ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Dissipation Enables Robust Extensive Scaling of Multipartite Correlations
L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80, 517 (2008). RMPHAT 0034-6861 10.1103/RevModPhys.80.517
N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rep. 646, 1 (2016). PRPLCM 0370-1573 10.1016/j.physrep.2016.06.008
G. De Chiara and A. Sanpera, Genuine quantum correlations in quantum many-body systems: A review of recent progress, Rep. Prog. Phys. 81, 074002 (2018). RPPHAG 0034-4885 10.1088/1361-6633/aabf61
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium: Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91, 021001 (2019). RMPHAT 0034-6861 10.1103/RevModPhys.91.021001
M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Area laws in quantum systems: Mutual information and correlations, Phys. Rev. Lett. 100, 070502 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.070502
M. J. Gullans and D. A. Huse, Entanglement structure of current-driven diffusive fermion systems, Phys. Rev. X 9, 021007 (2019). PRXHAE 2160-3308 10.1103/PhysRevX.9.021007
A. Panda and S. Banerjee, Entanglement in nonequilibrium steady states and many-body localization breakdown in a current-driven system, Phys. Rev. B 101, 184201 (2020). PRBMDO 2469-9950 10.1103/PhysRevB.101.184201
A. D'Abbruzzo, V. Alba, and D. Rossini, Logarithmic entanglement scaling in dissipative free-fermion systems, Phys. Rev. B 106, 235149 (2022). PRBMDO 2469-9950 10.1103/PhysRevB.106.235149
F. Caceffo and V. Alba, Entanglement negativity in a fermionic chain with dissipative defects: Exact results, J. Stat. Mech. (2023) 023102. JSMTC6 1742-5468 10.1088/1742-5468/acb429
S. Fraenkel and M. Goldstein, Extensive long-range entanglement in a nonequilibrium steady state, SciPost Phys. 15, 134 (2023). 2542-4653 10.21468/SciPostPhys.15.4.134
S. Fraenkel and M. Goldstein, Exact asymptotics of long-range quantum correlations in a non-equilibrium steady state, J. Stat. Mech. (2024) 033107. JSMTC6 1742-5468 10.1088/1742-5468/ad2924
T. Sagawa and M. Ueda, Generalized Jarzynski equality under nonequilibrium feedback control, Phys. Rev. Lett. 104, 090602 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.104.090602
P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Thermodynamics of a physical model implementing a Maxwell demon, Phys. Rev. Lett. 110, 040601 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.040601
D. Hartich, A. C. Barato, and U. Seifert, Stochastic thermodynamics of bipartite systems: Transfer entropy inequalities and a Maxwell's demon interpretation, J. Stat. Mech. (2014) P02016. JSMTC6 1742-5468 10.1088/1742-5468/2014/02/P02016
J. M. Horowitz and M. Esposito, Thermodynamics with continuous information flow, Phys. Rev. X 4, 031015 (2014). PRXHAE 2160-3308 10.1103/PhysRevX.4.031015
J. M. Horowitz, Multipartite information flow for multiple Maxwell demons, J. Stat. Mech. (2015) P03006. JSMTC6 1742-5468 10.1088/1742-5468/2015/03/P03006
J. M. Parrondo, J. M. Horowitz, and T. Sagawa, Thermodynamics of information, Nat. Phys. 11, 131 (2015). NPAHAX 1745-2473 10.1038/nphys3230
D. H. Wolpert, The stochastic thermodynamics of computation, J. Phys. A 52, 193001 (2019). JPAMB5 1751-8113 10.1088/1751-8121/ab0850
J. Ehrich and D. A. Sivak, Energy and information flows in autonomous systems, Front. Phys. 11, 1108357 (2023). FRPHAY 2296-424X 10.3389/fphy.2023.1108357
