.M.S. Kanhai R.G.J.A. Zuiker I. Stavrakaki W. Gladdines P.J. Gaillard E.S. Klaassen et al. Glutathione-PEGylated liposomal methylprednisolone in comparison to free methylprednisolone: slow release characteristics and prolonged lymphocyte depression in a first-in-human study Br J Clin Pharmacol 84 5 1020 1028 1:CAS:528:DC%2BC1cXotFGlsbY%3D 10.1111/bcp.13525 29385232 5903232
A. Grover A. Hirani Y. Pathak V. Sutariya Brain-targeted delivery of docetaxel by glutathione-coated nanoparticles for brain cancer AAPS PharmSciTech 15 6 1562 1568 1:CAS:528:DC%2BC2cXhsValtL3J 10.1208/s12249-014-0165-0 25134466 4245440
W. Geldenhuys D. Wehrung A. Groshev A. Hirani V. Sutariya Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers Pharm Dev Technol 20 4 497 506 1:CAS:528:DC%2BC2MXotlWgtLw%3D 10.3109/10837450.2014.892130 24597667
D. Boldridge M. Kamiti E.E. Remsen Avoiding the spherical particle assumption: fractal particle density, size, and structure characterization through combined sedimentation and viscometry measurements Anal Chem 92 22 15034 15041 1:CAS:528:DC%2BB3cXit1Gitr3K 10.1021/acs.analchem.0c02983 33152242
S. Mahmood U. Mandal B. Chatterjee M. Taher Advanced characterizations of nanoparticles for drug delivery: investigating their properties through the techniques used in their evaluations Nanotechnol Rev 6 4 355 372 1:CAS:528:DC%2BC2sXht1ymu73E 10.1515/ntrev-2016-0050
S.W.L. Lee M. Campisi T. Osaki L. Possenti C. Mattu G. Adriani et al. Modeling nanocarrier transport across a 3D in vitro human blood–brain-barrier microvasculature Adv Healthc Mater 9 7 1:CAS:528:DC%2BB3cXktFegurk%3D 10.1002/adhm.201901486 32125776 e1901486
V. Monge-Fuentes A. Biolchi Mayer M.R. Lima L.R. Geraldes L.N. Zanotto K.G. Moreira et al. Dopamine-loaded nanoparticle systems circumvent the blood–brain barrier restoring motor function in mouse model for Parkinson's Disease Sci Rep 11 1 15185 1:CAS:528:DC%2BB3MXhslKhurzO 10.1038/s41598-021-94175-8 34312413 8313547
T.D. Brown N. Habibi D. Wu J. Lahann S. Mitragotri Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood–brain barrier ACS Biomater Sci Eng 6 9 4916 4928 1:CAS:528:DC%2BB3cXhs1aqsL3J 10.1021/acsbiomaterials.0c00743 33455287
D. Wu Q. Chen X. Chen F. Han Z. Chen Y. Wang The blood–brain barrier: structure, regulation, and drug delivery Signal Transduct Target Ther 8 1 217 10.1038/s41392-023-01481-w 37231000 10212980
M.A. Malvindi R. Di Corato A. Curcio D. Melisi M.G. Rimoli C. Tortiglione et al. Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine Nanoscale 3 12 5110 5119 1:CAS:528:DC%2BC3MXhsFCmtLrJ 10.1039/c1nr10797f
T. Fekete M. Mészáros Z. Szegletes G. Vizsnyiczai L. Zimányi M.A. Deli et al. Optically manipulated microtools to measure adhesion of the nanoparticle-targeting ligand glutathione to brain endothelial cells ACS Appl Mater Interfaces 13 33 39018 39029 1:CAS:528:DC%2BB3MXhsl2qtb3J 10.1021/acsami.1c08454 34397215
J.J. Rennick A.P.R. Johnston R.G. Parton Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics Nat Nanotechnol 16 3 266 276 1:CAS:528:DC%2BB3MXmsVGrsLw%3D 10.1038/s41565-021-00858-8 33712737
