causal mediation analysis; cognitive functioning; fine particulate matter; leukocytes; systemic inflammation; white blood cell count; Particulate Matter; Air Pollutants; Humans; Male; Female; Prospective Studies; Middle Aged; Netherlands/epidemiology; Adult; Aged; Inflammation; Leukocyte Count; Air Pollution/adverse effects; Air Pollution/statistics & numerical data; Cohort Studies; Air Pollutants/adverse effects; Particulate Matter/adverse effects; Cognitive Dysfunction; Mediation Analysis; Leukocytes/drug effects; Environmental Exposure/adverse effects; Air Pollution; Environmental Exposure; Netherlands; Epidemiology; Health Policy; Developmental Neuroscience; Neurology (clinical); Geriatrics and Gerontology; Cellular and Molecular Neuroscience; Psychiatry and Mental Health
Abstract :
[en] [en] INTRODUCTION: Our understanding of how fine particulate matter (PM2.5) impacts cognitive functioning is limited. Systemic inflammation processes may play a role in mediating this effect.
METHODS: This prospective cohort study used data from 66,254 participants aged 18+ between 2006 and 2015 from the Dutch Lifelines Cohort Study and Biobank. Causal mediation analysis was conducted to examine the impact of ambient PM2.5 exposure on cognitive processing time (CPT), using the change in white blood cell (WBC) count and its subtypes as potential mediators.
RESULTS: Heightened PM2.5 exposure was associated with slower CPT (total effect = 81.76 × 10-3, 95% confidence interval [CI] 59.51 × 10-3-105.31 × 10-3). The effect was partially mediated via increased WBC count (indirect effect [IE] = 0.42 × 10-3, 95% CI 0.07 × 10-3-0.90 × 10-3), particularly driven by an increase in monocytes (IE = 0.73 × 10-3, 95% CI 0.24 × 10-3-1.31 × 10-3).
DISCUSSION: Systemic inflammation processes may partially explain the harmful effects of PM2.5 on cognitive functioning, why lower levels of systemic inflammation may help contain its neurotoxic effects.
HIGHLIGHTS: The pathways leading to the neurotoxic effects of fine particulate matter (PM2.5) are poorly understood. We analyzed data from over 66,000 participants using causal pathway analysis. Increased white blood cell (WBC) count mediates the effect of PM2.5 on cognitive functioning. Monocyte count played a crucial role in this low-pollution setting. Systemic inflammation may contribute to the neurotoxic effects of PM2.5.
Disciplines :
Neurology
Author, co-author :
Aretz, Benjamin ; Institute of Sociology and Demography, University of Rostock, Rostock, Mecklenburg-Vorpommern, Germany ; Institute of General Practice and Family Medicine, University Hospital Bonn, Bonn, Nordrhein-Westfalen, Germany
Doblhammer, Gabriele ; Institute of Sociology and Demography, University of Rostock, Rostock, Mecklenburg-Vorpommern, Germany ; German Center for Neurodegenerative Diseases(DZNE), Demographic Studies, Bonn, Germany
HENEKA, Michael ; University of Luxembourg ; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
External co-authors :
yes
Language :
English
Title :
The role of leukocytes in cognitive impairment due to long-term exposure to fine particulate matter: A large population-based mediation analysis.
Publication date :
December 2024
Journal title :
Alzheimer's and Dementia: the Journal of the Alzheimer's Association
We thank Lifelines for providing the data and their support. The Lifelines Biobank initiative was made possible by a subsidy from the Dutch Ministry of Health, Welfare, and Sport; the Dutch Ministry of Economic Affairs; the University Medical Center Groningen (UMCG the Netherlands), University Groningen; and the Northern Provinces of the Netherlands. We further thank the Cogstate Research Team for their support in handling the data coming from the Cogstate Brief Battery. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
WHO World Health Organization. Neurological Disorders: Public Health Challenges. World Health Organization; 2006. https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=305228
UN United Nations. World Population Ageing, 2019 Highlights. United Nations; 2020:430.