R. Rao and M. Esposito, Nonequilibrium Thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics, Phys. Rev. X 6, 041064 (2016). PRXHAE 2160-3308 10.1103/PhysRevX.6.041064
E. Penocchio, F. Avanzini, and M. Esposito, Information thermodynamics for deterministic chemical reaction networks, J. Chem. Phys. 157, 034110 (2022). JCPSA6 0021-9606 10.1063/5.0094849
J. N. Freitas and M. Esposito, Emergent second law for non-equilibrium steady states, Nat. Commun. 13, 5084 (2022). NCAOBW 2041-1723 10.1038/s41467-022-32700-7
G. Falasco and M. Esposito, Macroscopic stochastic thermodynamics, Rev. Mod. Phys. 97, 015002 (2025). RMPHAT 0034-6861 10.1103/RevModPhys.97.015002
G. Falasco, R. Rao, and M. Esposito, Information thermodynamics of Turing patterns, Phys. Rev. Lett. 121, 108301 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.108301
N. Freitas and M. Esposito, Maxwell demon that can work at macroscopic scales, Phys. Rev. Lett. 129, 120602 (2022). PRLTAO 0031-9007 10.1103/PhysRevLett.129.120602
N. Freitas and M. Esposito, Information flows in macroscopic Maxwell's demons, Phys. Rev. E 107, 014136 (2023). PRESCM 2470-0045 10.1103/PhysRevE.107.014136
M. Bilancioni, M. Esposito, and N. Freitas, A chemical reaction network implementation of a Maxwell demon, J. Chem. Phys. 159, 204103 (2023). JCPSA6 0021-9606 10.1063/5.0173889
K. Wood, C. Van den Broeck, R. Kawai, and K. Lindenberg, Universality of synchrony: Critical behavior in a discrete model of stochastic phase-coupled oscillators, Phys. Rev. Lett. 96, 145701 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.145701
K. Wood, C. Van den Broeck, R. Kawai, and K. Lindenberg, Critical behavior and synchronization of discrete stochastic phase-coupled oscillators, Phys. Rev. E 74, 031113 (2006). PRESCM 1539-3755 10.1103/PhysRevE.74.031113
K. Wood, C. Van den Broeck, R. Kawai, and K. Lindenberg, Continuous and discontinuous phase transitions and partial synchronization in stochastic three-state oscillators, Phys. Rev. E 76, 041132 (2007). PRESCM 1539-3755 10.1103/PhysRevE.76.041132
K. Wood, C. Van den Broeck, R. Kawai, and K. Lindenberg, Effects of disorder on synchronization of discrete phase-coupled oscillators, Phys. Rev. E 75, 041107 (2007). PRESCM 1539-3755 10.1103/PhysRevE.75.041107
B. Fernandez and L. S. Tsimring, Athermal dynamics of strongly coupled stochastic three-state oscillators, Phys. Rev. Lett. 100, 165705 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.165705
V. R. Assis, M. Copelli, and R. Dickman, An infinite-period phase transition versus nucleation in a stochastic model of collective oscillations, J. Stat. Mech. (2011) P09023. JSMTC6 1742-5468 10.1088/1742-5468/2011/09/P09023
V. R. Assis and M. Copelli, Collective behavior of coupled nonuniform stochastic oscillators, Physica (Amsterdam) 391A, 1900 (2012). PHYADX 0378-4371 10.1016/j.physa.2011.10.012
D. Escaff, A. Rosas, R. Toral, and K. Lindenberg, Synchronization of coupled noisy oscillators: Coarse graining from continuous to discrete phases, Phys. Rev. E 94, 052219 (2016). PRESCM 2470-0045 10.1103/PhysRevE.94.052219
D. J. Jörg, Stochastic Kuramoto oscillators with discrete phase states, Phys. Rev. E 96, 032201 (2017). PRESCM 2470-0045 10.1103/PhysRevE.96.032201
