convolutional neural networks; deep learning; image processing; malaria diagnosis; support vector machines; thick blood smears; Azure Stains; Humans; Support Vector Machine; Neural Networks, Computer; Algorithms; Azure Stains/chemistry; Leukocytes/parasitology; Malaria/parasitology; Malaria/diagnosis; Malaria/blood; Image Processing, Computer-Assisted/methods; Blood smears; Convolutional neural network; F1 scores; Images processing; Leukocyte detection; Parasite-; Support vectors machine; Thick blood smear; Image Processing, Computer-Assisted; Leukocytes; Malaria; Plasmodium falciparum; Staining and Labeling; Analytical Chemistry; Information Systems; Atomic and Molecular Physics, and Optics; Biochemistry; Instrumentation; Electrical and Electronic Engineering
Abstract :
[en] Malaria remains a global health concern, with 249 million cases and 608,000 deaths being reported by the WHO in 2022. Traditional diagnostic methods often struggle with inconsistent stain quality, lighting variations, and limited resources in endemic regions, making manual detection time-intensive and error-prone. This study introduces an automated system for analyzing Romanowsky-stained thick blood smears, focusing on image quality evaluation, leukocyte detection, and malaria parasite classification. Using a dataset of 1000 clinically diagnosed images, we applied feature extraction techniques, including histogram bins and texture analysis with the gray level co-occurrence matrix (GLCM), alongside support vector machines (SVMs), for image quality assessment. Leukocyte detection employed optimal thresholding segmentation utility (OTSU) thresholding, binary masking, and erosion, followed by the connected components algorithm. Parasite detection used high-intensity region selection and adaptive bounding boxes, followed by a custom convolutional neural network (CNN) for candidate identification. A second CNN classified parasites into trophozoites, schizonts, and gametocytes. The system achieved an F1-score of 95% for image quality evaluation, 88.92% for leukocyte detection, and 82.10% for parasite detection. The F1-score-a metric balancing precision (correctly identified positives) and recall (correctly detected instances out of actual positives)-is especially valuable for assessing models on imbalanced datasets. In parasite stage classification, CNN achieved F1-scores of 85% for trophozoites, 88% for schizonts, and 83% for gametocytes. This study introduces a robust and scalable automated system that addresses critical challenges in malaria diagnosis by integrating advanced image quality assessment and deep learning techniques for parasite detection and classification. This system's adaptability to low-resource settings underscores its potential to improve malaria diagnostics globally.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Sora-Cardenas, Jhonathan ; Faculty of Engineering, Pontificia Universidad Javeriana, Bogotá 110311, Colombia
Fong-Amaris, Wendy M ; Faculty of Engineering, Pontificia Universidad Javeriana, Bogotá 110311, Colombia ; Programa de Doutorado em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, Brazil
Salazar-Centeno, Cesar A ; Faculty of Engineering, Pontificia Universidad Javeriana, Bogotá 110311, Colombia
Castañeda, Alejandro; Faculty of Engineering, Pontificia Universidad Javeriana, Bogotá 110311, Colombia ; Computer Vision Lab, Delft University of Technology, 2628 XE Delft, The Netherlands
Martínez-Bernal, Oscar D ; Faculty of Engineering, Pontificia Universidad Javeriana, Bogotá 110311, Colombia
Suárez, Daniel R ; Faculty of Engineering, Pontificia Universidad Javeriana, Bogotá 110311, Colombia
The authors declare the following potential conflicts of interest regarding the funding of this research. This project received partial funding from the M.Sc. program in Bioengineering at Pontificia Universidad Javeriana. Additionally, funding was provided by Facebook Inc. through the CV4GC RFP Research Award Winner 3418118842, with Pontificia Universidad Javeriana ID PPTA 9053 and ID PRY 9411. However, the funders had no role in the design of the study, data collection and analysis, decision to publish, or manuscript preparation. The authors affirm that this funding did not influence the research\u2019s objectivity or integrity.We would like to express our deepest gratitude to everyone who has supported and contributed to this research. First and foremost, we sincerely thank the Master Program in Bioengineering at Pontificia Universidad Javeriana for providing the necessary resources and facilities to carry out this study. The authors thank the National Institute of Health in Colombia for supplying the Romanowsky-stained thick blood smear images. This work was partly supported by a grant from Facebook Inc. through the CV4GC RFP Research Award Winner 3418118842, and we are thankful for their financial assistance.
