Non-Euclidean spaces; Principal component analysis; Riemannian manifolds; Spheres; Torus; Statistics and Probability; Numerical Analysis; Statistics, Probability and Uncertainty
Abstract :
[en] The high dimensionality of the input data can pose multiple problems when implementing statistical techniques. The presence of many dimensions in the data can lead to challenges in visualizing the data, higher computational demands, and a higher probability of over-fitting or under-fitting in modeling. Furthermore, the curse of dimensionality contributes to these issues by stating that the necessary number of observations for accurate modeling increases exponentially as the number of dimensions increases. Dimension reduction tools help overcome this challenge. Principal Component Analysis (PCA) is the most widely used technique, intensively studied in classical linear spaces. However, in applied sciences such as biology, bioinformatics, astronomy and geology, there are many instances in which the data’s support are non-Euclidean spaces. In fact, the available data often include elements of Riemannian manifolds such as the unit circle, torus, sphere, and their extensions. Therefore, the terms “manifold-valued” or “directional” data are used in the literature for these situations. When dealing with directional data, the linear nature of PCA might pose a challenge to achieve accurate data reduction. This paper therefore reviews and investigates the methodological aspects of PCA on directional data and their practical applications.
Disciplines :
Mathematics
Author, co-author :
Nodehi, Anahita; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
Moghimbeygi, Meisam; Department of Mathematics, Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, Iran
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
External co-authors :
yes
Language :
English
Title :
Recent advances in principal component analysis for directional data
R. Bellman, Adaptive Control Processes, Princeton University Press, New Jersey, 1961.
C. M. Bishop, Pattern Recognition and Machine Learning, volume 4, Springer, 2006.
A. J. Izenman, Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning, Springer Science & Business Media, 2009.
R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, J. Saeed, A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction, Journal of Applied Science and Technology Trends 1 (2020) 56–70.
K. Pearson, On lines and planes of closest fit to systems of points in space, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 2 (1901) 559–572.
H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology 24 (1933) 417–441.
K. V. Mardia, Statistics of Directional data, Academic Press, London, 1972.
D. G. Kendall, D. Barden, T. K. Carne, H. Le, Shape and Shape Theory, John Wiley & Sons, 1999.
D. G. Kendall, D. Barden, T. K. Carne, H. Le, Shape and Shape Theory, John Wiley & Sons, 2009.
I. L. Dryden, K. V. Mardia, Statistical Shape Analysis: with Applications in R, volume 995, John Wiley & Sons, 2016.
E. Batschelet, Circular Statistics in Biology, Academic Press, New York, 1981.
G. S. Watson, Statistics on Spheres, Wiley, New York, 1983.
N. I. Fisher, T. Lewis, B. J. J. Embleton, Statistical Analysis Of Spherical Data, Cambridge University Press, Cambridge, 1987.
N. I. Fisher, Statistical Analysis Of Circular Data, Cambridge University Press, Cambridge, 1993.
K. V. Mardia, P. Jupp, Directional Statistics, Wiley, Chichester, 2000.
S. R. Jammalamadaka, A. SenGupta, Topics In Circular Statistics, Multivariate Analysis, World Scientific, Singapore, 2001.
A. Pewsey, M. Neuhäuser, G. D. Ruxton, Circular Statistics In R, Oxford University Press, England, 2013.
C. Ley, T. Verdebout, Modern Directional Statistics, Chapman and Hall/CRC Press, Boca Raton, 2017.
C. Ley, T. Verdebout (Eds.), Applied Directional Statistics: Modern Methods and Case Studies, Chapman and Hall/CRC Press, Boca Raton, 2018.
P. E. Jupp, K. V. Mardia, A unified view of the theory of directional statistics, 1975-1988, International Statistical Review/Revue Internationale de Statistique 57 (1989) 261–294.
A. Pewsey, E. García-Portugués, Recent advances in directional statistics, Test 30 (2021) 1–58.
S. Huckemann, B. Eltzner, Statistical methods generalizing principal component analysis to non-Euclidean spaces, in: Handbook of Variational Methods for Nonlinear Geometric Data, Springer, 2020b, pp. 317–338.