T. Herpich, J. Thingna, and M. Esposito, Collective power: Minimal model for thermodynamics of nonequilibrium phase transitions, Phys. Rev. X 8, 031056 (2018). PRXHAE 2160-3308 10.1103/PhysRevX.8.031056
T. Herpich and M. Esposito, Universality in driven Potts models, Phys. Rev. E 99, 022135 (2019). PRESCM 2470-0045 10.1103/PhysRevE.99.022135
J. Meibohm and M. Esposito, Minimum-dissipation principle for synchronized stochastic oscillators far from equilibrium, Phys. Rev. E 110, L042102 (2024). PRESCM 2470-0045 10.1103/PhysRevE.110.L042102
J. Meibohm and M. Esposito, Small-amplitude synchronization in driven Potts models, Phys. Rev. E 110, 044114 (2024). PRESCM 2470-0045 10.1103/PhysRevE.110.044114
M. Suñé and A. Imparato, Out-of-equilibrium clock model at the verge of criticality, Phys. Rev. Lett. 123, 070601 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.070601
K. L. Rodrigues and R. Dickman, Synchronization of discrete oscillators on ring lattices and small-world networks, J. Stat. Mech. (2020) 043406. JSMTC6 1742-5468 10.1088/1742-5468/ab6b18
D. Zhang, Y. Cao, Q. Ouyang, and Y. Tu, The energy cost and optimal design for synchronization of coupled molecular oscillators, Nat. Phys. 16, 95 (2020). NPAHAX 1745-2473 10.1038/s41567-019-0701-7
L. Guislain and E. Bertin, Nonequilibrium phase transition to temporal oscillations in mean-field spin models, Phys. Rev. Lett. 130, 207102 (2023). PRLTAO 0031-9007 10.1103/PhysRevLett.130.207102
L. Guislain and E. Bertin, Discontinuous phase transition from ferromagnetic to oscillating states in a nonequilibrium mean-field spin model, Phys. Rev. E 109, 034131 (2024). PRESCM 2470-0045 10.1103/PhysRevE.109.034131
L. Guislain and E. Bertin, Collective oscillations in a three-dimensional spin model with non-reciprocal interactions, J. Stat. Mech. (2024) 093210. JSMTC6 1742-5468 10.1088/1742-5468/ad72dc
L. Guislain and E. Bertin, Hidden collective oscillations in a disordered mean-field spin model with non-reciprocal interactions, J. Phys. A 57, 375001 (2024). JPAMB5 1751-8113 10.1088/1751-8121/ad6ab4
N. Golubeva and A. Imparato, Efficiency at maximum power of interacting molecular machines, Phys. Rev. Lett. 109, 190602 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.109.190602
N. Golubeva and A. Imparato, Maximum power operation of interacting molecular motors, Phys. Rev. E 88, 012114 (2013). PRESCM 1539-3755 10.1103/PhysRevE.88.012114
H. Vroylandt, M. Esposito, and G. Verley, Collective effects enhancing power and efficiency, Europhys. Lett. 120, 30009 (2017). EULEEJ 0295-5075 10.1209/0295-5075/120/30009
H. Vroylandt, M. Esposito, and G. Verley, Efficiency fluctuations of stochastic machines undergoing a phase transition, Phys. Rev. Lett. 124, 250603 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.124.250603
F. S. Filho, G. A. L. Forão, D. M. Busiello, B. Cleuren, and C. E. Fiore, Powerful ordered collective heat engines, Phys. Rev. Res. 5, 043067 (2023). PPRHAI 2643-1564 10.1103/PhysRevResearch.5.043067
I. N. Mamede, K. Proesmans, and C. E. Fiore, Thermodynamics of interacting systems: The role of the topology and collective effects, Phys. Rev. Res. 5, 043278 (2023). PPRHAI 2643-1564 10.1103/PhysRevResearch.5.043278
T. Herpich, T. Cossetto, G. Falasco, and M. Esposito, Stochastic thermodynamics of all-to-all interacting many-body systems, New J. Phys. 22, 063005 (2020). NJOPFM 1367-2630 10.1088/1367-2630/ab882f
G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977).
