Article (Scientific journals)
Low-energy modeling of three-dimensional topological insulator nanostructures
ZSURKA, Eduard; Wang, Cheng; LEGENDRE, Julian et al.
2024In Physical Review Materials, 8 (8)
Peer Reviewed verified by ORBi
 

Files


Full Text
2404.13959v1.pdf
Author preprint (7.88 MB) Creative Commons License - Attribution
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Bulk model; Energy model; Low energy surfaces; Lower energies; Model Hamiltonians; Modeling approach; New parameters; Parameter set; Spectra's; Topological insulators; Materials Science (all); Physics and Astronomy (miscellaneous); Physics - Mesoscopic Systems and Quantum Hall Effect; Physics - Materials Science
Abstract :
[en] We develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological insulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly considered four-band k·p bulk model Hamiltonian for the Bi2Se3 family of topological insulators, we derive new parameter sets for Bi2Se3, Bi2Te3, and Sb2Te3. We consider a fitting strategy applied to ab initio band structures around the Γ point that ensures a quantitatively accurate description of the low-energy bulk and surface states while avoiding the appearance of unphysical low-energy states at higher momenta, something that is not guaranteed by the commonly considered perturbative approach. We analyze the effects that arise in the low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters from ab initio calculations that show good agreement with experimentally resolved band structures, unlike the bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices.
Disciplines :
Physics
Author, co-author :
ZSURKA, Eduard  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany ; JARA-Fundamentals of Future Information Technology, Jülich-Aachen Research Alliance, Forschungszentrum Jülich, RWTH Aachen University, Jülich, Germany
Wang, Cheng;  Peter Grünberg Institute (PGI-1), Forschungszentrum Jülich, JARA, Jülich, Germany
LEGENDRE, Julian  ;  University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Thomas SCHMIDT
Di Miceli, Daniele ;  Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg ; Institute for Cross-Disciplinary Physics and Complex Systems (IFISC), CSIC-UIB, Palma, Spain
Serra, Llorenç ;  Institute for Cross-Disciplinary Physics and Complex Systems (IFISC), CSIC-UIB, Palma, Spain ; Department of Physics, Universitat de les Illes Balears, Palma, Spain
Grützmacher, Detlev ;  Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany ; JARA-Fundamentals of Future Information Technology, Jülich-Aachen Research Alliance, Forschungszentrum Jülich, RWTH Aachen University, Jülich, Germany
SCHMIDT, Thomas  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Rüßmann, Philipp ;  Peter Grünberg Institute (PGI-1), Forschungszentrum Jülich, JARA, Jülich, Germany ; Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg, Germany
MOORS, Kristof  ;  University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science ; Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany ; JARA-Fundamentals of Future Information Technology, Jülich-Aachen Research Alliance, Forschungszentrum Jülich, RWTH Aachen University, Jülich, Germany
External co-authors :
yes
Language :
English
Title :
Low-energy modeling of three-dimensional topological insulator nanostructures
Publication date :
August 2024
Journal title :
Physical Review Materials
eISSN :
2475-9953
Publisher :
American Physical Society
Volume :
8
Issue :
8
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Deutsche Forschungsgemeinschaft
Fonds National de la Recherche Luxembourg
Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie
Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie
Available on ORBilu :
since 08 January 2026

Statistics


Number of views
18 (1 by Unilu)
Number of downloads
7 (0 by Unilu)

Scopus citations®
 
4
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
5
WoS citations
 
4

Bibliography


Similar publications



Contact ORBilu