S. Huckemann, B. Eltzner, Data analysis on nonstandard spaces, Wiley Interdisciplinary Reviews: Computational Statistics (2020a) e1526.
C. C. David, D. J. Jacobs, Principal component analysis: a method for determining the essential dynamics of proteins, in: Protein dynamics, Springer, 2014, pp. 193–226.
A. Kitao, Principal component analysis and related methods for investigating the dynamics of biological macromolecules, J 5 (2022) 298–317.
I. Jolliffe, Principal Component Analysis, Springer, New York, 2002.
R. Vidal, Y. Ma, S. S. Sastry, Generalized Principal Component Analysis, Springer, 2016.
H. Karcher, Riemannian center of mass and mollifier smoothing, Communications on Pure and Applied Math 30 (1977) 509–541.
X. Pennec, Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements, Journal of Mathematics and Imaging Vision 25 (2006) 127–154.
W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1986.
P. T. Fletcher, C. P. Lu, S. Pizar, S. C. Joshi, Principal geodesic analysis for the study of nonlinear statistics of shape, IEEE Transactions in Medical Imaging 23 (2004) 995–1005.
R. L. Bishop, R. J. Crittenden, Geometry of Manifolds, Academic press, 2011.
J. Nash, c1 isometric imbeddings, Annals of mathematics 60 (1954) 383–396.
J. Nash, The imbedding problem for riemannian manifolds, Annals of mathematics 63 (1956) 20–63.
H. Hopf, W. Rinow, Ueber den Begriff der vollständigen differentialgeometrischen Fläche, Commentarii Mathematici Helvetici 3 (1931) 209–225.
V. Boltyanski, H. Martini, V. Soltan, Geometric methods and optimization problems, volume 4, Springer Science & Business Media, 1998.
R. Basu, B. B. Bhattacharya, T. Talukdar, The projection median of a set of points in d, Discrete & Computational Geometry 47 (2012) 329–346.
J. W. Tukey, Mathematics and the picturing of data, in: Proceedings of the international congress of mathematicians, volume 2, Vancouver, pp. 523–531.
J.S. Marron, S. Jung, I.L. Dryden, Speculation on the generality of the backward stepwise view of PCA, in: Proceedings of the International Conference on Multimedia Information Retrieval, 2010, pp. 227–230.
J. Damon, J. S. Marron, Backwards principal component analysis and principal nested relations, Journal of Mathematical Imaging and Vision 50 (2014) 107–114.
S. Jung, X. Liu, J. S. Marron, S. Pizer, Generalized PCA via the backward stepwise approach in image analysis, Brain, Body and Machine 83 (2010) 111–123.
J. S. Marron, A. M. Alonso, Overview of object oriented data analysis, Biometrical Journal 56 (2014) 732–753.
X. Pennec, Barycentric subspace analysis on manifolds, The Annals of Statistics 46 (2018) 2711–2746.
M. Fréchet, Les éléments aléatoires de nature quelconque dans un espace distancié, Annales de l’Institut Henri Poincaré 10 (1948) 215–310.
W. S. Kendall, Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence, Proceedings of the London Mathematical Society 3 (1990) 371–406.
X. Pennec, Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements., in: NSIP, 3, 1999, pp. 194–198.
A. Cauchy, Méthode générale pour la résolution des systèmes d’équations simultanées, Comptes Rendus Hebd. Séances Acad. Sci. 25 (1847) 536–538.
S. Bubeck, Theory of convex optimization for machine learning., Foundations and Trends in Machine Learning 8 (2015) 231–358.
F. Cazals, B. Delmas, T. O’Donnell, Fréchet Mean and P-mean on the Unit Circle: Decidability, Algorithm, and Applications to Clustering on the Flat Torus, in: SEA 2021-19th Symposium on Experimental Algorithms, 2021.
A. Srivastava, E. Klassen, Monte carlo extrinsic estimators of manifold-valued parameters, IEEE Transactions on Signal Processing 50 (2002) 299–308.