S. Watanabe, Information theoretical analysis of multivariate correlation, IBM J. Res. Dev. 4, 66 (1960). IBMJAE 0018-8646 10.1147/rd.41.0066
P. Hänggi and H. Thomas, Stochastic processes: Time evolution, symmetries and linear response, Phys. Rep. 88, 207 (1982). PRPLCM 0370-1573 10.1016/0370-1573(82)90045-X
H. Gang, Stationary solution of master equations in the large-system-size limit, Phys. Rev. A 36, 5782 (1987). PLRAAN 0556-2791 10.1103/PhysRevA.36.5782
M. Dykman, X. Chu, and J. Ross, Stationary probability distribution near stable limit cycles far from Hopf bifurcation points, Phys. Rev. E 48, 1646 (1993). PLEEE8 1063-651X 10.1103/PhysRevE.48.1646
W. Vance and J. Ross, Fluctuations near limit cycles in chemical reaction systems, J. Chem. Phys. 105, 479 (1996). JCPSA6 0021-9606 10.1063/1.471901
H. Ge and H. Qian, Landscapes of non-gradient dynamics without detailed balance: Stable limit cycles and multiple attractors, Chaos 22, 023140 (2012). CHAOEH 1054-1500 10.1063/1.4729137
G. Nicolis and V. Balakrishnan, Comments on the amplification of intrinsic fluctuations by chaotic dynamics, Phys. Rev. A 46, 3569 (1992). PLRAAN 1050-2947 10.1103/PhysRevA.46.3569
X.-G. Wu and R. Kapral, Internal fluctuations and deterministic chemical chaos, Phys. Rev. Lett. 70, 1940 (1993). PRLTAO 0031-9007 10.1103/PhysRevLett.70.1940
P. Geysermans and G. Nicolis, Thermodynamic fluctuations and chemical chaos in a well-stirred reactor: A master equation analysis, J. Chem. Phys. 99, 8964 (1993). JCPSA6 0021-9606 10.1063/1.465566
P. Geysermans and F. Baras, Particle simulation of chemical chaos, J. Chem. Phys. 105, 1402 (1996). JCPSA6 0021-9606 10.1063/1.472032
P. Gaspard, Stochastic approach to entropy production in chemical chaos, Chaos 30, 113103 (2020). CHAOEH 1054-1500 10.1063/5.0025350
R. F. Fox and J. E. Keizer, Effect of molecular fluctuations on the description of chaos by macrovariable equations, Phys. Rev. Lett. 64, 249 (1990). PRLTAO 0031-9007 10.1103/PhysRevLett.64.249
R. F. Fox and J. Keizer, Amplification of intrinsic fluctuations by chaotic dynamics in physical systems, Phys. Rev. A 43, 1709 (1991). PLRAAN 1050-2947 10.1103/PhysRevA.43.1709
J. Keizer and R. F. Fox, Reply to "Comments on the amplification of intrinsic fluctuations by chaotic dynamics", Phys. Rev. A 46, 3572 (1992). PLRAAN 1050-2947 10.1103/PhysRevA.46.3572
H. Wang and H. Xin, Intrinsic fluctuations and deterministic chemical chaos, J. Chem. Phys. 107, 6681 (1997). JCPSA6 0021-9606 10.1063/1.474941
H. Wang and Q. Li, Master equation analysis of deterministic chemical chaos, J. Chem. Phys. 108, 7555 (1998). JCPSA6 0021-9606 10.1063/1.476189