WHO World Malaria Report 2023 WHO Geneva, Switzerland 2023 978-92-4-008617-3/978-92-4-008618-0
Kwiatkowski D. Sambou I. Twumasi P. Greenwood B. Hill A. Manogue K. Cerami A. Castracane J. Brewster D. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria Lancet (Br. Ed.) 1990 336 1201 1204 10.1016/0140-6736(90)92827-5
Mukry S.N. Saud M. Sufaida G. Shaikh K. Naz A. Shamsi T.S. Laboratory Diagnosis of Malaria: Comparison of Manual and Automated Diagnostic Tests Can. J. Infect. Dis. Med. Microbiol. 2017 2017 9286392 10.1155/2017/9286392
World Health Organization WHO World Malaria Report 2020 Orissa Diary WHO Geneva, Switzerland 2020
WHO Malaria Microscopy Quality Assurance Manual—Ver. 2 WHO Geneva, Switzerland 2016
Poostchi M. Silamut K. Maude R.J. Jaeger S. Thoma G. Image analysis and machine learning for detecting malaria Transl. Res. 2018 194 36 55 10.1016/j.trsl.2017.12.004 29360430
Rosado L. da Costa J.M.C. Elias D. Cardoso J.S. Automated Detection of Malaria Parasites on Thick Blood Smears via Mobile Devices Procedia Comput. Sci. 2016 90 138 144 10.1016/j.procs.2016.07.024
Dave I.R. Image analysis for malaria parasite detection from microscopic images of a thick blood smear Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) Chennai, India 22–24 March 2017 10.1109/WiSPNET.2017.8299974
Delahunt C.B. Mehanian C. Hu L. McGuire S.K. Champlin C.R. Horning M.P. Wilson B.K. Thompon C.M. Automated microscopy and machine learning for expert-level malaria field diagnosis Proceedings of the 2015 IEEE Global Humanitarian Technology Conference (GHTC) Seattle, WA, USA 8–11 October 2015 10.1109/GHTC.2015.7344002
Quinn J.A. Nakasi R. Mugagga P.K.B. Byanyima P. Lubega W. Andama A. Deep Convolutional Neural Networks for Microscopy-Based Point of Care Diagnostics arXiv 2016 1608.02989 Available online: https://arxiv.org/abs/1608.02989 (accessed on 19 February 2020)
CMehanian C. Jaiswal M. Delahunt C. Thompson C. Horning M. Hu L. McGuire S. Ostbye T. Mehanian M. Wilson B. et al. Computer-automated malaria diagnosis and quantitation using convolutional neural networks Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW) Venice, Italy 22–29 October 2017 10.1109/ICCVW.2017.22
Yang F. Poostchi M. Yu H. Zhou Z. Silamut K. Yu J. Maude R.J. Jaeger S. Antani S. Deep Learning for Smartphone-based Malaria Parasite Detection in Thick Blood Smears IEEE J. Biomed. Health Inform. 2020 24 1427 1438 10.1109/JBHI.2019.2939121 31545747
Amaris W.M.F. Martinez C. Cortés-Cortés L.J. Suárez D.R. Image features for quality analysis of thick blood smears employed in malaria diagnosis Malar. J. 2022 21 74 10.1186/s12936-022-04064-2 35255896
Yunda L. Alarcón A. Millán J. Automated Image Analysis Method for p-vivax Malaria Parasite Detection in Thick Film Blood Images Sist. Y Telemática 2012 10 9 10.18046/syt.v10i20.1151
Labelbox Labelbox 2019 Available online: https://labelbox.com (accessed on 12 April 2021)
Instituto Nacional de Salud de Colombia Manual Para el Diagnóstico de Malaria no Complicada en Puestos de Diagnóstico y Tratamiento Instituto Nacional de Salud de Colombia Bogotá, Colombia 2015
Maturana C.R. de Oliveira A.D. Nadal S. Bilalli B. Serrat F.Z. Soley M.E. Igual E.S. Bosch M. Lluch A.V. Abelló A. et al. Advances and Challenges in Automated Malaria Diagnosis Using Digital Microscopy Imaging with Artificial Intelligence Tools: A Review Front. Microbiol. 2022 13 1006659 Available online: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.1006659 (accessed on 4 December 2024) 10.3389/fmicb.2022.1006659
Rahman A. Zunair H. Rahman M.S. Yuki J.Q. Biswas S. Alam M.A. Alam N.B. Mahdy M.R.C. Improving Malaria Parasite Detection from Red Blood Cell using Deep Convolutional Neural Networks arXiv 2019 10.48550/arXiv.1907.10418
Kaewkamnerd S. Uthaipibull C. Intarapanich A. Pannarut M. Chaotheing S. Tongsima S. An automatic device for detection and classification of malaria parasite species in thick blood film BMC Bioinform. 2012 13 (Suppl. 17) S18 10.1186/1471-2105-13-S17-S18 23281600
Rosado L. da Costa J.M.C. Elias D. Cardoso J.S. A Review of Automatic Malaria Parasites Detection and Segmentation in Microscopic Images Anti-Infect. Agents 2016 14 11 22 10.2174/221135251401160302121107