R. Bhattacharya, V. Patrangenaru, Nonparametic estimation of location and dispersion on riemannian manifolds, Journal of Statistical Planning and Inference 108 (2002) 23–35.
S. Huckemann, H. Ziezold, Principal component analysis for Riemannian manifolds, with application to triangular shape spaces, Advances in Applied Probability 38 (2006) 299–319.
S. Huckemann, T. Hotz, Principal component geodesics for planar shape spaces, Journal of Multivariate Analysis 100 (2009) 699–714.
J. J. Faraway, C. A. Trotman, Shape change along geodesics with application to cleft lip surgery, Journal of the Royal Statistical Society Series C: Applied Statistics 60 (2011) 743–755.
H. Fotouhi, M. Golalizadeh, Exploring the variability of dna molecules via principal geodesic analysis on the shape space, Journal of Applied Statistics 39 (2012) 2199–2207.
M. Vaillant, M. I. Miller, L. Younes, A. Trouvé, Statistics on diffeomorphisms via tangent space representations, NeuroImage 23 (2004) S161–S169.
Y. Xie, B. C. Vemuri, J. Ho, Statistical analysis of tensor fields, in: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010: 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part I 13, Springer, pp. 682–689.
H. Salehian, R. Chakraborty, E. Ofori, D. Vaillancourt, B. C. Vemuri, An efficient recursive estimator of the fréchet mean on a hypersphere with applications to medical image analysis, Mathematical Foundations of Computational Anatomy 3 (2015) 143–154.
D. Lazar, L. Lin, Scale and curvature effects in principal geodesic analysis, Journal of Multivariate Analysis 153 (2017) 64–82.
H. Zhu, T. Li, B. Zhao, Statistical learning methods for neuroimaging data analysis with applications, Annual Review of Biomedical Data Science 6 (2023) 73–104.
S. Sommer, F. Lauze, M. Nielsen, Optimization over geodesics for exact principal geodesic analysis, Advances in Computational Mathematics 40 (2014) 283–313.
S. Huckemann, T. Hotz, A. Munk, Intrinsic shape analysis: Geodesic PCA for Riemannian manifolds modulo isometric Lie group actions, Statistica Sinica 20 (2010) 1–100.
S. Sommer, Horizontal dimensionality reduction and iterated frame bundle development, in: Geometric Science of Information: First International Conference, GSI 2013, Paris, France, August 28-30, 2013. Proceedings, Springer, pp. 76–83.
M. E. Tipping, C. M. Bishop, Probabilistic Principal Component Analysis, Neural Computing Research, Aston University, Birmingham, 1997. Technical Report.
S. Roweis, EM algorithms for PCA and SPCA, Advances in Neural Information Processing Systems 10 (1998) 626–632.
M. Zhang, P. T. Fletcher, Probabilistic Principal Geodesic Analysis, In Neural Information Processing Systems (NIPS), 2013. Nevada, United States.
M. Zhang, P. T. Fletcher, Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability, Medical Image Analysis 25 (2015) 37–44.
Y. Zhang, J. Xing, M. Zhang, Mixture probabilistic principal geodesic analysis, in: Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy: 4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, Springer, pp. 196–208.
S. Sommer, An infinitesimal probabilistic model for principal component analysis of manifold valued data, Sankhya A 81 (2019) 37–62.
V. M. Panaretos, T. Pham, Z. Yao, Principal flows, Journal of the American Statistical Association 109 (2014) 424–436.
H. Liu, Z. Yao, S. Leung, T. F. Chan, A level set based variational principal flow method for nonparametric dimension reduction on Riemannian manifolds, SIAM Journal on Scientific Computing 39 (2017) A1616–A1646.