Deuschl G, Beghi E, Fazekas F, et al. The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017. Lancet Public Health. 2020;5(10):e551-e567. doi:10.1016/S2468-2667(20)30190-0
Southerland VA, Brauer M, Mohegh A, et al. Global urban temporal trends in fine particulate matter (PM2·5) and attributable health burdens: estimates from global datasets. Lancet Planet Health. 2022;6(2):e139-e146. doi:10.1016/S2542-5196(21)00350-8
Tan J, Li N, Wang X, et al. Associations of particulate matter with dementia and mild cognitive impairment in China: a multicenter cross-sectional study. Innovation. 2021;2(3):100147. doi:10.1016/j.xinn.2021.100147
Li J, Wang Y, Steenland K, et al. Long-term effects of PM2.5 components on incident dementia in the northeastern United States. Innovation. 2022;3(2):100208. doi:10.1016/j.xinn.2022.100208
Peters R, Ee N, Peters J, Booth A, Mudway I, Anstey KJ. Air pollution and dementia: a systematic review. J Alzheimers Dis. 2019;70(s1):S145-S163. doi:10.3233/JAD-180631
Oudin A, Forsberg B, Adolfsson AN, et al. Traffic-related air pollution and dementia incidence in Northern Sweden: a longitudinal study. Environ Health Perspect. 2016;124(3):306-312. doi:10.1289/ehp.1408322
Wang S, Gao S, Li S, Feng K. Strategizing the relation between urbanization and air pollution: empirical evidence from global countries. J Clean Prod. 2020;243:118615. doi:10.1016/j.jclepro.2019.118615
Grande G, Wu J, Ljungman PLS, Stafoggia M, Bellander T, Rizzuto D. Long-term exposure to PM2.5 and cognitive decline: a longitudinal population-based study. J Alzheimers Dis. 2021;80(2):591-599. doi:10.3233/JAD-200852
Cacciottolo M, Wang X, Driscoll I, et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiatry. 2017;7(1):e1022. doi:10.1038/tp.2016.280
Li C, van Donkelaar A, Hammer MS, et al. Reversal of trends in global fine particulate matter air pollution. Nat Commun. 2023;14(1):5349. doi:10.1038/s41467-023-41086-z
Seto KC, Güneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci U S A. 2012;109(40):16083-16088. doi:10.1073/pnas.1211658109
Aretz B, Janssen F, Vonk JM, Heneka MT, Boezen HM, Doblhammer G. Long-term exposure to fine particulate matter, lung function and cognitive performance: a prospective Dutch cohort study on the underlying routes. Environ Res. 2021;201:111533. doi:10.1016/j.envres.2021.111533
Hüls A, Vierkötter A, Sugiri D, et al. The role of air pollution and lung function in cognitive impairment. Eur Respir J. 2018;51(2):1701963. doi:10.1183/13993003.01963-2017
Ye Z, Li X, Lang H, Fang Y. Long-term PM2.5 exposure, lung function, and cognitive function among middle-aged and older adults in China. J Gerontol A Biol Sci Med Sci. 2023;78(12):2333-2341. doi:10.1093/gerona/glad180
Fonken LK, Xu X, Weil ZM, et al. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry. 2011;16(10):987-995. doi:10.1038/mp.2011.76
Pan R, Zhang Y, Xu Z, et al. Exposure to fine particulate matter constituents and cognitive function performance, potential mediation by sleep quality: a multicenter study among Chinese adults aged 40-89 years. Environ Int. 2022;170:107566. doi:10.1016/j.envint.2022.107566
Ke L, Zhang Y, Fu Y, et al. Short-term PM2.5 exposure and cognitive function: association and neurophysiological mechanisms. Environ Int. 2022;170:107593. doi:10.1016/j.envint.2022.107593
Li Z, Liang D, Ebelt S, et al. Differential DNA methylation in the brain as potential mediator of the association between traffic-related PM2.5 and neuropathology markers of Alzheimer's disease. Alzheimers Dement. 2024;20(4):2538-2551. doi:10.1002/alz.13650
Calderón-Garcidueñas L, Engle R, Mora-Tiscareño A, et al. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain Cogn. 2011;77(3):345-355. doi:10.1016/j.bandc.2011.09.006
Heusinkveld HJ, Wahle T, Campbell A, et al. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology. 2016;56:94-106. doi:10.1016/j.neuro.2016.07.007
Scholtens S, Smidt N, Swertz MA, et al. Cohort profile: LifeLines, a three-generation cohort study and biobank. Int J Epidemiol. 2015;44(4):1172-1180. doi:10.1093/ije/dyu229