J. Kurchan, Six out of equilibrium lectures, arXiv:0901.1271.
P. Hanggi, H. Grabert, P. Talkner, and H. Thomas, Bistable systems: Master equation versus Fokker-Planck modeling, Phys. Rev. A 29, 371 (1984). PLRAAN 0556-2791 10.1103/PhysRevA.29.371
M. I. Dykman, E. Mori, J. Ross, and P. Hunt, Large fluctuations and optimal paths in chemical kinetics, J. Chem. Phys. 100, 5735 (1994). JCPSA6 0021-9606 10.1063/1.467139
R. Zakine and E. Vanden-Eijnden, Minimum-action method for nonequilibrium phase transitions, Phys. Rev. X 13, 041044 (2023). PRXHAE 2160-3308 10.1103/PhysRevX.13.041044
H. Ge and H. Qian, Thermodynamic limit of a nonequilibrium steady state: Maxwell-type construction for a bistable biochemical system, Phys. Rev. Lett. 103, 148103 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.148103
M. Vellela and H. Qian, Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: The Schlögl model revisited, J. R. Soc. Interface 6, 925 (2009). 1742-5689 10.1098/rsif.2008.0476
J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos (Wiley, New York, 2002).
V. S. Anishchenko, T. E. Vadivasova, and G. I. Strelkova, Deterministic Nonlinear Systems: A Short Course (Springer, Cham, 2014).
J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Publ. Math. l'IHÉS 50, 59 (1979). 10.1007/BF02684769
W. Tucker, The Lorenz attractor exists, C. R. Acad. Sci., Paris, Sér. I, Math. 328, 1197 (1999). 10.1016/S0764-4442(99)80439-X
S. Gonchenko, A. Kazakov, and D. Turaev, Wild pseudohyperbolic attractor in a four-dimensional Lorenz system, Nonlinearity 34, 2018 (2021). NONLE5 0951-7715 10.1088/1361-6544/abc794
E. Karatetskaia, A. Kazakov, K. Safonov, and D. Turaev, Robust chaos in a totally symmetric network of four phase oscillators, Phys. Rev. Lett. 134, 167201 (2025). PRLTAO 0031-9007 10.1103/PhysRevLett.134.167201
F. Castro, A. D. Sánchez, and H. S. Wio, Reentrance phenomena in noise induced transitions, Phys. Rev. Lett. 75, 1691 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.75.1691
F. Radicchi and H. Meyer-Ortmanns, Reentrant synchronization and pattern formation in pacemaker-entrained Kuramoto oscillators, Phys. Rev. E 74, 026203 (2006). PRESCM 1539-3755 10.1103/PhysRevE.74.026203
D. Escaff, ItaloIvo Lima Dias Pinto, and K. Lindenberg, Arrays of stochastic oscillators: Nonlocal coupling, clustering, and wave formation, Phys. Rev. E 90, 052111 (2014). PRESCM 1539-3755 10.1103/PhysRevE.90.052111
H. Noguchi, F. van Wijland, and J.-B. Fournier, Cycling and spiral-wave modes in an active cyclic Potts model, J. Chem. Phys. 161, 025101 (2024). JCPSA6 0021-9606 10.1063/5.0221050
H. Noguchi and J.-B. Fournier, Spatiotemporal patterns in the active cyclic Potts model, New J. Phys. 26, 093043 (2024). NJOPFM 1367-2630 10.1088/1367-2630/ad7dac
H. Noguchi, Spatiotemporal patterns in active four-state Potts models, Sci. Rep. 15, 674 (2025). SRCEC3 2045-2322 10.1038/s41598-024-84819-w
T. Castellani and A. Cavagna, Spin-glass theory for pedestrians, J. Stat. Mech. (2005) P05012. JSMTC6 1742-5468 10.1088/1742-5468/2005/05/P05012
V. Ameri, M. Eghbali-Arani, A. Mari, A. Farace, F. Kheirandish, V. Giovannetti, and R. Fazio, Mutual information as an order parameter for quantum synchronization, Phys. Rev. A 91, 012301 (2015). PLRAAN 1050-2947 10.1103/PhysRevA.91.012301
K. Ptaszyński and M. Esposito, Dissipation enables robust extensive scaling of multipartite correlations, Zenodo, 10.5281/zenodo.13939399.