Z. Yao, Y. Xia, Z. Fan, Fixed boundary flows, arXiv preprint arXiv:1904.11332 (2019).
N. I. Fisher, T. Lewis, B. J. Embleton, Statistical Analysis of Spherical Data, Cambridge University Press, 1993.
R. A. Fisher, Dispersion on a sphere, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 217 (1953) 295–305.
T. Chang, Spherical regression and the statistics of tectonic plate reconstructions, International Statistical Review/Revue Internationale de Statistique (1993) 299–316.
A. SenGupta, B. C. Arnold, Directional Statistics for Innovative Applications: A Bicentennial Tribute to Florence Nightingale, Springer, 2022.
C. R. Anderson, Object recognition using statistical shape analysis, Ph.D. thesis, University of Leeds (Department of Statistics), 1996.
I. L. Dryden, K. R. Kim, C. A. Laughton, H. Le, Principal nested shape space analysis of molecular dynamics data, Annals of Applied Statistics 13 (2019) 2213–2234.
I.L. Dryden, ‘shapes’: Statistical Shape Analysis, R package version 1.2.6, 2021.
M. Moghimbeygi, A. Nodehi, Multinomial principal component logistic regression on shape data, Journal of Classification 39 (2022) 578–599.
A. Banerjee, I. S. Dhillon, J. Ghosh, S. Sra, G. Ridgeway, Clustering on the unit hypersphere using von mises-fisher distributions., Journal of Machine Learning Research 6 (2005).
D. G. Kendall, W. S. Kendall, Alignments in two-dimensional random sets of points, Advances in Applied probability 12 (1980) 380–424.
C. G. Small, Techniques of shape analysis on sets of points, International Statistical Review (1988) 243–257.
K. Mardia, I. L. Dryden, Shape distributions for landmark data, Advances in Applied Probability 21 (1989) 742–755.
P. O’Higgins, I. L. Dryden, Sexual dimorphism in hominoids: further studies of craniofacial shape differences in pan, gorilla and pongo, Journal of Human Evolution 24 (1993) 183–205.
F. L. Bookstein, Biometrics, biomathematics and the morphometric synthesis, Bulletin of mathematical biology 58 (1996) 313–365.
C. J. Brignell, I. L. Dryden, S. A. Gattone, B. Park, S. L, W. J. Browne, S. Flynn, Surface shape analysis with an application to brain surface asymmetry in schizophrenia, Biostatistics 11 (2010) 609–630.
T. D. Downs, J. Liebman, Statistical methods for vectorcardiographic directions, IEEE Transactions on Biomedical Engineering (1969) 87–94.
A. L. Gould, A regression technique for angular variates, Biometrics (1969) 683–700.
T. Hamelryck, K. Mardia, J. Ferkinghoff-Borg, Bayesian methods in structural bioinformatics, Springer, 2012.
K. Siddiqi, S. Pizer, Medial representations: mathematics, algorithms and applications, volume 37, Springer Science & Business Media, 2008.
S. Jung, I. L. Dryden, J. S. Marron, Analysis of principal nested spheres, Biometrika 99 (2012) 551–568.
S. M. Pizer, S. Jung, D. Goswami, J. Vicory, X. Zhao, R. Chaudhuri, J. N. Damon, S. Huckemann, J. S. Marron, Nested sphere statistics of skeletal models, in: Innovations for Shape Analysis, Springer, 2013, pp. 93–115.
Y. Guo, B. W. K. Ling, Spherical coordinate-based kernel principal component analysis, Signal, Image and Video Processing 15 (2021) 511–518.
B. Schölkopf, A. Smola, K. R. Müller, Kernel principal component analysis, in: International conference on artificial neural networks, pp. 583–588.
B. Schölkopf, A. Smola, K. R. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation 10 (1998) 1299–1319.
H. Luo, J. E. Purvis, D. Li, Spherical rotation dimension reduction with geometric loss functions, arXiv preprint arXiv:2204.10975 (2022).
P. Zoubouloglou, E. García-Portugués, J. S. Marron, Scaled torus principal component analysis, Journal of Computational and Graphical Statistics 32 (2023) 1024–1035.
Y. Mu, P. Nguyen, G. Stock, Energy landscape of a small peptide revealed by dihedral angles principal component analysis, Proteins 58 (2005) 45.