Lim YY, Jaeger J, Harrington K, et al. Three-month stability of the CogState brief battery in healthy older adults, mild cognitive impairment, and Alzheimer's disease: results from the Australian Imaging, Biomarkers, and Lifestyle-rate of change substudy (AIBL-ROCS). Arch Clin Neuropsychol. 2013;28(4):320-330. doi:10.1093/arclin/act021
Darby D, Maruff P, Collie A, McStephen M. Mild cognitive impairment can be detected by multiple assessments in a single day. Neurology. 2002;59(7):1042-1046. doi:10.1212/WNL.59.7.1042
Hammers DB, Jung M, Pressler SJ, Sullivan B-J, Koelling T, Giordani B. Clinical utility of auditory memory testing in a heart failure population. J Cardiovasc Nurs. 2013;28(5):444-452. doi:10.1097/JCN.0b013e318258abf3
Maruff P, Thomas E, Cysique L, et al. Validity of the CogState Brief Battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol. 2009;24(2):165-178. doi:10.1093/arclin/acp010
Maruff P, Lim YY, Darby D, et al. Clinical utility of the Cogstate Brief Battery in identifying cognitive impairment in mild cognitive impairment and Alzheimer's disease. BMC Psychol. 2013;1(1):30. doi:10.1186/2050-7283-1-30
Lim YY, Ellis KA, Harrington K, et al. Use of the CogState Brief Battery in the assessment of Alzheimer's disease related cognitive impairment in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. J Clin Exp Neuropsychol. 2012;34(4):345-358. doi:10.1080/13803395.2011.643227
Cromer JA, Schembri AJ, Harel BT, Maruff P. The nature and rate of cognitive maturation from late childhood to adulthood. Front Psychol. 2015;6:704. doi:10.3389/fpsyg.2015.00704
Yoshida T, Suga M, Arima K, et al. Criterion and construct validity of the CogState Schizophrenia Battery in Japanese patients with schizophrenia. PLoS One. 2011;6(5):e20469. doi:10.1371/journal.pone.0020469
Lichtenberger EO, Kaufman AS. Essentials of WAIS-IV Assessment. 2nd ed. John Wiley & Sons; 2013. http://gbv.eblib.com/patron/FullRecord.aspx?p=947578
Salthouse TA, Ferrer-Caja E. What needs to be explained to account for age-related effects on multiple cognitive variables?. Psychol Aging. 2003;18(1):91-110. doi:10.1037/0882-7974.18.1.91
Chen J, Rodopoulou S, de Hoogh K, et al. Long-term exposure to fine particle elemental components and natural and cause-specific mortality-a pooled analysis of eight European cohorts within the ELAPSE Project. Environ Health Perspect. 2021;129(4):47009. doi:10.1289/EHP8368
de Hoogh K, Chen J, Gulliver J, et al. Spatial PM2.5, NO2, O3 and BC models for Western Europe—evaluation of spatiotemporal stability. Environ Int. 2018;120:81-92. doi:10.1016/j.envint.2018.07.036
Chmielewski PP, Borysławski K, Chmielowiec K, Chmielowiec J, Strzelec B. The association between total leukocyte count and longevity: evidence from longitudinal and cross-sectional data. Ann Anat. 2016;204:1-10. doi:10.1016/j.aanat.2015.09.002
Nilsson G, Hedberg P, Ohrvik J. White blood cell count in elderly is clinically useful in predicting long-term survival. J Aging Res. 2014;2014:475093. doi:10.1155/2014/475093
Ruggiero C, Metter EJ, Cherubini A, et al. White blood cell count and mortality in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2007;49(18):1841-1850. doi:10.1016/j.jacc.2007.01.076
Chmielewski PP, Strzelec B. Elevated leukocyte count as a harbinger of systemic inflammation, disease progression, and poor prognosis: a review. Folia Morphol. 2018;77(2):171-178. doi:10.5603/FM.a2017.0101
Imai K, Tingley D, Yamamoto T. Experimental designs for identifying causal mechanisms. JRSSSA. 2013;176(1):5-51. doi:10.1111/j.1467-985X.2012.01032.x
Imai K, Keele L, Tingley D. A general approach to causal mediation analysis. Psychol Methods. 2010;15(4):309-334. doi:10.1037/a0020761
Imai K, Keele L, Yamamoto T. Identification, inference and sensitivity analysis for causal mediation effects. Statist Sci. 2010;25(1):51-71. doi:10.1214/10-STS321
Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. mediation : R package for causal mediation analysis. J Stat Soft. 2014;59(5)1-38. doi:10.18637/jss.v059.i05
R Core Team. R: A Language and Environment for Statistical Computing. R Core Team; 2021.