M.C. Bennett G.W. Mlady Y.H. Kwon G.M. Rose Chronic in vivo sodium azide infusion induces selective and stable inhibition of cytochrome c oxidase J Neurochem 66 6 2606 2611 1:CAS:528:DyaK28XjtFCrsrs%3D 10.1046/j.1471-4159.1996.66062606.x 8632188
R.B. Dos Santos S. Lakkadwala T. Kanekiyo J. Singh Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties Int J Nanomed 14 6497 6517 10.2147/IJN.S215941
T. Suominen T.P. Piepponen R. Kostiainen Permeation of dopamine sulfate through the blood–brain barrier PLoS ONE 10 7 1:CAS:528:DC%2BC2MXhsVSrsrzJ 10.1371/journal.pone.0133904 26207745 4514783 e0133904
A. Lopalco A. Cutrignelli N. Denora A. Lopedota M. Franco V. Laquintana Transferrin functionalized liposomes loading dopamine HCl: development and permeability studies across an in vitro model of human blood–brain barrier Nanomaterials (Basel) 8 3 178 1:CAS:528:DC%2BC1cXos12hsb4%3D 10.3390/nano8030178 29558440
L. Lomba M.P. Garralaga Á. Werner B. Giner P.M. Baptista N. Sánchez-Romero Ibuprofen solubility and cytotoxic study of deep eutectic solvents formed by xylitol, choline chloride and water J Drug Deliv Sci Technol 82 1:CAS:528:DC%2BB3sXks1ylu7s%3D 10.1016/j.jddst.2023.104327 104327
I. Novakova E.A. Subileau S. Toegel D. Gruber B. Lachmann E. Urban C. Chesne C.R. Noe W. Neuhaus Transport rankings of non-steroidal antiinflammatory drugs across blood–brain barrier in vitro models PLoS ONE 9 1 1:CAS:528:DC%2BC2cXlsVCrtLw%3D 10.1371/journal.pone.0086806 24466249 3900635 e86806
A.E. Tóth F.R. Walter A. Bocsik P. Sántha S. Veszelka L. Nagy et al. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells PLoS ONE 9 7 1:CAS:528:DC%2BC2cXhs1alsrfO 10.1371/journal.pone.0100152 25033388 4102474 e100152
A. Harazin A. Bocsik L. Barna A. Kincses J. Váradi F. Fenyvesi et al. Protection of cultured brain endothelial cells from cytokine-induced damage by α-melanocyte stimulating hormone PeerJ 6 1:CAS:528:DC%2BC1MXhsVCnsrnN 10.7717/peerj.4774 29780671 5958884 e4774
L. Barna F.R. Walter A. Harazin A. Bocsik A. Kincses V. Tubak et al. Simvastatin, edaravone and dexamethasone protect against kainate-induced brain endothelial cell damage Fluids Barriers CNS 17 1 5 1:CAS:528:DC%2BB3cXls12nt7w%3D 10.1186/s12987-019-0166-1 32036791 7008534
B.R.B. Pires R.C.M.C. Silva G.M. Ferreira E. Abdelhay NF-kappaB: two sides of the same coin Genes (Basel) 9 1 24 1:CAS:528:DC%2BC1cXhs12ltLbM 10.3390/genes9010024 29315242
G.A. Rosenberg Neurological diseases in relation to the blood–brain barrier J Cereb Blood Flow Metab 32 7 1139 1151 1:CAS:528:DC%2BC38XpvVSjtr0%3D 10.1038/jcbfm.2011.197 22252235 3390801
C.P. Profaci R.N. Munji R.S. Pulido R. Daneman The blood-brain barrier in health and disease: important unanswered questions J Exp Med 217 4 10.1084/jem.20190062 32211826 7144528 e20190062
E. Sánchez-López M. Ettcheto M.A. Egea M. Espina A.C. Calpena J. Folch et al. New potential strategies for Alzheimer's disease prevention: pegylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9 Nanomedicine 13 3 1171 1182 1:CAS:528:DC%2BC2sXmsVOhsg%3D%3D 10.1016/j.nano.2016.12.003 27986603
S.G. Menéndez W. Manucha Nanopharmacology as a new approach to treat neuroinflammatory disorders Transl Neurosci 14 1 20220328 1:CAS:528:DC%2BB2cXhtFCjsb3N 10.1515/tnsci-2022-0328 38152092 10751572