A. Altis, P. Nguyen, R. Hegger, G. Stock, Dihedral angles principal component analysis of molecular dynamics simulations, Journal of Chemical Physics 26 (2007) 244111.1–244111.
K. V. Mardia, G. Hughes, C. C. Taylor, H. Singh, A multivariate von Mises distribution with applications to bioinformatics, Canadian Journal of Statistics 36 (2008) 99–109.
A. Nodehi, M. Golalizadeh, A. Heydari, Dihedral angles principal geodesic analysis using nonlinear statistics, Journal of Applied Statistics 42 (2015) 1962–1972.
B. Eltzner, S. Huckemann, K. V. Mardia, Torus principal component analysis with applications to RNA structure, Annals of Applied Statistics 12 (2018) 1332–1359.
A. Nodehi, M. Golalizadeh, M. Maadooliat, C. Agostinelli, Torus probabilistic principal component analysis, Journal of Classification (2025).
K. V. Mardia, H. Wiechers, B. Eltzner, S. Huckemann, Principal component analysis and clustering on manifolds, Journal of Multivariate Analysis 188 (2022) 104862.
J. J. Fernández-Durán, M. M. Gregorio-Domínguez, ‘circnntsr’: an R package for the statistical analysis of circular, multivariate circular, and spherical data using nonnegative trigonometric sums, Journal of Statistical Software 70 (2016) 1–19.
F. Lagona, M. Mingione, Nonhomogeneous hidden semi-markov models for toroidal data, arXiv preprint arXiv:2312.14719 (2023).
A. C. Walls, Y. J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, D. Veesler, Structure, function, and antigenicity of the sars-cov-2 spike glycoprotein, Cell 181 (2020) 281–292.
H. Frauenfelder, S. G. Sligar, P. G. Wolynes, The energy landscapes and motions of proteins, Science 254 (1991) 1598–1603.
D. J. Wales, Energy landscapes, in: Atomic clusters and nanoparticles. Agregats atomiques et nanoparticules: Les Houches Session LXXIII 2–28 July 2000, Springer, 2002, pp. 437–507.
S. A. Adcock, J. A. McCammon, Molecular dynamics: survey of methods for simulating the activity of proteins, Chemical reviews 106 (2006) 1589–1615.
L. Riccardi, P. H. Nguyen, G. Stock, Free-energy landscape of RNA hairpins constructed via dihedral angle principal component analysis, The Journal of Physical Chemistry B 113 (2009) 16660–16668.
F. Sittel, A. Jain, G. Stock, Principal component analysis of molecular dynamics: On the use of cartesian vs. internal coordinates, The Journal of Chemical Physics 141 (2014) 07B605_1.
G. G. Maisuradze, A. Liwo, H. A. Scheraga, Relation between free energy landscapes of proteins and dynamics, Journal of chemical theory and computation 6 (2010) 583–595.
F. Sittel, T. Filk, G. Stock, Principal component analysis on a torus: Theory and application to protein dynamics, Journal of Chemical Physics 147 (2017) 244101.1–244101.12.
K. Sargsyan, J. Wright, C. Lim, GeoPCA: a new tool for multivariate analysis of dihedral angles based on principal component geodesics, Nucleic Acids Research 40 (2012) 25.
K. Sargsyan, Y. H. Hua, C. Lim, Clustangles: An open library for clustering angular data, Journal of Chemical Information and Modeling 55 (2015) 1517–1520.
J. Janin, S. Wodak, M. Levitt, B. Maigret, Conformation of amino acid side-chains in proteins, Journal of molecular biology 125 (1978) 357–386.
M. V. Shapovalov, J. Dunbrack, R. L., Statistical and conformational analysis of the electron density of protein side chains, Proteins: Structure, Function, and Bioinformatics 66 (2007) 279–303.
M. V. Shapovalov, J. Dunbrack, L. Roland, A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions, Structure 19 (2011) 844–858.