Abidin S.R. Salamah U. Nugroho A.S. Segmentation of malaria parasite candidates from thick blood smear microphotographs image using active contour without edge Proceedings of the 2016 1st International Conference on Biomedical Engineering (IBIOMED) Yogyakarta, Indonesia 5–6 October 2016 10.1109/IBIOMED.2016.7869824
Azif F.M. Nugroho H.A. Wibirama S. Detection of malaria parasites in thick blood smear: A review Commun. Sci. Technol. 2018 3 27 35 10.21924/cst.3.1.2018.75
Otsu N. A Threshold Selection Method from Gray-Level Histograms T-Smc 1979 9 62 66 10.1109/TSMC.1979.4310076
Gautam A. Singh P. Raman B. Bhadauria H. Automatic classification of leukocytes using morphological features and naive bayes classifier Proceedings of the 2016 IEEE Region 10 Conference (TENCON) Singapore 22–25 November 2016 1023 1027
Rosyadi T. Arif A. Nopriadi Achmad B. Classification of leukocyte images using K-means clustering based on geometry features Proceedings of the 2016 6th International Annual Engineering Seminar (InAES) Yogyakarta, Indonesia 1–3 August 2016 245 249
Sajjad M. Khan S. Shoaib M. Ali H. Jan Z. Muhammad K. Mehmood I. Computer aided system for leukocytes classification and segmentation in blood smear images Proceedings of the 2016 International Conference on Frontiers of Information Technology (FIT) Islamabad, Pakistan 19–21 December 2016 99 104
Manik S. Saini L.M. Vadera N. Counting and classification of white blood cell using artificial neural network (ANN) Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) Delhi, India 4–6 July 2016 1 5
Othman M.Z. Mohammed T.S. Baban A. Neural Network Classification of White Blood Cell using Microscopic Images Int. J. Adv. Comput. Sci. Appl. 2017 8 99 104 10.14569/IJACSA.2017.080513
Al-Dulaimi K. Chandran V. Banks J. Tomeo-Reyes I. Nguyen K. Classification of white blood cells using bispectral invariant features of nuclei shape Proceedings of the 2018 Digital Image Computing: Techniques and Applications (DICTA) Canberra, Australia 10–13 December 2018 1 8
Yang F. Yu H. Silamut K. Maude R.J. Jaeger S. Antani S. Parasite Detection in Thick Blood Smears Based on Customized Faster-RCNN on Smartphones Proceedings of the 2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR) Washington, DC, USA 15–17 October 2019 10.1109/AIPR47015.2019.9174565
Jan Z. Khan A. Sajjad M. Muhammad K. Rho S. Mehmood I. A review on automated diagnosis of malaria parasite in microscopic blood smears images Multimed. Tools Appl. 2017 77 9801 9826 10.1007/s11042-017-4495-2
Widiawati C.R.A. Nugroho H.A. Ardiyanto I. Plasmodium detection methods in thick blood smear images for diagnosing malaria: A review Proceedings of the 2016 1st International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE) Yogyakarta, Indonesia 23–24 August 2016 10.1109/ICITISEE.2016.7803063
Ioffe S. Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift arXiv 2015 10.48550/arXiv.1502.03167
Krizhevsky A. Sutskever I. Hinton G. ImageNet classification with deep convolutional neural networks Commun. ACM 2017 60 84 90 10.1145/3065386
Srivastava N. Hinton G. Krizhevsky A. Sutskever I. Salakhutdinov R. Machine Learning; Reports Summarize Machine Learning Study Results from University of Toronto (Dropout: A Simple Way to Prevent Neural Networks from Overfitting) J. Robot. Mach. Learn. 2014 15 533 Available online: https://search.proquest.com/docview/1634927573 (accessed on 10 November 2020)
Simonyan K. Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition arXiv 2014 10.48550/arXiv.1409.1556
Sandler M. Howard A. Zhu M. Zhmoginov A. Chen L. MobileNetV2: Inverted residuals and linear bottlenecks Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Salt Lake City, UT, USA 18–23 June 2018 10.1109/CVPR.2018.00474
He K. Zhang X. Ren S. Sun J. Deep residual learning for image recognition Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, NV, USA 27–30 June 2016 10.1109/CVPR.2016.90
Varma S.L. Chavan S.S. Detection of malaria parasite based on thick and thin blood smear images using a local binary pattern Computing, Communication, and Signal Processing Springer Singapore 2018 967 975
Saito T. Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets PLoS ONE 2015 10 e0118432 10.1371/journal.pone.0118432 25738806