Lee S-H, Chen Y-H, Chien C-C, et al. Three month inhalation exposure to low-level PM2.5 induced brain toxicity in an Alzheimer's disease mouse model. PLoS One. 2021;16(8):e0254587. doi:10.1371/journal.pone.0254587
Manabe T, Heneka MT. Cerebral dysfunctions caused by sepsis during ageing. Nat Rev Immunol. 2022;22(7):444-458. doi:10.1038/s41577-021-00643-7
Barichello T, Giridharan VV, Catalão CHR, Ritter C, Dal-Pizzol F. Neurochemical effects of sepsis on the brain. Clin Sci. 2023;137(6):401-414. doi:10.1042/CS20220549
Fauchais AL, Magy L, Vidal E. Central and peripheral neurological complications of primary Sjögren's syndrome. Presse Med. 2012;41(9 Pt 2):e485-e493. doi:10.1016/j.lpm.2012.06.002
Walker KA, Le Page LM, Terrando N, Duggan MR, Heneka MT, Bettcher BM. The role of peripheral inflammatory insults in Alzheimer's disease: a review and research roadmap. Mol Neurodegener. 2023;18(1):37. doi:10.1186/s13024-023-00627-2
Bettcher BM, Tansey MG, Dorothée G, Heneka MT. Peripheral and central immune system crosstalk in Alzheimer disease—a research prospectus. Nat Rev Neurol. 2021;17(11):689-701. doi:10.1038/s41582-021-00549-x
Walker KA, Hoogeveen RC, Folsom AR, et al. Midlife systemic inflammatory markers are associated with late-life brain volume: the ARIC study. Neurology. 2017;89(22):2262-2270. doi:10.1212/WNL.0000000000004688
Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275(3):214-228. doi:10.1111/joim.12190
Salthouse TA. Selective review of cognitive aging. J Int Neuropsychol Soc. 2010;16(5):754-760. doi:10.1017/S1355617710000706
Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol. 2009;66(2):200-208. doi:10.1002/ana.21706
Nelson PT, Braak H, Markesbery WR. Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol. 2009;68(1):1-14. doi:10.1097/NEN.0b013e3181919a48
Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol. 2005;62(7):1160-1163. doi:10.1001/archneur.62.7.1160
Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology. 2009;73(10):768-774. doi:10.1212/WNL.0b013e3181b6bb95
Cunningham C, Hennessy E. Co-morbidity and systemic inflammation as drivers of cognitive decline: new experimental models adopting a broader paradigm in dementia research. Alzheimers Res Ther. 2015;7(1):33. doi:10.1186/s13195-015-0117-2
Shi L, Wu X, Danesh Yazdi M, et al. Long-term effects of PM2·5 on neurological disorders in the American Medicare population: a longitudinal cohort study. Lancet Planet Health. 2020;4(12):e557-e565. doi:10.1016/S2542-5196(20)30227-8