K. V. Mardia, C. C. Taylor, G. K. Subramaniam, Protein bioinformatics and mixtures of bivariate von Mises distributions for angular data, Biometrics 63 (2007) 505–512.
G. Ramachandran, C. Ramakrishnan, V. Sasisekharan, Stereochemistry of polypeptide chain configurations, Journal of Molecular Biology 7 (1963) 95–99.
P. R. Amarasinghe, L. Allison, P. J. Stuckey, M. Garcia de la Banda, A. M. Lesk, A. S. Konagurthu, Getting ‘ϕψχal’with proteins: minimum message length inference of joint distributions of backbone and sidechain dihedral angles, Bioinformatics 39 (2023) i357–i367.
C. S. Wallace, Statistical and inductive inference by minimum message length, Springer Science & Business Media, 2005.
J. Ameijeiras-Alonso, C. Ley, Sine-skewed toroidal distributions and their application in protein bioinformatics, Biostatistics 23 (2022) 685–704.
S. Jung, K. Park, B. Kim, Clustering on the torus by conformal prediction, The Annals of Applied Statistics 15 (2021) 1583–1603.
D. Xu, Y. Wang, Density estimation for toroidal data using semiparametric mixtures, Statistics and Computing 33 (2023) 140.
J.T. Kent, K.V. Mardia, Principal component analysis for the wrapped normal torus model, in: Proceedings of the Leeds Annual Statistical Research (LASR) Workshop, 2009.
A. Nodehi, M. Golalizadeh, M. Maadooliat, C. Agostinelli, Estimation of parameters in multivariate wrapped models for data on a p-torus, Computational Statistics 36 (2021) 193–215.
I. J. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Annals of Mathematics 38 (1937) 787–793.
E. Pekalska, R. P. W. Duin, The dissimilarity representation for pattern recognition: foundations and applications, volume 64, World scientific, 2005.
T. F. Cox, M. A. A. Cox, Multidimensional scaling on a sphere, Communications in Statistics-Theory and Methods 20 (1991) 2943–2953.
M. A. A. Cox, T. F. Cox, Multidimensional scaling, in: Handbook of Data Visualization, Springer, 2008, pp. 315–347.
E. García-Portugués, A. Prieto-Tirado, Toroidal PCA via density ridges, Statistics and Computing 33 (2023).
C. R. Genovese, M. Perone-Pacifico, I. Verdinelli, L. Wasserman, Nonparametric ridge estimation, The Annals of Statistics 42 (2014) 1511–1545.
D. G. Kendall, The diffusion of shape, Advances in Applied Probability 9 (1977) 428–430.
H. Le, On geodesics in Euclidean shape spaces, Journal of the London Mathematical Society 2 (1991) 360–372.
C. R. Goodall, K. V. Mardia, A geometrical derivation of the shape density, Advances in Applied Probability 23 (1991) 496–514.
T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, Training models of shape from sets of examples, in: BMVC92, Springer, 1992, pp. 9–18.
J. T. Kent, The complex Bingham distribution and shape analysis, Journal of the Royal Statistical Society: Series B (Methodological) 56 (1994) 285–299.
R. Larsen, K. B. Hilger, Statistical shape analysis using non-Euclidean metrics, Medical Image Analysis 7 (2003) 417–423.
R. Kolamunnage, J. T. Kent, Principal component analysis for shape variation about an underlying symmetric shape, Stochastic Geometry, Biological Structure and Images 72 (2003) 137–139.
M. Abboud, A. Benzinou, K. Nasreddine, A robust tangent PCA via shape restoration for shape variability analysis, Pattern Analysis and Applications 23 (2020) 653–671.
K. E. Severn, I. L. Dryden, S. P. Preston, Manifold valued data analysis of samples of networks, with applications in corpus linguistics, The Annals of Applied Statistics 16 (2022) 368–390.
V. Blanz, T. Vetter, A morphable model for the synthesis of 3D faces, in: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, 1999, pp. 187–194.
A. Patel, W. A. P. Smith, 3d morphable face models revisited, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp. 1327–1334.
F. Yang, J. Wang, E. Shechtman, L. Bourdev, D. Metaxas, Expression flow for 3D-aware face component transfer, in: ACM SIGGRAPH 2011 Papers, 2011, pp. 1–10.
A. J. O’toole, T. Vetter, N. F. Troje, H. H. Bülthoff, Sex classification is better with three-dimensional head structure than with image intensity information, Perception 26 (1997) 75–84.
R. Pilgram, K. D. Fritscher, R. H. Zwick, M. F. Schocke, T. Trieb, O. Pachinger, R. Schubert, Shape analysis of healthy and diseased cardiac ventricles using PCA, in: International Congress Series, volume 1281, Elsevier, pp. 357–362.
D. R. Valenzano, A. Mennucci, G. Tartarelli, A. Cellerino, Shape analysis of female facial attractiveness, Vision Research 46 (2006) 1282–1291.
A. L. Ibáñez, L. A. Jawad, Morphometric variation of fish scales among some species of rattail fish from New Zealand waters, Journal of the Marine Biological Association of the United Kingdom 98 (2018) 1991–1998.
B. M. M. Gaffney, T. J. Hillen, J. J. Nepple, J. C. Clohisy, M. D. Harris, Statistical shape modeling of femur shape variability in female patients with hip dysplasia, Journal of Orthopaedic Research 37 (2019) 665–673.
Y. M. Xing, Z. J. Wang, J. P. Wang, Y. Kan, N. Zhang, X. M. Shi, Human body shape clustering for apparel industry using PCA-based probabilistic neural network, in: Advances in Computer Communication and Computational Sciences, Springer, 2019, pp. 343–354.
P. T. Fletcher, S. Joshi, Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors, in: Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, Springer, 2004, pp. 87–98.
P. T. Fletcher, C. Lu, S. Joshi, Statistics of shape via principal geodesic analysis on Lie groups, in: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., volume 1, IEEE, pp. I–I.
C. Curry, S. Marsland, R. McLachlan, Principal symmetric space analysis, Journal of Computational Dynamics 6 (2019) 251.
T. Hastie, W. Stuetzle, Principal curves, Journal of the American Statistical Association 84 (1989) 502–516.
R. Tibshirani, Principal curves revisited, Statistics and computing 2 (1992) 183–190.
B. Kégl, A. Krzyzak, T. Linder, K. Zeger, Learning and design of principal curves, IEEE transactions on pattern analysis and machine intelligence 22 (2000) 281–297.
J. J. Verbeek, N. Vlassis, B. Kröse, A k-segments algorithm for finding principal curves, Pattern Recognition Letters 23 (2002) 1009–1017.
J. D. Banfield, A. E. Raftery, Ice floe identification in satellite images using mathematical morphology and clustering about principal curves, Journal of the American statistical Association 87 (1992) 7–16.
D. C. Stanford, A. E. Raftery, Finding curvilinear features in spatial point patterns: principal curve clustering with noise, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000) 601–609.
A. N. Gorban, A. Zinovyev, Principal manifolds and graphs in practice: from molecular biology to dynamical systems, International journal of neural systems 20 (2010) 219–232.
F. Mulier, V. Cherkassky, Self-organization as an iterative kernel smoothing process, Neural computation 7 (1995) 1165–1177.
H. Yin, Learning nonlinear principal manifolds by self-organising maps, in: Principal manifolds for data visualization and dimension reduction, Springer, 2008, pp. 68–95.
R. Wu, B. Wang, A. Xu, Functional data clustering using principal curve methods, Communications in Statistics-Theory and Methods 51 (2022) 7264–7283.
A. Pewsey, Applied directional statistics with R: an overview, Applied Directional Statistics (2018) 293–306.
T. Hastie, A. Weingessel, K. Hornik, H. Bengtsson, R. Cannoodt, M. R. Cannoodt, Package ‘princurve’ (2022).
J. Lee, J. H. Kim, H. S. Oh, ‘spherepc’: An R package for dimension reduction on a sphere., R Journal 14 (2022).